<table>
<thead>
<tr>
<th>Title</th>
<th>Disorder influenced absorption line shapes of a chromophore coupled to two-level systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shenai, Prathamesh M.; Chernyak, Vladimir; Zhao, Yang</td>
</tr>
<tr>
<td>Citation</td>
<td>Shenai, P. M., Chernyak, V., & Zhao, Y. (2013). Disorder Influenced Absorption Line Shapes of a Chromophore Coupled to Two-Level Systems. Journal of Physical Chemistry A, 117(47), 12320–12331.</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/19722</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 American Chemical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of Physical Chemistry A, American Chemical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: http://dx.doi.org/10.1021/jp4080042.</td>
</tr>
</tbody>
</table>
Disorder Influenced Absorption Line Shapes of a Chromophore Coupled to Two-Level Systems

Prathamesh M. Shenai, † Vladimir Chernyak, †, ‡ and Yang Zhao*, †

†Division of Materials Science, Nanyang Technological University, Singapore 639798
‡Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States

ABSTRACT: We have carried out a theoretical and numerical study of disorder-induced changes in the absorption line shape of a chromophore embedded in a host matrix. The stochastic sudden jump model is employed wherein the host matrix molecules are treated as noninteracting two-level systems (TLSs) occupying points on a three-dimensional lattice with randomly oriented dipole moments. By systematically controlling the degree of positional disorder (α) attributed to them, a perfectly crystalline (α = 0) or glassy environment (α = 1) or a combination of the two is obtained. The interaction between the chromophore and TLSs is assumed to be of the dipole–dipole form. With an increase in α, the broadening of the absorption line shape was found to follow a power-law behavior. More importantly, it is revealed in the long-time limit that the resultant line shape is Gaussian in the absence of disorder but transforms to Lorentzian for a completely disordered environment. For an arbitrarily intermediate value of α, the resultant line shape can be approximately fitted by a linear combination of Gaussian and Lorentzian components. The Lorentzian profile for the disordered medium is attributed to the chromophore–TLS pairs with vanishingly small separation between them.

I. INTRODUCTION

The advent of single molecule spectroscopy (SMS) in recent decades has proved to be of immense importance in gaining vital information about submicroscopic structure, dynamics, and intermolecular interactions via optical probing of single molecules, atoms, or ions embedded in condensed matter systems.1,2 The richness of information derived from SMS can be ascribed to the fact that the measurements it yields are based not on ensemble averages as in traditional spectroscopic techniques, but instead on the distributions of spectral dynamical behavior of a number of individual molecules. SMS experiments generally involve time-domain measurements such as spectral diffusion kernels or frequency-domain measurements such as absorption line shapes.3–6 The electronic energy levels of a chromophore being sensitive to its environment, the fluctuations in the surrounding molecules and their interactions with the chromophore influence the chromophore’s absorption frequency. Typically such modulations lead to line shape broadening, the characteristics of which directly reflect the host–guest interactions. In particular, the application of SMS to measure absorption spectra of individual chromophores in disordered media such as glasses has revealed a remarkably wide range of behavior including the movement of spectral peaks in successive measurements, known as spectral diffusion,7–9 and strong variations in the observed line shapes and line widths.10 Generally, the absorption spectrum of a chromophore dispersed at a low concentration in structurally disordered hosts, such as liquids or glasses, is inhomogeneously broadened.11–14 Such inhomogeneous broadening reflects the extent of the microscopic disorder around the chromophore, the transition frequency of which can be taken to arise from a superposition of contributions from crystal defects in the case of amorphous media or described by a sum of pairwise interactions with each solvent molecule in the case of liquid media. It thus becomes amply clear that SMS in such systems, especially at very low temperatures, can play an important role in elucidating the structure and dynamics of glasses, which itself has been a perplexing research field.

