<table>
<thead>
<tr>
<th>Title</th>
<th>Draft genome sequence of Klebsiella pneumoniae strain KP-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lee, Kai Wei Kelvin; Arumugam, Krithika; Purbojati, Rikky Wenang; Tay, Qi Xiang Martin; Williams, Rohan Benjamin Hugh; Kjelleberg, Staffan; Rice, Scott A.</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/19375</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.</td>
</tr>
</tbody>
</table>
Draft Genome Sequence of Klebsiella pneumoniae Strain KP-1

Kai Wei Kelvin Lee,a,b Krithika Arumugam,a Rikky Wenang Purbojati,a Qi Xiang Martin Tay,a,b Rohan Benjamin Hugh Williams,a Staffan Kjelleberg,a,b,c Scott A. Ricea,b,c

Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore; Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia

Klebsiella pneumoniae is ubiquitous in the environment and is a member of a three-species biofilm model. We compared the genome sequence of an environmental isolate, *K. pneumoniae* strain KP-1, to those of two clinical strains (NTUH-K2044 and MGH 78578). KP-1 possesses strain-specific prophage sequences that distinguish it from the clinical strains.

Klebsiella pneumoniae is ubiquitous in the environment, where it is involved in nitrogen fixation (1). It also causes bovine mastitis (2) and nosocomial infections in humans (3). It coexists with *Pseudomonas aeruginosa* and *Pseudomonas protegens* in metalworking fluids and the gut of the silk moth *Bombyx mori* (4, 5). A reproducible, mixed-species biofilm model comprising *K. pneumoniae* KP-1, *P. aeruginosa* PAO1, and *P. protegens* Pf-5 was thus developed to study bacterial interspecies interactions and their effects on biofilm development and fitness (6). While the complete genome sequences of PAO1 and Pf-5 were available to facilitate "omics" studies such as transcriptomics, KP-1 is a newly isolated environmental isolate, and its genome has not been sequenced previously.

The strain was shotgun sequenced on a 454 GS-FLX sequencing platform (Roche, Basel, Switzerland) and an Illumina MiSeq benchtop sequencer (Illumina, CA, USA). The reads from both platforms were trimmed, and de novo assembly was performed using Newbler v2.6 (Roche). With 1,673,246 and 1,840,620 reads from the 454 GS-FLX and MiSeq sequencing platforms, respectively, 24 contigs with a total length of 5,131,085 bp and an average GC content of 57.6% were assembled. The open reading frames (ORFs) were predicted using Glimmer v3.02 (7). The rRNA sequences of strain NTUH-K2044 and strain MGH 78578 were previously reported and suggested to be markers that could be used to distinguish the various lineages of *K. pneumoniae* (11). The present study further suggests that prophage sequences could be the ideal evolutionary markers for identifying the different lineages of *K. pneumoniae*.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited in DDBJ/EMBL/GenBank under the accession number AVNZ00000000. The version described in this paper is version AVNZ01000000.

ACKNOWLEDGMENTS

Kai Wei Kelvin Lee was supported by the National Research Foundation Singapore under the National Research Foundation (NRF) Environmental and Water Technologies (EWT) Ph.D. Scholarship Programme administered by the Environment and Water Industry Programme Office (EWI). We acknowledge financial support from the Singapore Centre on Environmental Life Sciences Engineering (SCELSE), whose research is supported by the National Research Foundation Singapore, Ministry of Education, Nanyang Technological University and National University of Singapore, under its Research Centre of Excellence Program.

REFERENCES

bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics

