<table>
<thead>
<tr>
<th>Title</th>
<th>Interfacial magnetic coupling in ultrathin all-manganite La0.7Sr0.3MnO3-TbMnO3 superlattices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tian, Y. F.; Lebedev, O. I.; Roddatis, V. V.; Lin, W. N.; Ding, J. F.; Hu, S. J.; Yan, S. S.; Wu, T.</td>
</tr>
<tr>
<td>Citation</td>
<td>Tian, Y. F., Lebedev, O. I., Roddatis, V. V., Lin, W. N., Ding, J. F., & Hu, S. J., et al. (2014). Interfacial magnetic coupling in ultrathin all-manganite La0.7Sr0.3MnO3-TbMnO3 superlattices. Applied Physics Letters, 104(15), 152404-.</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/19510</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 AIP Publishing LLC. This paper was published in Applied Physics Letters and is made available as an electronic reprint (preprint) with permission of 2014 AIP Publishing LLC. The paper can be found at the following official DOI: [http://dx.doi.org/10.1063/1.4871701]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Interfacial magnetic coupling in ultrathin all-manganite La$_{0.7}$Sr$_{0.3}$MnO$_3$-TbMnO$_3$ superlattices

Y. F. Tian, O. I. Lebedev, V. V. Roddatis, W. N. Lin, J. F. Ding, S. J. Hu, S. S. Yan, and T. Wu

View online: http://dx.doi.org/10.1063/1.4871701
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/104/15?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in
Ferromagnetic response of multiferroic TbMnO$_3$ films mediated by epitaxial strain and chemical pressure

Enhanced magnetism and ferroelectricity in epitaxial Pb(Zr$_{0.52}$Ti$_{0.48}$)O$_3$/CoFe$_2$O$_4$/La$_{0.7}$Sr$_{0.3}$MnO$_3$ multiferroic heterostructures grown using dual-laser ablation technique

Effect of structural and magnetic exchange coupling on the electronic transport of NdNiO$_3$ films intercalated with La$_{0.7}$Sr$_{0.3}$MnO$_3$ thin layers

Tuning magnetic and transport properties through strain engineering in La$_{0.7}$Sr$_{0.3}$MnO$_3$/La$_{0.5}$Sr$_{0.5}$TiO$_3$ superlattices

Coexistence of tunneling magnetoresistance and electroresistance at room temperature in La$_{0.7}$Sr$_{0.3}$MnO$_3$/(Ba, Sr)TiO$_3$/La$_{0.7}$Sr$_{0.3}$MnO$_3$ multiferroic tunnel junctions
J. Appl. Phys. 109, 07D915 (2011); 10.1063/1.3564970
Interfacial magnetic coupling in ultrathin all-manganite La$_{0.7}$Sr$_{0.3}$MnO$_3$–TbMnO$_3$ superlattices

Y. F. Tian,1 O. I. Lebedev,2 V. V. Roddatis,3 W. N. Lin,4 J. F. Ding,5 S. J. Hu,1 S. S. Yan,1 and T. Wu$^{5,a)$

1School of Physics, National Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
2Laboratoire CRISMAT, ENSICAEN, CNRS UMR 6508, 6 Boulevard du Maréchal Juin, F-14050 Caen, France
3CIC energigUNE, Albert Einstein 48, 01510 Miñano, Álava, Spain
4Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
5Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955–6900, Saudi Arabia

(Received 5 November 2013; accepted 6 April 2014; published online 16 April 2014)

We report the growth and magnetic properties of all-manganite superlattices composed of ultrathin double-exchange ferromagnetic La$_{0.7}$Sr$_{0.3}$MnO$_3$ and noncollinear multiferroic TbMnO$_3$ layers. Spontaneous magnetization and hysteresis loops are observed in such superlattices with individual La$_{0.7}$Sr$_{0.3}$MnO$_3$ layers as thin as two unit cells, which are accompanied by pronounced exchange bias and enhanced coercivity. Our results indicate substantial interfacial magnetic coupling between spin sublattices in such superlattices, providing a powerful approach towards tailoring the properties of artificial magnetic heterostructures. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4871701]

The rapid advancements of modern thin film growth techniques have enabled the exploration of a wide range of epitaxial ultrathin oxide films and heterostructures with emergent functionalities. The long-range collective behaviors of spins in magnetic materials are well known to evolve with the film thickness, and the ground states in ultrathin films are results of energetic competition between surface, interface and dipolar anisotropies. Transition metal oxides offer rich phase diagrams with fascinating magnetic orders. Particularly, mixed-valence manganites have attracted lots of interest after the discovery of colossal magnetoresistance (CMR) effect. However, it has been extensively reported that Curie temperature and magnetic moment of the ferromagnetic (FM) manganite films decreases as the films become thinner, which has been ascribed to both extrinsic and intrinsic effects such as structural and compositional inhomogeneities, interfacial charge transfer, and strain-induced orbital reconstruction. In a flurry of recent studies, ultrathin manganite films were incorporated in epitaxial heterostructures as a result of expectation of emergent physics such as tailored interfacial magnetic coupling and geometrically confined doping in such artificial low-dimensional systems. Epitaxial superlattices (SLs) of complex oxides give access to fascinating physical phenomena as a result of magnetic frustration, charge transfer, and orbital reconstruction across interfaces. In particular, exchange bias, as a prototypical interfacial magnetic interaction between different spin orders, was reported in some manganite-based heterostructures and SLs.

Unlike CMR manganites such as La$_{0.3}$Sr$_{0.7}$MnO$_3$ (LSMO) where double exchange interactions lead to collinear ferromagnetism and metallic states, rare-earth manganite TbMnO$_3$ (TMO) offers multiferroic properties, coupling ferroelectric and magnetic orders. As a result of the competing exchange interactions, TMO displays sinusoidal antiferromagnetic Mn$^{3+}$ spin ordering at the Néel temperature T_N \approx 41 K, spiral Mn$^{3+}$ spin ordering at the ferroelectric transition temperature T_{FE} \approx 28 K, and long range ferromagnetic Tb$^{3+}$ spin ordering below T_{TB} \approx 7 K. Orthorhombic-structured TMO is compatible with other perovskites, and epitaxial thin films have been fabricated. Recently, TMO-based heterostructures including rectifying junctions and manganite bilayers were investigated. The correlation effects involving multiple degrees of freedom are expected to be enhanced at interfaces in ultrathin heterostructures. However, so far there has been no report on the fabrication and characterization of TMO-based SLs.

In this work, we fabricated a series of epitaxial manganite SLs composed of ultrathin LSMO and TMO layers, and studied their magnetic properties. Remarkably, sizable low-temperature magnetism with hysteresis was stabilized in the SLs down to a LSMO layer thickness of two unit cells (u.c.), which is accompanied by drastically enhanced coercive field of more than 3000 Oe. Furthermore, exchange bias was observed in the SLs, which can be attributed to the strong magnetic coupling across the LSMO-TMO interface. Epitaxial [m/n]$_x$ SLs (as schematically shown in Fig. 1(a)), consisting of m u.c. of LSMO and n u.c. of TMO, repeated x times, were grown on TiO$_2$-terminated (001) SrTiO$_3$ (STO) single-crystal substrates using pulsed laser deposition (PLD) technique assisted by reflection high-energy electron diffraction (RHEED). The growth took place at 750°C under an oxygen pressure of 0.05 millibars. A laser fluence of \sim1.5 J/cm2 was
used for the depositions, and the frequency of the excimer laser was 1 and 2 Hz for LSMO and TMO, respectively. After deposition, samples were first cooled down to 600°C under an oxygen pressure of 100 millibars, and then kept at 600°C for 1 h at 400 millibars oxygen before cooling down to room temperature.

The structure of SLs was studied by using a double corrected transmission electron microscope (TEM, JEM-ARM 200F, JEOL Ltd.) equipped with a high-angle annular dark-field (HAADF) and CENTURIO energy-dispersive X-ray spectroscopy (EDX) detector. Cross-section TEM sample was prepared using a focus ion beam instrument (FEI Helios 600 NanoLab DualBeam). The magnetic properties of the LSMO-TMO SLs were measured using a superconducting quantum interference device (SQUID) magnetometer. For the field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements, the sample was cooled down from 300 K to low temperature with and without the magnetic field, respectively. Both the ZFC and FC magnetization versus temperature (M-T) curves were measured during the warming process.

Figure 1(b) shows a typical result of in-situ RHEED intensity oscillation recorded during the grown of [2/2]10 LSMO-TMO SL. A clear oscillation of the specular reflection spot indicates a continuous layer-by-layer growth mode for both LSMO and TMO layers. However, the RHEED intensity generally decreases when the growth of TMO units starts indicating that compared to LSMO it is more difficult to maintain the layer-by-layer growth mode for TMO. The chemical composition and the SL structure were further confirmed for a thicker SL by the element sensitive second ion mass spectrometry (SIMS) measurements. As shown in Figure 2, the periodic oscillations of cation concentrations were clearly resolved, which are consistent with the designed SL structure. Furthermore, we did not observe any impurity elements above the detection level.

The results of TEM structural investigation of a typical LSMO-TMO SL are presented in Figure 3. The low magnification image in Figure 3(a) clearly shows that the SL is coherent and uniform without any precipitate of secondary phases in the examined area. The selected area electron diffraction (SAED) pattern in Figure 3(b) confirms the lattice structure and epitaxial growth. The epitaxial relationships were determined as [001]STO \parallel [001]LSMO \parallel [110]TMO and [100]TMO \parallel [100]LSMO \parallel [001]TMO. Figure 3(c) shows the aberration-corrected high resolution HAADF-scanning transmission electron microscopy (STEM) image of the LSMO-TMO SL. The bright spots correspond to the positions of atomic columns and their brightness roughly corresponds to Z^2 with Z as the atomic number of chemical element. As a result, the HAADF-STEM technique allows us to distinguish the LSMO and TMO layers, and the deviation of layer thickness was found to be within 1 u.c. at the interfaces.

Figure 4(a) shows the magnetic hysteresis loops for various SLs measured at 10 K. As the most notable feature, all the SLs show hysteresis loops with finite remnant magnetic moments, including the SL with 2 u.c. of LSMO in the repeating unit, i.e., samples [2/2]10 and [2/4]32. In this work,
we did not fabricate any SL with layers of single u.c. because of the cation mixing at the interfaces cannot be completely excluded. Assuming the magnetic signal solely comes from the LSMO layers, we re-plot the magnetization data in Figure 4(b) with a unit of μB/u.c. and the saturation magnetization values of all the SLs are roughly at the same level. In general, the saturation magnetization of the SLs is lower than the value of 3.7 μB/u.c. expected for bulk LSMO, which indicates suppression of collinear spin ordering in the LSMO-TMO SLs. Nevertheless, the stabilization of magnetic order with hysteresis in such ultrathin LSMO-TMO SLs is quite remarkable, considering that the critical LSMO layer thickness to exhibit ferromagnetism is 3 u.c. for LSMO single layers.7 Symmetry breaking, charge transfer, and spin frustration at the LSMO-substrate and LSMO-air interfaces are often cited to account for the suppressed magnetism in ultrathin LSMO films.7,11,38 At the LSMO-TMO interface, the Mn ions interact not only with each other like in the double-exchange LSMO but also with the spin sublattices in TMO. Particularly, in the [2/n] SLs, all the magnetic Mn ions in LSMO interface with the TMO layers. The proximity of TMO apparently plays the decisive role in stabilizing the spin alignment in the LSMO layer. Figure 4(c) shows the ZFC-FC M-T curves for the SLs, where similar behavior of bifurcation between ZFC and FC curves was observed. Such bifurcation was previously reported for both manganite heterostructures35,39 and phase-separated manganite films.40,41 In our SLs, it likely comes from the magnetic frustration at the LSMO-TMO interfaces.

Careful examinations of the hysteresis loops reveal the emergence of exchange bias H_E together with a giant enhancement of coercivity H_C in the LSMO-TMO SLs. Here, H_C is defined as \(H_C = |H_+ - H_-|/2 \), where H_+ and H_- denote the right and left coercivity, respectively. As shown in Figure 4(d), among the SLs we measured the [4/8]_16 sample shows the highest exchange bias of \(\sim 170 \) Oe at 10 K. Its value of \(H_C \) at 10 K is \(\sim 3200 \) Oe; in comparison, \(H_C \) is only \(\sim 90 \) Oe for 8 u.c. LSMO thin films.35 A similar effect of coercivity enhancement was previously reported in other manganite-based heterostructures such as LSMO/La\(_3\)CuO\(_4\) bilayer (705 Oe at 5 K)39 and LSMO/BiFeO\(_3\) bilayer (850 Oe at 7 K).24 This observation of the enhanced magnetic anisotropy in LSMO-TMO SLs unambiguously underscores the significant exchange interaction and spin pinning across the LSMO-TMO interfaces.