Glasses are amorphous solids characterized by the structural disorder that gives rise to their many intriguing properties such as the anomalous behavior of acoustic and thermal properties at very low temperatures.15 A celebrated phenomenological model based on the so-called two-level systems (TLSs) proposed independently by Anderson et al.16 and Phillips17 has proved to be greatly successful in explaining many of such anomalous characteristics of amorphous materials.18–26 Within this model, the disorder in amorphous materials is assumed to be characterized by the presence of randomly scattered defects in which an atom or a group of atoms can occupy one of the two minima on the potential energy surface. Each TLS can be represented as a particle in an asymmetric double-well potential energy surface with respect to some generalized configurational coordinate as shown schematically in Figure 1. It can thus be fully specified with two parameters A and M, which are the energy asymmetry between the left (IL) and right (IR) well 75

Received: August 9, 2013
Revised: October 24, 2013
In this paper, we investigate the spectral line shape of chromophores that are sufficiently dilute so that they do not interact with each other. We employ a model in which a chromophore is coupled to a collection of noninteracting flipping TLSs and calculate the frequency-domain absorption line shape, with an emphasis on studying the effects of spatial and steric disorder of TLSs, which have not been evaluated systematically in the existing literature. For simulating crystalline media the TLSs reside on fixed lattice points, while for the glassy surroundings spatial disorder is introduced to the TLSs. The final absorption line shape is obtained as an average over an initial distribution of static TLS configurations. By modeling all the host TLSs to be identical, we can extract the influence of disorder in the TLS distribution on the chromophore’s absorption line shape, which is obscured within the standard tunneling TLS model due to the distribution of TLS parameters. Given the as-yet lack of clarity on the physical form of the idealized TLSs, the present study of spectral features of chromophores may yield important insights in understanding the submicroscopic distribution of surrounding TLSs. This paper is organized as follows. The theoretical model and computational details are outlined in section II. The results are presented and discussed in detail in section III, and the conclusions are drawn in section IV.

II. THEORY AND COMPUTATIONAL MODEL

In this work, we examine the characteristics of the absorption line shape of a chromophore embedded in a solid matrix. The chromophore, which can be considered as an optical impurity or a probe molecule, is thus modeled as an electronic TLS with its ground \((|g\rangle) \) and excited \((|e\rangle) \) states separated by energy \(\hbar \omega_0 \). The environment, generally disordered media like glasses, to which this chromophore is coupled, is modeled as a collection of TLSs. These TLSs in the host matrix are generally considered to correspond to the asymmetric double-well potential as a function of a generalized configurational coordinate. The energy asymmetry between the two localized zero-order states for the \(j \)th TLS is \(A_j \), and the tunneling matrix element is \(M_j \). Within this standard model, the absorption frequency of the chromophore is thought to depend upon the instantaneous states of the surrounding TLSs. Thus we can introduce a time-dependent stochastic occupation variable \(\xi_j \) which is set to 0 (1) if the \(j \)th TLS is in its ground (excited) state. With the stochastic sudden jump model, which is among the most popular models employed to study the absorption line shape of a chromophore embedded in glassy systems, we can write the renormalized transition frequency of the chromophore as

\[
\omega_{eg} = \omega_{eg}^0 + \sum_j \nu_j \xi_j
\]

where \(\omega_{eg}^0 \) is the transition frequency of the chromophore when all the TLSs are in the ground state and \(\nu_j \) is the perturbation that the \(j \)th TLS in its excited state induces to the chromophore transition frequency. Being a stochastic variable, the statistical properties of \(\xi_j \) are determined by the net relaxation rate \(K_j = k_j^+ + k_j^- \), where \(k_j^+ (k_j^-) \) is the upward (downward) transition rate. At low temperature, as the relaxation mechanism in host TLSs is assumed to be dominated by phonon-assisted tunneling, we can write
The interaction between the chromophore and the TLSs is clearly an important consideration, and in this work we adopt the commonly employed assumption of its dipole–dipole nature. One thus obtains

\[
v_j = \frac{B f_j}{r_j^3} = \frac{B (n_j \cdot n - 3 (n_j \cdot \hat{r}_j) (n \cdot \hat{r}_j))}{r_j^3}
\]

where \(f_j \) is a dimensionless angular factor associated with the interaction between the chromophore and the TLS, \(r_j = \sqrt{x_j^2 + y_j^2 + z_j^2} \) and \(n_j = (x_j, y_j, z_j) \) are the position and orientation of the TLS, respectively; \(\hat{r}_j = \frac{r_j}{r_j} \) and \(\hat{r} = \frac{r - r_j}{r} \) are the direction between the two TLSs, respectively; and \(B = A C / \epsilon_j \) with \(C \) as the TLS–chromophore coupling constant. This approximation originates from the early studies of disordered systems in which it was found that various experimental results could be corroborated well by theoretical considerations under the assumption of dipolar TLS–TLS interactions. The exact correspondence of the dipoles corresponding to TLSs with a physical meaning is not entirely clear considering the ambiguities in the nature of the TLSs themselves. It is, however, well-known that a local perturbation due to state transitions of a TLS gives rise to a strain field that shows \(r^3 \) dependence characteristic to dipolar type. Accordingly, the nonresonant chromophore–TLS interactions of dipolar nature, owing to the effective “elastic dipole moment” of a TLS, were also found to agree well with spectroscopic results. In their derivation of the stochastic model from the microscopic Hamiltonian, Suarez and Silbary argued that the chromophore and the TLSs can be considered to be both coupled to the same set of phonons, acting as a boson field. It thus mediates an elastic dipole–dipole interaction between them that consequently leads to the spectral diffusion of the chromophore. Furthermore, by doping nanocrystals containing rare-earth ions as optical impurities in amorphous matrixes, Meltzer et al. have recently proposed to have obtained encouraging evidence for long-range dipole–dipole interactions between the probe and the TLS. Finally, we present the details of the numerical approach for our lattice-based simulations. The simulation volume is divided into \(N^3 \) cubic unit cells each of a side length \(a_0 \). The nearest unit cell consists of the sole chromophore, while the remaining unit cells contain a total of \(N = (N^3 - 1) \) host TLSs on a single-occupancy basis. For the chromophore as well as the other TLSs, the dipoles are randomly oriented such that \(-1 \leq \cos \theta < 1 \) and \(-\pi \leq \phi < \pi \), where \(\theta \) is the azimuthal angle in the \(xy \) plane and \(\phi \) as the polar angle are defined in the standard way from the \(x \) and \(z \) axes, respectively. As shown in Figure 2, the precise position of the chromophore or a TLS is assigned to a randomly selected point inside an even smaller cubic subunit of sides of length \(w = a a_0 \). The parameter to control the degree of spatial disorder. Clearly, for the perfectly ordered case \(\alpha = 0 \), all the TLSs and the chromophore occupy points on the simple cubic lattice. With an increase in \(\alpha = 0 \), the perturbation to the positions about the lattice points increases. Thus, \(\alpha = 1 \) corresponds to a completely random distribution of TLSs, thereby simulating a glassy environment. By varying \(\alpha \) from 0 to 1, we can thus...
control the degree of disorder in the system, which may correspond to the increasingly amorphous nature of the chromophore’s environment. Most of our numerical simulations are based on \(N = 11 \), which has been verified to yield converged results. Further, in our calculations, we set the parameters \(C = 3.9 \times 10^8 \text{K}^{-1/2} \text{s}^{-1}, \) \(C’ = 3.75 \times 10^{-11} \text{nm}^3 \text{s}^{-1}, \) \(M_1 = 0.008 \text{K}, \) \(M_2 = 0.006 \text{K}, \) \(a_0 = 4.43 \text{nm}, \) and \(T = 1.7 \text{K}, \) which are representative of typical glassy systems. In numerical results, frequencies are scaled by a factor of \(\gamma_0 = B/a_0^3 = 2.588 \text{GHz}, \) which carries a meaning of typical dipole coupling, i.e., the value of dipole coupling at an average chromophore–TLS distance of \(a_0. \) The total simulation time is set to 20 ns, and results are averaged over 30 000 randomly sampled iterations.

III. ABSORPTION LINE SHAPES

A. Effect of Disorder

The numerical results on calculated absorption line shapes for \(\alpha = 0.0, 0.4, 0.6, 0.8, \) and 1.0, as well as their fitting by either Gaussian (G) or Lorentzian (L) functions or their linear combinations \([\alpha L + (1 - \alpha)G] \), are shown in Figure 3. The absorption spectra shown here are all normalized by the peak intensity. For \(\alpha = 0.0, \) which refers to the ordered distribution of TLSs and the chromophore on cubic lattice, Figure 3a shows that the obtained line shape is fitted well by a Gaussian profile, in agreement with previous results. We further note that this case amounts to the steric disorder, as the dipole moments of the TLSs are randomly distributed within their residence cells) and the dipole–TLS interactions along different directions will be different. This may result in the inhomogeneously broadened Gaussian profile, which is consistent with earlier results showing the broadening due to the static heterogeneity to be inhomogeneous. On the other hand, for \(\alpha = 1.0, \) which represents the glassy or completely disordered environment, it is evident from Figure 3c that the line shape is fitted well by a Lorentzian curve. In this case the positions as well as dipole directions of the TLSs are completely disordered within their residence cells. Therefore, an ensemble average with sufficient configurational sampling should imply nearly isotropic distribution of the TLSs around the chromophore. The Lorentzian line shape obtained for this case then results from the homogeneous broadening.

For the intermediate regime an increase in \(\alpha \) can be observed to change the line shape as well as increase its full width at half-maximum (fwhm), as shown in Figure 3b. As the finite fwhm results from the chromophore–TLS interactions, it is apparent that the stronger the interaction, which in turn depends on the distance between them, the greater its influence on the broadening. An increase in \(\alpha \) from 0 will decrease the average chromophore–TLS separation due to increased positional perturbations and thus increase the resulting fwhm. Furthermore, such a gradual increase in the degree of spatial disorder with an increase in \(\alpha \) implies a gradual change from an inhomogeneous to a homogeneous influence of the environment. Accordingly, the absorption line shape can be observed to be approximately fitted by a superposition of the individual \(G \) and \(L \) components, \([\alpha L + (1.0 - \alpha)G] \). The calculated fwhm exhibits a power-law dependence on \(\alpha \) as shown in Figure 3d. In essence, the numerical results demonstrate a smooth transition of the line shape from Gaussian to Lorentzian with an increase in spatial disorder of the host matrix TLSs.

B. Ordered Environment: Gaussian Line Shape.

In this subsection, we present the analytical study to probe the conditions under which the absorption line shape is of the Gaussian form. We first note that the parameters used in our numerical simulations correspond to the high-temperature and static regime. Thus, we can set \(p_0 = 0.5 \) and \(K_0 = 0 \) in eqs 5a, 6a, 6b, and 6c, which results in

\[
J(t) = \frac{1}{2} (1 + e^{-\alpha t})
\]

in full accordance with the well-known expression for the static limit. We reiterate that the static limit expression given by eq 9 can be obtained immediately by assuming that a TLS does not have time to flip even once, so that it simply reflects the averaging over initial conditions with the probability 1/2 to be in either of the states, which corresponds to the high-temperature limit. The time-domain response function \(J(t) \) averaged over positional disorder (the chromophore and the TLSs distributed within their residence cells) and the dipole directions is denoted by \(\overline{J}(t) \), and can be represented in a form

\[
\overline{J}(t) = \int dr \rho(r) \int d\mathbf{n} \prod_j \overline{J}_j(t; \mathbf{r}, \mathbf{n})
\]

\[
= \int dr \rho(r) \int d\mathbf{n} \overline{J}(t; \mathbf{r}, \mathbf{n})
\]

\[
\overline{J}_j(t; \mathbf{r}, \mathbf{n}) = \int dr \rho_j(r) \int d\mathbf{n} \frac{1}{2} [1 + \exp(-i\alpha t)]
\]

where \(\rho(r) \) and \(\rho_j(r) \) are the distribution functions of the chromophore and TLSs positions, respectively, with homogeneous distributions over the dipole directions, as assumed in our numerical simulations. The integration measures in eqs 10 and 11 are normalized.
\[\int \delta n = \int \delta n_j = \int \delta r_j \rho(r_j) = \int \delta r \rho(r) = 1 \] (12)

If the distance between a TLS and the chromophore is large enough so that the value \(\nu r \) of the coupling is small compared to the absorption line width, i.e., \(\nu r \ll 1 \) for relevant values of \(t \), we can expand the exponent in eq 11 up to second order in \(\nu r \) to capture the corrections to the real part as well as the imaginary part. Further performing the integration over \(n_j \) explicitly, we obtain within the chosen accuracy

\[\overline{f}(t; r, n) = 1 - g_j(t; r, n) = \exp(-g_j(t; r, n)) \] (13)

with

\[g_j(t; r, n) = -\sigma_j(r, n) \frac{t^2}{2} \] (14)

where

\[\sigma_j(r, n) = \frac{1}{2} \int \delta r_j \rho_j(r) \int \delta n_j \nu_j^2 \] (15)

Note that the linear in time \(t \) term in eq 14 vanishes as a result of integration of the angular factor \(f_j \) from eq 8 over \(n_j \). Substituting eq 8 into eq 15 and performing integration over \(n_j \) we arrive at

\[\sigma_j(r, n) = \sum_{ab=1}^3 \alpha_{ab}^j(r)n_a^a n_b^b \] (16)

where \(a \) and \(b \) label the Cartesian coordinates, with

\[\alpha_{ab}^j(r) = B^2 \int \delta r_i \rho_i(r) \int \delta n_i \delta_{ab} + \frac{2}{6} \frac{\delta_{ab}}{r_j^6} \] (17)

and we reiterate that \(\vec{r}_j \) is the unit vector in the direction of \(\vec{r}_j = r - r \).

If the approximation made to derive eq 13 is valid for all TLSs, we have

\[\overline{f}(t; r, n) = \exp\left(-\frac{t^2}{2} \sum_{ab=1}^3 \alpha_{ab}^j(r)n_a^a n_b^b \right) \] (18)

with

\[\alpha_{ab}^j(r) = \sum_{ab=1}^3 \alpha_{ab}^j(r) \] (19)

which means that, under the above assumption and if the position and dipole direction of the chromophore is fixed, even in the presence of disorder in the positions and dipole orientations of the TLSs, the absorption line has a Gaussian shape. Disorder in the chromophore positions, as well as random distribution of its dipole orientation, will create deviations from the Gaussian shape.

There still exists a situation in which the random distribution of the chromophore’s dipole orientation does not lead to deviations of the absorption line from its Gaussian shape; namely, when the chromophore is fixed at the center of its cell \(r = 0 \), which can be equivalently written as \(\rho(r) = \delta(r) \), whereas the distribution functions that describe disorder in the TLS positions preserves the symmetry of the cubic lattice. Note that the disorder considered in this paper obviously satisfies the above property. In this case we deal with \(\alpha_{ab}^j(0) \) [defined for the general case by eq 19] that can be viewed as a symmetric rank 2 tensor, invariant under the rotations that preserve the cubic lattice. A tensor that satisfies the above property is known to be, up to a scalar multiplicative factor, the Kronecker delta \(\delta_{ab} \), which implies

\[\alpha_{ab}^j(0) = \frac{1}{3} \text{Tr}(\alpha(0)) \delta_{ab} \] (20)

Taking the trace in eq 17, and making use of eqs 19 and 20, we obtain

\[\overline{f}(t; 0, n) = \exp\left(-\frac{\sigma^2}{2}\right) \] (21)

with

\[\sigma = \sum_{j} \int \delta r_j \rho_j(r_j) \frac{B^2}{3} |r_j|^6 \] (22)

which reproduces the Gaussian absorption line shape that is independent of the chromophore’s dipole orientation \(n_j \). Therefore the line shape does not undergo any change upon any averaging over the latter.

For comparison between the analytical predictions and the numerical results, we have further applied eq 22 to evaluate \(\sigma \) for the model used in numerical simulations with \(\alpha = 0 \). For this case, the pairwise distances between the chromophore and the TLSs take up discrete values and we obtain \(\sigma/\gamma_0^2 = 2.92 \). From Figure 4, it can be seen that with this value of \(\sigma \), the averaged response function \(\overline{f}(t) \) from eq 21 yields a quite satisfactory fit to the numerical results. The above quantitative arguments thus perfectly rationalize the Gaussian line shape not only in the absence of disorder and averaging over all dipole orientations, but also for a special type of disorder when the positions of the chromophore together with its nearest neighbor TLSs are fixed at the centers of their residence cells.

Equation 22 implies that the contribution to the response function is dependent mainly on the TLSs that are located relatively closer to the chromophore and thus effectively on the distribution of chromophore−TLS pairwise distances, especially for \(|r_j| \leq a_0 \). While the minimum average separation is \(a_0 \) equal to \(a_0 = 0 \) when \(\alpha = 0 \), it gradually decreases with an increase \(a_0 \) in \(\alpha \) and can even be vanishingly small for \(\alpha = 1 \). The presence of TLSs in such close proximity of the chromophore implies a much stronger perturbation to the transition frequency of the...
chromophore compared to that due to the relatively distant TLSs. To study the role of local order in the distribution of TLSs, we carry out simulations with additional constraints by which the chromophore and its six nearest neighbors are fixed to the corresponding lattice points as shown in Figure 5a. The dipole moments of the spatially fixed TLSs and the chromophore are, however, still allowed to be randomly oriented. The rest of the TLSs are subjected to the regular condition of $\alpha = 1$. Under these constraints which provide some degree of local order, the minimum chromophore–TLS separation is $(a_0/\sqrt{2})$ and corresponds to the case of a TLS from a unit cell that shares an edge with the unit cell of the chromophore being positioned midway along that edge. Despite completely disordered distant–TLSs, the resulting absorption line shape depicted in Figure 5b is found to be well fitted by a Gaussian function. This observation points out that the morphing of the line shape from Gaussian to Lorentzian profile when α is changed from 0 to 1 can be ascribed to the strong effect exerted by the TLSs in the immediate vicinity of the chromophore. Further support for this important distance dependence can be found in Figure 6a, which shows the calculated absorption line shapes from the regular (unconstrained) simulations with $\alpha = 1.0$ for various lattice sizes. $N' = 3$ is the smallest possible lattice-based arrangement of TLSs around a chromophore, and yet, barring a small difference in fwhm, the Lorentzian line shape it yields is nearly identical to that obtained with larger lattices. Figure 5b shows the convergence achieved for the fwhm as a function of N'. This further emphasizes that, even for the largest lattice size studied in this work, the predominant contribution to the spectral line shape is provided by the close TLS neighbors of the chromophore, an observation that has important bearing in the study of Lorentzian line shapes for $\alpha = 1$ presented in subsection C.

C. Disordered Environment: Lorentzian Line Shape

The qualitative analysis, as well as the quantitative arguments, in subsection B, clearly demonstrates that a substantial deviation of the absorption line from its Gaussian shape in the case of complete or almost complete disorder originates from the configurations when a TLS comes very close to the chromophore. This renders invalid the approximation invoked to derive eq 13. To rationalize the Lorentzian line shape in this case, we need to adapt our approach and evaluate the integral over n_i in eq 11 exactly without making any expansion. To that end we fix r and n, denote $r_j = |r_j - r|$, and represent ν in a form

$$\nu(r_j, n) = \frac{B}{r_j} (n - 3(n_j \cdot r_j) \cdot n_j)$$

(23)

We then compute

$$\ln - 3(n \cdot r_j) = \sqrt{1 + 3(n \cdot r_j)^2}$$

(24)

so that

$$\int \text{dn}_j e^{-\text{int}} = \frac{1}{4\pi} \int_0^\pi \sin \theta \, d\theta$$

$$\times \exp \left(\frac{Bt}{r_j^3} \sqrt{1 + 3(n \cdot r_j)^2} \cos \theta \right) = \frac{\sin(\Omega(r_j) t)}{\Omega(r_j) t}$$

(25)

where we have introduced

$$\Omega(r_j) = \frac{B}{r_j^3} \sqrt{1 + 3(n \cdot r_j)^2}$$

(26)

Substituting eq 25 into eq 11, we arrive at

$$f_j(t; r, n) = 1 - p \int \text{d}r_j \rho_j(r_j) h(r_j, t)$$

(27)

where we have introduced

$$h(r_j, t) = 1 - \frac{\sin(\Omega(r_j) t)}{\Omega(r_j) t}$$

(28)

Here, we keep the arbitrary value of the probability p, for a TLS to be in the excited state, rather than setting it to 1/2. Note that the function $h(r_j, t)$ is continuous (although not smooth) at $r_j = 0$, and $h(r_j, t) \sim r_j^{-6}$ for large values of r_j.

To rationalize the Lorentzian line shape in the $\alpha = 1$ case of complete disorder, we start with considering a similar, still in the least not less physical, model of disorder when the chromophore position is fixed, whereas N identical TLSs are independently and randomly distributed inside some region \mathcal{U} in the large enough size with the volume V. Formally this means that

$$\rho_j(r_j) = V^{-1}, \quad r_j \in \mathcal{U}, \quad j = 1, \ldots, N$$

(29)

Substituting eq 29 into eq 27, we can make use of the $\sim r_j^{-6}$ behavior of h at large values of r_j as well as the assumption of large size of \mathcal{U} and extend integration in eq 27 from \mathcal{U} in \mathbb{R}^3 to the entire Euclidean space \mathbb{R}^3, followed by switching to the variables $r_j = (x_j, \xi_j)$ with $x = (\Omega t)^{-1}$, which results in

$$\rho(x_j, t) = V^{-1}, \quad x_j \in \mathbb{R}^3$$

(30)

