<table>
<thead>
<tr>
<th>Title</th>
<th>A tighter correlation lower bound for quasi-complementary sequence sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Liu, Zilong; Guan, Yong Liang; Mow, Wai Ho</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/19320</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [http://dx.doi.org/10.1109/TIT.2013.2285212].</td>
</tr>
</tbody>
</table>
A Tighter Correlation Lower Bound for Quasi-Complementary Sequence Sets

Zilong Liu, Student Member, IEEE, Yong Liang Guan, Member, IEEE, Wai Ho Mow, Senior Member, IEEE

Abstract—Levenshtein improved the famous Welch bound on aperiodic correlation for binary sequences by utilizing some properties of the weighted mean square aperiodic correlation. Following Levenshtein’s idea, a new correlation lower bound for quasi-complementary sequence sets (QCSSs) over the complex roots of unity is proposed in this paper. The derived lower bound is shown to be tighter than the Welch bound for QCSSs when the set size is greater than some value. The conditions for meeting the new bound with equality are also investigated.

Index Terms—Welch Bound, Levenshtein Bound, quasi-complementary sequence set (QCSS), mutually orthogonal complementary sequence set (MOCSS), Golay complementary pair.

I. INTRODUCTION

In the late 1950’s, Golay [1] introduced the concept of “complementary pair”, which is defined as a pair of sequences whose aperiodic auto-correlations sum to zero for all non-zero time-shifts. In [2], Tseng and Liu extended the notion of the Golay complementary pair to a set of 2 or more sequences. The resultant sequence set has zero non-trivial aperiodic auto-correlation and cross-correlation sums, and are called the mutually orthogonal complementary sequence set (MOCSS) in this paper. Later, Suehiro and Hatori [3] devised a construction of the so-called complete complementary sequences, whose set size meets the upper bound of MOCSS. MOCSS have found many potential applications due to their perfect aperiodic correlation properties. Particularly, the application of MOCSS to asynchronous multi-carrier code-division multiple-access (MC-CDMA) communications was proposed by Chen, Yeh, and Suehiro [4] targeting at achieving zero multipath interference and zero multiuser interference, and it has been introduced as a promising technology for the next generation CDMA [5]. In [6], Davis and Jedwab pioneered the explicit construction of the Golay complementary pairs by use of the cosets of the first-order Reed-Muller code within the second-order Reed-Muller code, and showed its application in balancing the peak-to-average power ratio (PAPR), the code rate, and the error-correction capability in code-keying orthogonal frequency-division multiplexing (OFDM) systems. This construction was further generalized to that for complete complementary sequence sets by associating each second-order coset of the first-order Reed-Muller code with a graph [7], [8]. Other practical applications of MOCSS include intersymbol interference (ISI) channel estimation [9], [10] and radar waveform design [11]. Also, some zero correlation zone sequences [12]-[14] are constructed based on MOCSS.

It is noted that the set size of MOCSS is upper bounded by the number of channels, which limits the application of MOCSS in MC-CDMA communications when a large number of users are to be supported. To overcome this limitation on the set size, we can allow the aperiodic auto- or cross-correlation sums of a complementary sequence set to take uniformly low (but non-zero) values. Intuitively, this relaxed version of complementary sequence set is expected to have a larger set size. The resultant sequence set is called a quasi-complementary sequence set (QCSS).

In [15], Welch obtained a collection of correlation lower bounds by evaluating the mini-max value of the inner products of a vector set, including the aperiodic correlation lower bound for QCSSs, i.e.,

\[\delta_{\text{max}}^2 \geq M^2 N^2 \frac{K - 1}{K(2N - 1) - 1}. \]

where \(\delta_{\text{max}} \) denotes the maximum aperiodic correlation magnitude, \(K \) the set size, \(M \) the number of channels (which is equal to or greater than 2), and \(N \) the elementary sequence length. The aforementioned set size upper bound for MOCSS, namely, \(K \leq M \), can also be obtained from (1) by setting \(\delta_{\text{max}} = 0 \). On the other hand, when \(\delta_{\text{max}} \) is a small positive value, it is easy to obtain \(K > M \). Also, setting \(M = 1 \), (1) is reduced to the lower bound for the conventional (single-channel) sequence set [15]

\[\delta_{\text{max}}^2 \geq N^2 \frac{K - 1}{K(2N - 1) - 1}. \]

In [16], Levenshtein showed that in the case of binary sequence sets, the Welch bound in (2) can be strengthened for set size \(K \geq 4 \) and sequence length \(N \geq 2 \). The basic idea behind the Levenshtein bound is that the weighted mean square aperiodic correlation of any sequence subset over the complex roots of unity should be equal to or greater than that of the whole set which includes all possible complex roots-of-unity sequences. The strengthening of the Welch bound

1In practice, each elementary sequence of a complementary sequence should be sent out in a separate channel. For instance, in a multicarrier CDMA system based on MOCSS, a distinct channel means a distinct sub-carrier.
was extended to complex roots-of-unity sequence sets by Boztas [17]. Later, Peng and Fan derived the lower bound on aperiodic correlation for low correlation zone (LCZ) sequence sets by an approach similar to Levenshtein’s [18]. Recently, correlation lower bounds for LCZ complementary sequences are given in [19]. In addition, optimal and near-optimal QCSSs (with respect to a periodic correlation lower bound), each of which is constructed by modulating a Singer difference set with an optimal quadruphase sequence set, are presented in [20]. To date however, there has been no similar effort on tightening the aperiodic correlation lower bound of QCSSs given in (1). Since a QCSS is capable of supporting more MC-CDMA users than a MOCSS, a tighter correlation lower bound will give us a closer insight on the tradeoffs between these sequence parameters, i.e., K, M, N and δ_{max}, which is useful for the finding of optimal QCSSs. Also, in CDMA study (including asynchronous MC-CDMA), a tight lower bound on the maximum aperiodic auto- and cross- correlations (including asynchronous MC-CDMA), a tight lower bound for QCSS over the complex roots of unity is tighter than the Welch bound for QCSS in (1) when the set size K is greater than a threshold value.

In the literature, another important development is to characterize the condition for sequence sets which can meet the Welch bound with equality. This work was initiated by Massey in 1991 [22], [23]. Later, Rupf and Massey discovered that the sum capacity of a synchronous CDMA system is maximized by the Welch bound equality (WBE) sequence sets [24]. For asynchronous CDMA systems, Mow found that the maximum worst-case signal-to-noise ratio (SNR) is achieved if and only if the WBE sequences form a complementary sequence [25], [21]. Since then, a lot of works have been concerned on the WBE sequences [26]-[30]. In [31], Liu and Guan have shown that the Levenshtein bound can be met with equality by the weighted-correlation complementary sequences. In this paper, we examine the conditions for meeting the proposed aperiodic correlation lower bound of QCSSs with equality. We will show that in conventional single-channel case (i.e., $M = 1$), they are reduced to the conditions for meeting the Levenshtein bound with equality [31].

In Sec. II, necessary notations and a review of the Levenshtein bound are given. In Sec. III, the proposed lower bound for QCSSs will be present, followed by an analysis of its tightness and the conditions for meeting it with equality in Sec. IV. Finally, this work is concluded in Sec. V.

A. Notations

A sequence set A contains K length-N sequences a^{u}, each of which has all of its entries taking values from a set, called the alphabet. In symbols,

$$A \triangleq \{a^{0}, a^{1}, \ldots, a^{u}, \ldots, a^{K-1}\}, \quad 0 \leq u \leq K - 1;$$

$$a^{u} \triangleq \{a^{u}_{0}, a^{u}_{1}, \ldots, a^{u}_{t}, \ldots, a^{u}_{N-1}\}, \quad 0 \leq t \leq N - 1.$$

In this paper, the alphabet of interest is the set of complex roots of unity, i.e., $E \triangleq \{\xi^{1}, \xi^{2}, \ldots, \xi^{H-1}\}$ with $\xi \triangleq \exp \frac{2\pi i}{p}$, where the alphabet size H is an integer greater than 1. Let E^{N} denote the set of all possible length-N vectors over E. We say the sequence set A is defined over E and we have $A \subseteq E^{N}$. The aperiodic correlation function $\rho_{a^{u}, a^{v}}(\tau)$ of two sequences $a^{u}, a^{v} \in A$ is defined as

$$\rho_{a^{u}, a^{v}}(\tau) \triangleq \left\{ \begin{array}{ll}
N^{-1} - \tau & 0 \leq \tau \leq N - 1; \\
N^{-1} - \tau & -(N - 1) \leq \tau \leq -1; \\
0, & |\tau| \geq N,
\end{array} \right.$$

(3)

where $(\cdot)^{*}$ denotes the complex conjugate of (\cdot). When $u = v$, it is called the aperiodic auto-correlation function; otherwise, it is called the aperiodic cross-correlation function.

A complementary sequence set C contains K complementary sequences. Each complementary sequence consists of M (≥ 2) length-N elementary sequences defined over the alphabet E. In symbols,

$$C \triangleq \{C^{0}, C^{1}, \ldots, C^{u}, \ldots, C^{K-1}\}, \quad 0 \leq u \leq K - 1;$$

$$C^{u} \triangleq \{c_{0}^{u}, c_{1}^{u}, \ldots, c_{p}^{u}, \ldots, c_{M-1}^{u}\}, \quad 0 \leq p \leq M - 1;$$

$$c_{p}^{u} \triangleq \{c_{p,0}^{u}, c_{p,1}^{u}, \ldots, c_{p,t}^{u}, \ldots, c_{p,N-1}^{u}\}, \quad 0 \leq t \leq N - 1.$$

The cardinality (i.e., the set size) of C (or A) is denoted by $|C|$ (respectively, $|A|$). In a multicarrier CDMA transmission of a complementary sequence, all elementary sequences are sent and received in separate non-interfering channels. Therefore, it is helpful to write each complementary sequence as a two-dimensional matrix by vertically stacking all of its indexed elementary sequences row by row, e.g., for $0 \leq u \leq K - 1$,

$$C^{u} = \begin{bmatrix}
\mathbf{c}_{0}^{u} \\
\vdots \\
\mathbf{c}_{M-1}^{u}
\end{bmatrix} = \begin{bmatrix}
c_{0,0}^{u} & c_{0,1}^{u} & \cdots & c_{0,N-1}^{u} \\
c_{1,0}^{u} & c_{1,1}^{u} & \cdots & c_{1,N-1}^{u} \\
\vdots & \vdots & \ddots & \vdots \\
c_{M-1,0}^{u} & c_{M-1,1}^{u} & \cdots & c_{M-1,N-1}^{u}
\end{bmatrix}.$$

(4)

In this paper, $M = |C^{u}|$ is also referred to as the number of channels. Let $E^{M \times N}$ denote the set of all possible M-channel length-N complementary sequences. Then an M-channel length-N complementary sequence set C can be viewed as a set of K matrices (each of order $M \times N$) which satisfies $C \subseteq E^{M \times N}$.

The aperiodic correlation function $\rho_{C^{u}, C^{v}}(\tau)$ of two complementary sequences $C^{u}, C^{v} \in C$ is defined as the aperiodic correlation function between the corresponding two matrices C^{u} and C^{v}.
correlation sum, i.e.,
\[
\rho_{\mathbf{C}^u, \mathbf{C}^v}(\tau) \triangleq \sum_{p=0}^{M-1} \rho_{\mathbf{C}^u, \mathbf{C}^v}(\tau), \quad 0 \leq u, v \leq K-1.
\] (5)

Next, the aperiodic auto-correlation tolerance \(\delta_a \) and the aperiodic cross-correlation tolerance \(\delta_c \) of \(\mathbf{C} \) are respectively defined as
\[
\delta_a \triangleq \max \{ \| \rho_{\mathbf{C}^u, \mathbf{C}^v}(\tau) \| : 0 \leq u \leq K-1, 0 < \tau \leq N-1 \};
\]
\[
\delta_c \triangleq \max \{ \| \rho_{\mathbf{C}^u, \mathbf{C}^v}(\tau) \| : u \neq v, 0 \leq u, v \leq K-1,
0 \leq \tau \leq N-1 \}.
\]

Moreover, the aperiodic tolerance (also called the maximum aperiodic correlation magnitude) \(\delta_{\text{max}} \) is defined to be \(\delta_{\text{max}} \triangleq \max \{ \delta_a, \delta_c \} \). When \(0 < \delta_{\text{max}} \ll MN, \mathbf{C} \) is called a quasi-complementary sequence set (QCSS); when \(\delta_{\text{max}} = 0 \), it is called a mutually orthogonal complementary sequence set (MOCSS). In particular, when \(M = 1 \), \(\delta_{\text{max}} \) is reduced to the aperiodic tolerance for conventional (single-channel) sequence sets.

The right cyclic shift operation is denoted by \(T \) so that for any \(L \)-dimensional vector \(\mathbf{a} = (a_0, a_1, \cdots, a_{L-1}) \),
\[
T^i\mathbf{a} = (a_{L-i}, a_{L-i+1}, \cdots, a_{L-1}, a_0, a_1, \cdots, a_{L-i-1})
\]
represents the vector resulting from cyclically shifting \(\mathbf{a} \) to the right by \(i \) positions. Clearly, we have \(T^L\mathbf{a} = \mathbf{a} \).

For two complex-valued \(L \)-dimensional vectors \(\mathbf{a} \) and \(\mathbf{b} \), denote by \((\mathbf{a}, \mathbf{b}) \) their inner product, i.e., \((\mathbf{a}, \mathbf{b}) = \sum_{i=0}^{L-1} a_i b_i^* \).

For \(0 \leq i \leq p-1 \) and \(0 \leq j \leq q-1 \), the \(i \)th row, \(j \)th column, and \((i, j) \)th element of any \(p \times q \) matrix \(\mathbf{H} \) are denoted by \(\mathbf{H}(i,:), \mathbf{H}(; j), \text{ and } \mathbf{H}(i,j) \), respectively.

In the sequel, to avoid the possible confusion with a complementary sequence or a complementary sequence set, in single-channel case (i.e., \(M = 1 \)), we shall also refer to a sequence as a “conventional sequence” and a sequence set as a “conventional sequence set”.

\[\text{B. Review of the Levenshtein Bound} \]

For the ease of reference and comparison, our notations here closely follow those in [16]. Without specified otherwise, a conventional sequence is also viewed as a row vector. For two conventional sequence sets \(\mathbf{A}, \mathbf{B} \subseteq \mathbb{E}^N \), define
\[
F(\mathbf{A}, \mathbf{B}) \triangleq \sum_{x \in \mathbf{A}} \sum_{y \in \mathbf{B}} \sum_{s=0}^{2N-2} \sum_{t=0}^{2N-2} \left| \langle T^s(x,0^{N-1}), T^t(y,0^{N-1}) \rangle \right|^2 w_s w_t,
\] (6)
where \(0^{N-1} \) means a vector of \(N-1 \) zeros, \((x,0^{N-1}) \) denotes the vector concatenation of vectors \(x \) and \(0^{N-1} \), and the weight vector \(\mathbf{w} = (w_0, w_1, \cdots, w_{2N-2}) \) is constrained by
\[
w_i \geq 0, \quad i = 0, 1, \cdots, 2N-2, \quad \text{and } \sum_{i=0}^{2N-2} w_i = 1.
\] (7)

Denote the quadratic form
\[
Q_{2N-1}(\mathbf{w}, \mathbf{a}) \triangleq w_{Q_{2N-1}} \mathbf{w}^T
\]
\[
eq a \sum_{i=0}^{2N-2} w_i^2 + \sum_{s,t=0}^{2N-2} \tau_{s,t,N} w_s w_t,
\] (8)
where \(Q_{2N-1} \) is a \((2N-1) \times (2N-1) \) matrix with all of its diagonal entries equal to \(a \), and for \(s \neq t \), its off-diagonal entries \(Q_{2N-1}(s, t) = \tau_{s,t,N} \) with
\[
0 \leq \tau_{s,t,N} \triangleq \min \{ |t-s|, 2N-1-|t-s| \} \leq N-1.
\] (9)

We have the following remark.

Remark 1:
\[
\langle (x,0^{N-1}), T^\tau(y,0^{N-1}) \rangle
\]
\[
= \left\{ \begin{array}{ll}
|\rho_{x,y}(\tau)|^2, & \text{for } 0 \leq \tau \leq N-1; \\
\rho_{x,y}(-\tau), & \text{for } -(N-1) \leq \tau \leq -1,
\end{array} \right.
\]
\[
\langle T^\tau(x,0^{N-1}), T^\tau(y,0^{N-1}) \rangle
\]
\[
= \left\{ \begin{array}{ll}
\rho_{x,y}(\tau), & \text{for } 0 \leq \tau \leq N-1; \\
|\rho_{x,y}(-\tau)|^2, & \text{for } -(N-1) \leq \tau \leq -1.
\end{array} \right.
\] (10)

By (10), we have
\[
|\langle T^s(x,0^{N-1}), T^t(y,0^{N-1}) \rangle|^2
\]
\[
+ |\langle T^t(x,0^{N-1}), T^s(y,0^{N-1}) \rangle|^2
\]
\[
= |\rho_{x,y}(\tau_{s,t,N})|^2 + |\rho_{x,y}(\tau_{s,t,N})|^2.
\] (11)

Although the key results from [16] were derived for binary sequences, their extensions from the alphabet \(\{1,-1\} \) to \(\mathbb{E} \) are straightforward and are summarized in the following lemma.

Lemma 1: For any conventional sequence set \(\mathbf{A} \subseteq \mathbb{E}^N \), we have
1) (Lemma 1 of [16])
\[
F(\mathbf{A}, \mathbf{A}) \leq \frac{1}{K} \left((N^2 - \delta_{\text{max}}^2) \sum_{i=0}^{2N-2} w_i^2 + K \delta_{\text{max}}^2 \right).
\] (12)
2) (Lemmas 2 and 3 of [16])
\[
F(\mathbf{A}, \mathbf{A}) \geq F(\mathbb{E}^N, \mathbb{E}^N) = \sum_{s,t=0}^{2N-2} (N-\tau_{s,t,N}) w_s w_t.
\] (13)
3) (Theorem 1 of [16])
\[
\delta_{\text{max}}^2 \geq N - \frac{Q_{2N-1}(\mathbf{w}, (N-1)\mathbf{1})}{1 - \frac{1}{K} \sum_{i=0}^{2N-2} w_i^2}.
\] (14)
4) (Corollary 2 of [16])
\[
\delta_{\text{max}}^2 \geq \frac{3NKm - 3K^2 - K(m^2 - 1)}{3(mK - 1)}, \quad 1 \leq m \leq N.
\] (15)
5) (Corollary 3 of [16])
\[
\delta_{\text{max}}^2 \geq N - \frac{2N}{\sqrt{3K}}, \quad K \geq 3, N \geq 2.
\] (16)
III. PROPOSED LOWER BOUNDS OF QUASI-COMPLEMENTARY SEQUENCE SETS (QCSSS)

For two complementary sequence sets \(C, D \subseteq E^{M \times N} \), given \(w \) as defined in (7), we define

\[
F(C, D) \triangleq \frac{1}{|C||D|} \sum_{X \in C} \sum_{Y \in D} \sum_{s=0}^{2N-2} \sum_{t=0}^{2N-2} \left| \langle T^s (X, 0^{N-1}), T^t (Y, 0^{N-1}) \rangle \right|^2 w_s w_t,
\]

(17)

where \(X \) and \(Y \) can be written as

\[
\begin{align*}
X &= \{ x_0, x_1, \ldots, x_m, \ldots, x_{M-1} \}, \\
x_m &= \{ x_{m,0}, x_{m,1}, \ldots, x_{m,N-1} \}, \\
Y &= \{ y_0, y_1, \ldots, y_m, \ldots, y_{M-1} \}, \\
y_m &= \{ y_{m,0}, y_{m,1}, \ldots, y_{m,N-1} \}
\end{align*}
\]

and

\[
\left| \langle T^s (X, 0^{N-1}), T^t (Y, 0^{N-1}) \rangle \right|^2 \leq \sum_{m=0}^{M-1} \left| \langle T^s (x_m, 0^{N-1}), T^t (y_m, 0^{N-1}) \rangle \right|^2.
\]

(18)

For any elementary sequence \(x_m \in X \) \((0 \leq m \leq M - 1)\), construct a matrix \(H_{x_m} \) of size \((2N - 1) \times (2N - 1)\), such that the \(s \)th \((0 \leq s \leq 2N - 2)\) row of \(H_{x_m} \) is

\[
H_{x_m}(s, :) = T^s (x_m, 0^{N-1}).
\]

(19)

Also define

\[
f_{i,j,s}(x_m, x_n) \triangleq H_{x_m}(s, i) [H_{x_n}(s, j)]^* w_s.
\]

(20)

Then, we have (21) and consequently (22) in the top of next page. Therefore, we have the following lemma.

Lemma 2: For any complementary sequence sets \(C, D \subseteq E^{M \times N} \),

\[
(F(C, D))^2 \leq F(C, C)F(D, D).
\]

(23)

In what follows, we will drop the subscripts of \(\tau_{s,t,N} \) (defined in (9)) for ease of presentation, although \(\tau \) may vary with different values of \(s, t, \) and \(N \). Since

\[
\sum_{Y \in E^{M \times N}} \left| \rho_{X,Y}(\tau) \right|^2 = \sum_{Y \in E^{M \times N}} \left(\sum_{m=0}^{M-1} \rho_{x_m,y}(\tau) \right)^2
\]

\[
= \sum_{Y \in E^{M \times N}} \left(\sum_{m,n=0}^{M-1} \sum_{i,j=0}^{N-1-\tau} \xi^{x_{m,i}+y_{m,i+\tau}+y_{n,j+\tau}} \right)
\]

\[
= \sum_{m,n=0}^{M-1} \sum_{i,j=0}^{N-1-\tau} \xi^{x_{m,i}+y_{m,i+\tau}+y_{n,j+\tau}} \left(\sum_{Y \in E^{M \times N}} \xi^{y_{m,i+\tau}+y_{n,j+\tau}} \right)
\]

\[
= S_1 + S_2,
\]

where \(x_{m,i} = \xi^{x_{m,i}} \) and \(y_{m,i+\tau} = \xi^{y_{m,i+\tau}} \) for \(x_{m,i}, y_{m,i+\tau} \in \{0, 1, \ldots, H - 1\} \), \(S_1 \) and \(S_2 \) are the summation terms classified according to \(a) : m = n \) and \(i = j \); \(b) : m = n \) and \(i \neq j \), or \(m \neq n \) and \(i = j \), or \(m \neq n \) and \(i \neq j \), respectively. For case \(a) \), we have

\[
S_1 = \sum_{Y \in E^{M \times N}} \sum_{m=0}^{M-1} \sum_{i=0}^{N-1-\tau} 1 = H^{MN} M(N - \tau).
\]

(24)

For case \(b) \), when \(Y \) runs over \(E^{M \times N} \), the quantity in the following equation, i.e.,

\[
-\bar{y}_{m,i+\tau} - \bar{y}_{n,j+\tau}
\]

(25)

is equi-distributed over the set \(\{0, 1, \ldots, H - 1\} \). Hence,

\[
\sum_{Y \in E^{M \times N}} \zeta^{-\bar{y}_{m,i+\tau}+\bar{y}_{n,j+\tau}} = 0,
\]

(26)

implying that \(S_2 = 0 \). Therefore, we have

\[
\sum_{Y \in E^{M \times N}} |\rho_{X,Y}(\tau)|^2 = H^{MN} M(N - \tau).
\]

(27)

Similar to Remark 1, we have

Remark 2:

\[
\langle \langle X, 0^{N-1} \rangle, T^t (Y, 0^{N-1}) \rangle = \begin{cases} \left| \rho_{Y,X}(\tau) \right|^2, & \text{for } 0 \leq \tau \leq N - 1; \\
\rho_{X,Y}(\tau), & \text{for } -(N - 1) \leq \tau \leq -1,
\end{cases}
\]

(28)

By (28), we have the following equation.

\[
\left| \langle T^s (X, 0^{N-1}), T^t (Y, 0^{N-1}) \rangle \right|^2 = |\rho_{X,Y}(\tau)|^2 + |\rho_{Y,X}(\tau)|^2.
\]

(29)

Hence, we have

\[
F\{X, E^{M \times N}\} = F(C, E^{M \times N}) = F(E^{M \times N}, E^{M \times N})
\]

\[
= \frac{1}{2^{MN}} \sum_{s=0}^{2N-2} \sum_{t=0}^{2N-2} \zeta^{x_{s,t,N}} w_s w_t
\]

\[
= \sum_{s=0}^{2N-2} M(N - \tau) w_s w_t.
\]

(30)

Substituting \(D = E^{M \times N} \) into (23), and based on (30), we have

Lemma 3:

\[
F(C, C) \geq F(E^{M \times N}, E^{M \times N}) = \sum_{s=0}^{2N-2} M(N - \tau) w_s w_t.
\]

(31)

Expanding (17) accordingly, we obtain

Lemma 4: For any \(C \subseteq E^{M \times N} \) of set size \(K \),

\[
F(C, C) \leq \frac{M^2 N^2}{K^2} \sum_{i=0}^{2N-2} w_i^2 + \left(1 - \frac{1}{K} \sum_{i=0}^{2N-2} w_i^2 \right) \delta^2_{\text{max}}.
\]

(32)
\[F(C, D) = \frac{1}{|C| |D|} \sum_{X \in C} \sum_{Y \in D} \sum_{s=0}^{2N-2} \sum_{t=0}^{2N-2} |\langle T^s(X, 0^{N-1}), T^t(Y, 0^{N-1}) \rangle|^2 w_s w_t \]

\[= \frac{1}{|C| |D|} \sum_{X \in C} \sum_{Y \in D} \sum_{s=0}^{2N-2} \sum_{t=0}^{2N-2} M-1 \sum_{i=0}^{2N-2} \sum_{m=0}^{M-1} H_{x_m}(s, i) [H_{y_m}(t, i)]^* \]

\[= \frac{1}{|C| |D|} \sum_{X \in C} \sum_{Y \in D} \sum_{s=0}^{2N-2} \sum_{t=0}^{2N-2} \sum_{i,j=0}^{2N-2} \sum_{m,n=0}^{M-1} f_{i,j,s}(x_m, x_n) [f_{i,j,t}(y_m, y_n)]^* \]

Based on Lemma 3 and Lemma 4, we present below the first theorem of this paper.

Theorem 1:

\[\delta_{\text{max}}^2 \geq M \left(N - \frac{Q_{2N-1}(w, \frac{N(MN-1)}{K})}{1 - \frac{1}{K} \sum_{i=0}^{2N-2} w_i^2} \right). \] (33)

Remark 3: When \(M = 1 \), Theorem 1 is reduced to the Levenshtein bound in (14).

Remark 4: When \(w = \frac{1}{2N-1}(1,1,\cdots,1) \) is applied to the quadratic function \(Q_{2N-1}(w, \frac{N(MN-1)}{K}) \), the proposed lower bound in Theorem 1 is reduced to the Welch bound for QCSSs in (1).

IV. DISCUSSIONS ON THE PROPOSED LOWER BOUND FOR QCSSS

In this section, we discuss the tightness of the proposed lower bound in Theorem 1. We show that it is tighter than the Welch bound for QCSSs in (1) when a weight vector is properly chosen. Conditions of meeting the proposed lower bound with equality is also investigated.

A. Simplified Forms of the Proposed Lower Bound and Analysis of its Tightness

If the weight vector \(w \) in (16) with

\[w_i = \begin{cases} \frac{1}{m^i}, & i \in \{0,1,\cdots,m-1\}; \\ 0, & i \in \{m,m+1,\cdots,2N-2\} \end{cases} \] (34)

for \(1 \leq m \leq N \) is applied to Theorem 1, a new improved QCSS lower bound is obtained as follows.

Corollary 1: For \(1 \leq m \leq N \),

\[\delta_{\text{max}}^2 \geq \frac{3MKNm - 3M^2N^2 - MK(m^2 - 1)}{3(MK - 1)}. \] (35)

The proposed lower bound in (35) is stronger than the Welch bound for QCSSs in (1) at least for \(m = N - 1 \) and \(m = N \) if one of the following cases is fulfilled:

1. \(3M + 1 \leq K \leq 4M - 1, M \geq 2 \) and

\[N > \frac{K - 1 + \sqrt{-3K^2 + (12M - 6)K + 12M + 1}}{2(K - 3M)}; \] (36)

2. \(K \geq 4M, M \geq 2 \) and \(N \geq 2 \).

Proof: See Appendix A.

By properly choosing \(m \) around \(\sqrt{\frac{4M}{K}}N \) in (35), which is similar to the derivation for (16), we have the following simplified lower bound.
Corollary 2: For $K \geq 3M, M \geq 2, N \geq 2$,
\[
\delta_{\text{max}}^2 \geq MN \left(1 - 2\sqrt{\frac{M}{3K}}\right).
\] (37)

Remark 5: For sufficiently large K, Corollary 2 shows that δ_{max}^2 tends to MN. In contrast, the Welch bound in (1) shows that δ_{max}^2 tends to $\frac{MN}{2}$.

By performing a convex analysis on the fractional quadratic term in (33), we present the second theorem of this paper as follows.

Theorem 2: The Welch bound for QCSSs in (1) cannot be improved by the proposed lower bound in Theorem 1 when
\[
K \leq \frac{\pi}{2(2N-1)}\left(4(MN-1)N\sin^2\frac{\pi}{2(2N-1)}\right),
\] (38)
where $\lfloor x \rfloor$ denotes the biggest integer which is not greater than x. Note that K will decrease and converge to $\frac{\pi^2 M}{4}$ as N approaches positive infinity. Therefore, if $K \leq \frac{\pi^2 M}{4}$, the Welch bound for QCSSs cannot be improved for any $M \geq 2$ and $N \geq 2$.

Proof: See Appendix B. \blacksquare

B. Meeting the Proposed Lower Bound with Equality

Definition 1: For the weight vector w defined in (7), the weighted aperiodic cross-correlation function of length-N sequences a and b is defined as
\[
\rho_{a,b;w,\lambda}(\tau) = \begin{cases}
(2N-1) \sum_{t=0}^{N-1-\tau} a_t(b_{t+\tau})^* w_{t+\lambda}, & 0 \leq \tau \leq (N-1); \\
(2N-1) \sum_{t=0}^{N-1+\tau} a_t(b_{-t})^* w_{t+\lambda}, & -(N-1) \leq \tau \leq -1; \\
0, & |\tau| \geq N.
\end{cases}
\] (39)
where $0 \leq \lambda \leq 2N-2$.