Considering that the exchange bias is highest in the [4/8]$_{16}$ LSMO-TMO SL, we measured its temperature dependent magnetic properties. The data in Figure 5(a) reveal that the irreversible temperature decreases with increasing magnetic field, which are consistent with the existence of spin frustration.26,39 Figure 5(b) shows the magnetization vs. magnetic field, which are consistent with the existence of spin frustration.26,39 Figure 5(b) shows the magnetization vs. magnetic field data measured from 5 to 300 K. Both coercivity and exchange bias quickly decreases on increasing temperature, indicating weakened exchange coupling in the SLs due to thermal excitation.

More insights on the magnetic interactions in LSMO-TMO SLs can be obtained by examining the temperature dependence of \(H_C \) and \(H_E \) as shown in Figure 6. Remarkably, the exchange bias emerges near the \(T_N \) of bulk TMO. In macroscopic TMO single crystals, sinusoidal antiferromagnetic Mn\(^{3+}\) spin ordering occurs at \(T_N \approx 41 \) K, which however may not fully develop in ultrathin SLs with TMO layers of a few u.c. due to the symmetry breaking and nanoscale confinement. Nevertheless, the temperature dependence shown in Figure 6 suggests that the strong magnetic interaction and spin pinning only appear at low temperatures, and the onset temperature is intriguingly close to the \(T_N \) of bulk TMO. In addition, as shown in Figure 6(a), \(H_E \) shows the exponential temperature dependent decay following a phenomenological expression: \(H_E = H_{E0} \exp(-T/T_0) \). This exponential temperature dependence has previously been observed in diverse systems such as manganite nanoparticles, bilayer, and superlattices,26,29,42,43 which can be ascribed to the competing magnetic interactions and spin frustration at the interfaces. In contrast, \(H_C \) deviates from this exponential law at low temperatures (Figure 6(b)).
suggesting that H_E and H_C in the low-temperature regime do not share exactly the same origin.

It is insightful to compare the magnetic properties of LSMO-TMO SLs with those of bilayers. Since SLs contain multiple interfaces, much more than the single interface in bilayers, we expect stronger interfacial magnetic coupling in SLs. Indeed, in the LSMO (8 u.c.)-TMO (40 nm) bilayer, H_E is 42 Oe and H_C is 1200 Oe at 5 K.35 On the other hand, in the [4/8]$_{16}$ SL sample, both H_E and H_C are greatly enhanced, i.e., H_E is found to be 320 Oe and H_C is 3320 Oe at 5 K. The remarkable enhancement illustrates a stronger interfacial exchange interaction in the SLs compared to the bilayer counterparts. This clearly underscores ultrathin SLs as a powerful approach towards achieving effective exchange coupling in manganite heterostructures. The fact that the largest exchange bias and coercivity enhancement was observed in the [4/8]$_{16}$ SL suggests that a certain layer thickness of TMO is needed to achieve effective exchange coupling at the TMO-LSMO interfaces. On the other hand, thicker TMO layers are harder to grow in the layer-by-layer mode, and the rougher interfaces may result into the lower saturation magnetization. For example, after the saturation magnetization is normalized according to the total LSMO thickness, the value of the [4/4]$_5$ SL (2.93 μ_B/u.c.) is higher than that of [4/8]$_{16}$ SL (2.25 μ_B/u.c.). Furthermore, nanoscale domains were observed in TMO thin films,44 and their interactions with the magnetic domains in LSMO will be investigated in the future.45,46

In summary, the emergence of significantly enhanced coercivity and exchange bias in all-manganite LSMO-TMO SLs underscores such unit-cell-controlled heterostructures as a viable route towards tailored artificial magnetic materials. It is quite remarkable that sizable magnetization with hysteresis can be stabilized in LSMO-TMO SLs with the layers being as thin as two u.c. The competing exchange coupling mechanisms within the spin sublattices are responsible for the observed rich magnetic behaviors. We believe that insights on the magnetic phenomena in such artificial heterostructures and advancements in designing interfacial coupling will lead to technological breakthroughs in exploring future magnetic materials.

Y.F.T. and S.S.Y. acknowledge the support from NSF No.51125004, 111 Project No. B13029, the National Basic Research Program of China No. 2013CB922303 and IIFSDU. Authors are grateful to Professor A. L. Chuvilin for using a Helios 600 DualBeam instrument in CIC NanoGUNE and FIB specimen preparation.