Finally, substituting eq 30 into eq 27, we arrive at a Gaussian line shape

$$f_j(t; x_j, \xi_j) = \frac{1}{\sqrt{2\pi} \sigma \sqrt{\Omega}} \exp \left(-\frac{1}{2\sigma^2} \left(\frac{x_j}{\Omega t} \right)^2 \right)$$

(31)

which agrees perfectly with the Lorentzian line shape in the limit $\alpha = 1$.
\[J_j(t) = 1 - \frac{C_R}{V} t \approx e^{-\zeta t} \] (30)

with the dimensionless factor
\[\zeta = \frac{4\pi}{3} \int_0^1 dr \sqrt{1 + 3r^2} \int_0^\infty dx \left(1 - x \sin \frac{1}{x} \right) \]
\[= \frac{\pi^2}{3} \int_0^1 dr \sqrt{1 + 3r^2} \] (31)

Finally, we arrive at an expression that immediately leads to
the Lorentzian absorption line shape:
\[J(t) = (J_j(t))^N = e^{-\zeta t}, \quad \gamma = \zeta pBn \] (32)

where \(n = N/V \) is the TLS concentration and \(\zeta \) is a
dimensionless factor of the order of 1 that reflects a particular
model of disorder.

We are now in a position to consider the model of disorder
that has been used in our numerical simulations. We start
with noting that the exponential shape \(J(t) = e^{-\zeta t} \) of the time
response function [e.g., as in eq 32] is equivalent to the
Lorentzian shape
\[I(\omega) = \frac{\gamma}{\omega^2 + \gamma^2} \] (33)

where, to simplify the formulas, we set \(\omega = 0 \), so that the
asymptotic behavior of the line shape at large \(\omega \) is of a form
\[I(\omega) \sim \frac{\gamma}{\omega^2} \] (34)

The asymptotic behavior, given by eq 34, has a more general
meaning than being just a property of a Lorentzian distribution.
It is a rather general property of a Fourier transform that is
being formulated for even functions \(J(t) \) with \(J(0) = 0 \). Note
that the time domain response function, being extended to
negative values of \(t \), has the above property implying that \(J(t) \)
has a nonzero first time derivative at \(t = 0 \). In formal terms
\[J' = \lim_{t \to 0} \frac{dj(t)}{dt} = -\gamma \] (35)
so that, starting with analytical evaluation of the time derivative
in eq 35, we can analyze the line shapes for the disorder models
considered in numerical simulations. The value of \(\gamma \) is identified
by using an asymptotic expansion
\[1 - J(t) = p_j \int dr \rho(r) \int dn \sum_j \int dr_j \rho_j(r_j) \]
\[h(r_j - r, n, t) + O(t^2) \]
\[= \gamma t + O(t^2) \] (36)

for \(t \to +0 \).

For the \(\alpha = 1 \) case of complete disorder we have \(\rho_j(r) = a_0^{-3} \)
and \(\rho(r) = a_0^{-3} \), when \(r_j \) and \(r \) belong to their cells of residence,
and 0 otherwise. We can then recast eq 36 in a more
convenient form
\[\frac{p_j}{a_0^3} \int dr \int dn \int dx h(x - r, n, t) = \gamma t + O(t^2) \] (37)

where integration over \(r \) and \(x \) goes over the chromophore cell
and all TLS cells, respectively.

However, as we will see, the expansion of the right-hand side
(rhs) of eq 37 does not have a form of the aforementioned
equation, with the leading term being \(\sim t^\beta \) with a fractional value
of \(\beta \). Therefore we introduce the line shape function \(g(t) \), so that
\[J(t) = e^{-\zeta t} \] (38)
and study its short- and long-time asymptotic behavior, starting
with the latter. To that end we represent
\[\ln J(t, r, n) = \sum_j \ln \left(1 - \frac{p_j}{a_0^3} \int \Omega_j dr_j h(r_j - r, t) \right) \]
\[= \sum_j \ln j \left(t, r, n \right) \] (39)

where \(\Omega_j \) is the residence cell of the \(j \)th TLS. We further note
that for \(|r_j| \gg a_0 \) and \(\Omega_j \), \(r_j \), \(t \) does not
change much within the cell \(\Omega_j \) as a function of \(r_j \) as well as \(r \).
Thus, we can first set \(r = 0 \) and further replace in the rhs of eq 39
\[\ln J(t, r, n) = \frac{1}{a_0^3} \int \Omega_j \ln(1 - p_j h(r_j, t)) \] (40)