Definition 2: The aperiodic weighted correlation function $\rho_{C_u,C_v;w,\lambda}(\tau)$ of C is defined as
\[
\rho_{C_u,C_v;w,\lambda}(\tau) = \sum_{m=0}^{M-1} \rho_{m_u,m_v;w,\lambda}(\tau),
\] (40)
where $0 \leq u, v \leq K - 1$. C is called a weighted-correlation mutually orthogonal complementary sequence set (WC-MOCSSS) characterized by w, if for any $0 \leq \lambda \leq 2N-2$, it satisfies
\[
\rho_{C_u,C_v;w,\lambda}(\tau) = 0, \text{ where } u \neq v \text{ or } u = v, \tau \neq 0.
\] (41)

Next, we shall show how to meet the proposed lower bound in Theorem 1, which is obtained by Lemma 3 and Lemma 4, with equality. To meet the inequality (32) in Lemma 4 with equality, it is clear that all non-trivial aperiodic correlations of a QCSS should take identical amplitude. Hence, our main task is to work out the conditions to meet the inequality (31) in Lemma 3 with equality. Tracing back the proof in Section III, one just needs to work out the conditions for (22) with equality.

Note that the equality of (22) is met if and only if
\[
\sum_{X \in \mathcal{C}} \sum_{s=0}^{2N-2} f_{i,j,s}(x_m,x_n) = c \sum_{Y \in \mathcal{D}} \sum_{t=0}^{2N-2} f_{i,j,t}(y_m,y_n),
\] (42)
for any constant c.

For the left-hand term in (42), we have
\[
\sum_{X \in \mathcal{C}} \sum_{s=0}^{2N-2} f_{i,j,s}(x_m,x_n) = \sum_{s=0}^{2N-2} \mathbf{H}_{x_m}(s,i) [\mathbf{H}_{x_n}(s,j)]^* w_s
\]
\[
= \sum_{X \in \mathcal{C}} \langle \mathbf{H}_{x_m}(s,i), \mathbf{w} \cdot \mathbf{H}_{x_n}(s,j) \rangle,
\] (43)
\[
= \sum_{X \in \mathcal{C}} \sum_{t=0}^{N-\tau} x_{m,t} [x_{n,t+\tau}]^* w_{t-\lambda} \mod 2N-1,
\]
\[
= \sum_{X \in \mathcal{C}} \sum_{t=0}^{N-\tau} x_{m,t} [x_{n,t+\tau}]^* w_{t-\lambda} \mod 2N-1
\]
\[
= \frac{1}{2N-1} \sum_{X \in \mathcal{C}} \rho_{x_m,x_n,\lambda}(\tau)
\]
where $\mathbf{w} = \{w_i = w_{2N-1-i}, 0 \leq i \leq 2N-2\}$ is called the reversal of w, and
1) $\lambda = \min\{i, j\}$ if $\tau = |i - j|$;
2) $\lambda = \max\{i, j\}$ if $\tau = 2N-1 - |i - j|$.

For the right-hand term in (42), setting $\mathcal{D} = E^M \times N$, we have
\[
\sum_{Y \in \mathcal{D}} \sum_{s=0}^{2N-2} f_{i,j,s}(y_m,y_n) = \sum_{t=0}^{N-\tau-1} \mathbf{w}_{t-\lambda} \mod 2N-1 \cdot \sum_{Y \in E^{M \times N}} \mathbf{y}_{m,t} [\mathbf{y}_{n,t+\tau}]^*
\]
\[
= H^{MN-2} \sum_{t=0}^{N-\tau-1} \mathbf{w}_{t-\lambda} \mod 2N-1 \cdot \sum_{\mathbf{y}_{m,t} = \mathbf{y}_{n,t+\tau}^*} [\mathbf{y}_{m,t} \cdot [\mathbf{y}_{n,t+\tau}^*]^*]
\]
\[
= 0,
\] (44)
if $m \neq n$ or $m = n, \tau \neq 0$.

Note that when i and j range over $\{0, 1, \ldots, 2N-2\}$, $-\lambda$ will range over $\{0, 1, \ldots, 2N-2\}$ as well. Therefore, by (42)-(44), for any $0 \leq -\lambda \leq 2N-2$,
\[
\sum_{X \in \mathcal{C}} \rho_{x_m,x_n,\lambda}(\tau) = 0, \text{ where } m \neq n \text{ or } m = n, \tau \neq 0.
\] (45)

For the complementary sequence set \mathcal{C} with set size K and number of channels M in the above discussion, re-write it into
the ordered matrix form on the top of (46), where each column corresponds to a complementary matrix of C. Now consider another complementary sequence set \(\mathcal{C} \) with set size \(M \), and number of channels \(K \), which is shown on the bottom of (46).

\[
\mathcal{C} = \begin{bmatrix}
\mathbf{c}_0^0 & \mathbf{c}_0^1 & \ldots & \mathbf{c}_0^{K-1} \\
\mathbf{c}_1^0 & \mathbf{c}_1^1 & \ldots & \mathbf{c}_1^{K-1} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{c}_{M-1}^0 & \mathbf{c}_{M-1}^1 & \ldots & \mathbf{c}_{M-1}^{K-1}
\end{bmatrix}_{M \times K}
\]

(46)

and

\[
\mathcal{\bar{C}} = \begin{bmatrix}
\mathbf{c}_0^{K-1} & \mathbf{c}_1^{K-1} & \ldots & \mathbf{c}_{M-1}^{K-1}
\end{bmatrix}_{K \times M}
\]

By (46), it is clear that \(\mathcal{\bar{C}} \) is obtained from \(\mathcal{C} \) by the transpose operation. For ease of presentation, from now on, we shall call \(\mathcal{\bar{C}} \) “the transpose of \(\mathcal{C} \).

Note that (45) can be written explicitly as follows.

\[
\sum_{p=0}^{K-1} \rho_{\mathbf{e}_m^p, \mathbf{e}_n^p; \mathbf{w}, -\lambda} = 0, \text{ for any } m \neq n \text{ or } m = n, \tau \neq 0.
\]

(47)

Recalling Definition 2, we obtain the following theorem.

Theorem 3: The proposed lower bound in Theorem 1, which is characterized by \(\mathbf{w} \), is met with equality if and only if all non-trivial aperiodic correlations of QCSS \(\mathcal{C} \) have identical amplitude, and the transpose of \(\mathcal{C} \) is a weighted-correlation mutually orthogonal complementary sequence set (WC-MOCSS) characterized by the reversal of \(\mathbf{w} \).

V. CONCLUSIONS

A new aperiodic correlation lower bound for quasi-complementary sequence sets (QCSSs) over complex roots of unity has been proposed in Theorem 1 of this paper. As a generalization of the Levenshtein bound [16], the proposed lower bound is a function of the set size \(K \), the channel number \(M \), the elementary sequence length \(N \), and the weight vector \(\mathbf{w} \). It is reduced to the Welch bound for QCSSs when \(\mathbf{w} = \frac{1}{2N-1}(1, 1, \ldots, 1) \) is applied to the bounding function. The key to obtain the lower bound in Theorem 1 is (31) in Lemma 3. The basic idea of (31) is that the “weighted mean square aperiodic correlation” (i.e., \(F(C, \mathcal{C}) \)) of any sequence subset over the complex roots of unity should be equal to or greater than that of the whole set which includes all possible complex roots-of-unity sequences. While Levenshtein shows that (31) holds for \(M = 1 \) (i.e., conventional single-channel sequence sets), we have made a contribution to show that (31) also holds for any integer \(M \geq 2 \) (i.e., QCSSs), where \(M \) denotes the number of channels.

In Corollary 1, we have shown that, by applying the weight vector in (34), the proposed lower bound is tighter than the Welch bound for QCSSs in one of the following sets of conditions:

1) \(3M + 1 \leq K \leq 4M - 1, M \geq 2 \) and

\[
N > \frac{K - 1 + \sqrt{-3K^2 + (12M - 6)K + 12M + 1}}{2(K - 3M)}
\]

2) \(K \geq 4M, M \geq 2 \) and \(N \geq 2 \).

Furthermore, for sufficiently large \(K \), by Remark 5, the lower bound in Corollary 1 approaches \(\sqrt{MN} \), whereas the Welch bound for QCSSs approaches \(\sqrt{\frac{MN}{M}} \). Interestingly, the same was obtained by Levenshtein for conventional sequence sets by setting \(M = 1 \) [16].

Finally, we have shown in Theorem 3 that the derived lower bound can be met with equality if and only if all non-trivial aperiodic correlations of a QCSS take identical amplitude, and the transpose of the QCSS is a weighted-correlation mutually orthogonal complementary sequence set (WC-MOCSS). Interestingly, to meet the Levenshtein bound (i.e., \(M = 1 \)) with equality, the latter condition can be simplified to that in [31]: The conventional sequence set should form a weighted-correlation complementary sequence which has zero aperiodic weighted-correlation auto-correlation sums for all non-zero time-shifts.

APPENDIX A

PROOF OF COROLLARY 1

Proof: For \(1 \leq m \leq N \), Levenshtein showed that [16]

\[
Q_{2N-1} \left(\mathbf{w}, \frac{N(MN-1)}{K} \right) = \frac{N(MN-1)}{Km} + \frac{m^2 - 1}{3m}.
\]

(48)

The proof of (35) follows by substituting (48) into (33). Next, let us analyze the tightness of (35).

Let \(\epsilon_{|K,m} \) denote the subtraction of the lower bound in (35) by the Welch bound for QCSSs, i.e.,

\[
\epsilon_{|K,m} = \frac{MNKm - M^2N^2 - \frac{MK(m^2 - 1)}{3}}{Km - 1} - M^2N^2 \frac{K}{K(2N-1) - 1}.
\]

(49)

In addition, define

\[
\alpha \triangleq \frac{KM^2N^3}{(Km - 1)(K(2N-1) - 1)},
\]

(50)

and

\[
\beta \triangleq \frac{K}{M}\left(1 - \frac{N - 1}{3N^2}\right) + \frac{N + 1}{3MN^2} - 1.
\]

(51)

Note that

\[
\epsilon_{|m=N-1} = \alpha|_{m=N-1} \cdot \beta,
\]

\[
\epsilon_{|m=N} = (1 - 1/N) \cdot \alpha|_{m=N} \cdot \beta.
\]

(52)

For \(3M + 1 \leq K \leq 4M - 1 \), by (52), the lower bound in (35) is tighter than the Welch bound for QCSSs at least for \(m = N - 1 \) and \(m = N \) if \(\beta > 0 \), i.e.,

\[
N > \frac{K - 1 + \sqrt{-3K^2 + (12M - 6)K + 12M + 1}}{2(K - 3M)}.
\]
For $K \geq 4M$, we have

$$\epsilon_{K=4M, m=N} = (1 - 1/N) \cdot \alpha_{m=N} \cdot \beta$$

$$\geq (1 - 1/N) \cdot \alpha_{m=N} \cdot \left[4 \left(1 - \frac{N - 1}{3N^2} \right) + \frac{N + 1}{3MN^2} - 1 \right]$$

$$> (1 - 1/N) \cdot \alpha_{m=N} \cdot \left[1 - \frac{4N - 4}{3N^2} \right]$$

$$\geq \frac{KM^2(N - 1)(N - 2^2)}{3(KN - 1)(K(2N - 1) - 1)}$$

$$\geq 0.$$

(53)

By (53), the lower bound in (35) is tighter than the Welch bound for QCSSs for $K \geq 4M, M \geq 2, N \geq 2, m = N$. Similarly, we can by (52) prove the case for $K \geq 4M, M \geq 2, N \geq 2, m = N - 1$. Thus, we complete the proof.

Appendix B

Proof of Theorem 2

Proof: Two conclusions made by Berlekamp [32] are recalled first:

1) The principal eigenvalue, and the secondary eigenvalues of the quadratic matrix Q_{2N-1} in (8) are

$$\lambda_0 = a + (N - 1)N,$$

and

$$\lambda_k = a - \frac{1 - (-1)^k \cos \frac{\pi k}{2N - 1}}{2\sin^2 \frac{\pi k}{2N - 1}}, \quad k = 1, \ldots, 2N - 2$$

respectively.

2) The constrained quadratic function $Q_{2N-1}(w, a)$ is convex if all the secondary eigenvalues $\lambda_k \geq 0$, of which the global minimum is achieved by $w = \frac{1}{2N - 1}(1, 1, \ldots, 1)$.

It is clear that the minimization of the fractional quadratic function in (33) can be explicitly obtained by $w = \frac{1}{2N - 1}(1, 1, \ldots, 1)$ if $Q_{2N-1}(w, a)$ is convex, this is because the denominator term, $1 - \frac{1}{K} \sum_{i=0}^{2N-2} w_i^2$, is concave under the constraint in (7). Therefore, based on the second conclusion of Berlekamp, the Welch bound for QCSSs cannot be improved if

$$\min_{1 \leq k \leq 2N - 2} \lambda_k = \lambda_1 = \lambda_{2N - 2}$$

$$= \frac{(MN - 1)N}{K} - \frac{1}{4\sin^2 \frac{\pi}{2(2N - 1)}}$$

$$\geq 0,$$

which is equivalent to

$$K \leq K = \left[4(MN - 1)N\sin^2 \frac{\pi}{2(2N - 1)} \right].$$

(54)

For (55), in order to get the tightest upper bound of K (or minimum of K), it is wise to see how K changes with N. To this end, let $N = x$, and define

$$f(x) = \frac{4x(Mx - 1)}{K} \sin^2 \frac{\pi}{2(2x - 1)} - 1,$$

with

$$g(x) = \frac{K}{4(2xM - 1)\sin \frac{x}{\pi} - 1} \frac{\partial f(x)}{\partial x}$$

$$= \tan \left(\frac{\pi}{2(2x - 1)} \right) - \frac{2xM - 1}{2xM - 2} \frac{\pi x}{2xM - 1} \left(2x - 1 \right)^2,$$

where $\frac{\partial f(x)}{\partial x}$ denotes the derivative of $f(x)$. We claim herein that $f(x)$ is monotonically decreasing for $M \geq 2$, and equivalently, $g(x)$ is constantly less than 0. Now we present below the proof.

Since the small angle approximation of the tangent function [33] is

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \cdots,$$

with $0 \leq x \leq 1$

(58)

it is clear that

$$\tan x \leq x + \frac{2x^3}{3}, \quad \text{for } 0 \leq x \leq 1.$$

(59)

By (59), we can see that $g(x)$ in (57) is upper bounded by $g(x) = \frac{\pi}{2(2x - 1)}h(x)$, where

$$h(x) = \frac{\pi^2}{6} + (2x - 1) \left(\frac{1}{M - 1} + \frac{1}{M(2Mx - 1)} \right)$$

$$< \frac{\pi^2}{6} + (2x - 1) \left(\frac{1}{M - 1} \right) + \frac{1}{M^2}$$

$$\leq \frac{\pi^2}{6} + \frac{3}{4} - x.$$

Thus, by (60), to have $g(x) < 0$ (or equivalently, $h(x) < 0$), it is required that

$$x > \frac{\pi^2}{6} + \frac{3}{4} \approx 2.3949,$$

which is for sure for $x \geq 3$ and $M \geq 2$. In the case of $x = 2$, by (57), some simple calculations suffice to show that $g(2) < 0$.

From the above analysis, one can see that $f(x)$ is indeed monotonically decreasing for $M \geq 2$, and therefore, K in (55) will decrease and converge to a fixed value as N tends to positive infinity. This fixed value, i.e., $K_{N=+\infty}$, can be obtained by considering the fact that

$$\min_{x \geq 2} f(x) = f(+\infty) = \frac{\pi^2 M}{4K} - 1 \geq 0.$$

(62)

Hence, provided that

$$K \leq K_{N=+\infty} = \left[\frac{\pi^2 M}{4} \right],$$

the Welch bound for QCSSs cannot be improved by the derived lower bound for any $M \geq 2$ and $N \geq 2$.

References

Zilong Liu (S’10) received his B.Sc. in the School of Electronics and Information Engineering from Huazhong University of Science and Technology (HUST), and M.Sc. in the Department of Electronic Engineering from Tsinghua University, China, in 2004 and 2007, respectively. Since July 2008, he has been with the School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, as a Research Associate. Before joining NTU, He worked as a digital IC design engineer in KTMicro (Beijing) for one year. He has been pursuing a Ph.D. since August 2009 with Prof. Yong Liang Guan. He was a visiting Ph.D student in the University of Melbourne (UoM) from May 2012 to Feb. 2013, and in the Hong Kong University of Science and Technology (HKUST) from Jun. 2013 to Jul. 2013. His research interests include sequence design with good correlation properties, error correction codes, and physical layer design for wireless communication systems.

Yong Liang Guan (S’94-M’97) obtained his PhD from the Imperial College of London, UK, and Bachelor of Engineering from National University of Singapore. He is now an Associate Professor and the Head of Communication Engineering Division at the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. His research interests broadly include modulation, coding and signal processing for communication systems and information security systems. His homepage is at http://www3.ntu.edu.sg/home/eylguan/index.htm.

Wai Ho Mow (S’89-M’93-SM’99) received his M.Phil. and Ph.D. degrees in information engineering from the Chinese University of Hong Kong in 1991 and 1993, respectively. From 1997 to 1999, he was with the Nanyang Technological University, Singapore. He has been with the Hong Kong University of Science and Technology (HKUST) since March 2000. He was the recipient of seven research/exchange fellowships from five countries, including the Humboldt Research Fellowship. His research interests are in the areas of communications, coding, and information theory. He pioneered the lattice approach to signal detection problems (such as sphere decoding and complex lattice reduction-aided detection) and united all known constructions of perfect roots-of-unity (aka CAZAC) sequences (widely used as preambles and sounding sequences). He has published one book, and has coauthored over 30 filed patent applications and over 150 technical publications, among which he is the sole author of over 40. He coauthored two papers that received the ISITA2002 Paper Award for Young Researchers and the APCC2013 Best Paper Award. Since 2002, he has been the principal investigator of 16 funded research projects. In 2005, he chaired the Hong Kong Chapter of the IEEE Information Theory Society. He was the Technical Program Co-Chair of five conferences, and served the technical program committees of numerous conferences, such as ICC, Globecom, ITW, ISITA, VTC and APCC. He was a Guest Associate Editor for numerous special issues of the IEEE Transactions on Fundamentals. He was an industrial consultant for Huawei, ZTE, and Magnotech Ltd. He was a member of the Radio Spectrum Advisory Committee, Office of the Telecommunications Authority, Hong Kong S.A.R. Government from 2003 to 2008.