We can also make the same replacement given by eq 40 for
those cells which correspond to \(\Omega_j \) \(r_j \), \(1 \) or \(\Omega_j \) \(r_j \), \(> \)
1 it is possible to approximate \(h(r_j, t)) = 1 \) and \(h(r_j, t) = 0 \), respectively, for the two cases. Since in the case \(Bt/a_0^3 \gg 1 \) any
cell falls into at least one of the three categories described
above, we obtain
\[\ln J(t, r, n) = -\sum_j \int \Omega_j \ln(1 - p_j h(r_j, t)) \]
\[= -\int \Omega \ln(1 - p_j h(r_j, t)) \] (41)

where \(\Omega = \bigcup \Omega_j \) is the region occupied by all TLSs’ residence
cells. Since the integral in the rhs of eq 41 converges at large \(r \) and
since each cell provides a small contribution to \(g(t) \), we can extend this integration from \(\Omega \subset \mathbb{R}^3 \) to the whole Euclidian
space \(\mathbb{R}^3 \), which results in the following expression for the line
shape function:
\[g(t) = -\int dr \ln(1 - p_j h(r, t)) \] (42)

Note that strictly speaking the presented derivation identifies
the rhs of eq 42 with \(-\ln J(t, r, n)\), rather than with the line
shape function \(g(t) \). However, the rhs of eq 42 obviously turns
out to be independent of \(r \) and \(n \), i.e., \(\ln J(t, r, n) = \ln J(t, r) \), so
that averaging of \(J(t, r, n) \) with respect to \(r \) and \(n \) does not lead to
any changes. Thus, we can identify \(g(t) = -\ln J(t) \), which
results in eq 42.

The integral in eq 42 can be calculated explicitly in exactly
the same manner in which the integral in eq 27 has been
evaluated, i.e., by switching to the variables \((x, \tilde{r}) \) which results in
the asymptotic behavior of the line shape function which is
linear in time
\[g(t) = \gamma t, \quad \gamma = \frac{\zeta B}{a_0^3} \] (43)
with

\[\zeta_1 = \frac{4\pi}{3} \int_0^1 \frac{dz}{\sqrt{1 + 3z^2}} \int_0^\infty dx \left(\ln \left(1 - p_j + \frac{p_j x}{\sin \frac{1}{x}} \right) \right) \tag{44} \]

To compute the short-time asymptotic that corresponds to \(B_\alpha \alpha_\alpha \ll 1 \), we note that in this case the contribution to \(\zeta(t) \) is dominated by configurations with \(\mathcal{R} - \mathcal{R}_1 / B_\alpha \ll 1 \), i.e., \(\mathcal{R} - \mathcal{R}_1 \ll \alpha \).

It is possible to obey this criterion only when both \(\mathcal{R} \) and \(\mathcal{R}_1 \) are located in the close vicinity of the chromophore cell border, which consists of six faces. The major contribution thus comes from the coupling between the chromophore and the TLS that reside in the unit cells sharing a common face. Integration over \(\mathcal{R} \) and \(\mathcal{R}_1 \), which is restricted to the region described above, can be performed using the following variables:

\[r_j = z + s_i \mathbf{\eta}, \quad r = z - (1 - s) \mathbf{\eta} \tag{45} \]

Integration over \(z \) goes over the chromophore cell border, represented by 6 faces, and in the case of short times we can extend integrations over \(r, s_i, \) and \(\mathbf{\eta} \) to \((0, \infty)\), \([0, 1]\), and a hemisphere, respectively. This yields

\[\frac{1 - \zeta(t)}{\alpha_\alpha} = \frac{\int_0^1 \frac{dz}{\sqrt{1 + 3z^2}} \int_0^\infty dx \int_0^1 ds \int_0^1 d\mathbf{\eta}}{\int_0^\infty r^3 dr \left(1 - \frac{\sin \left(\frac{\alpha_\alpha}{\sqrt{1 + 3(\mathbf{\eta} \cdot \mathbf{\eta})^2} r^{-3}\right)}{\alpha_\alpha} \right)} \int_0^\infty r^3 dr \left(1 - \frac{\sin \left(\frac{\alpha_\alpha}{\sqrt{1 + 3(\mathbf{\eta} \cdot \mathbf{\eta})^2} r^{-3}\right)}{\alpha_\alpha} \right) \tag{46} \]

where \(S^2 \) and \(S^2 \) denote the unit sphere and hemisphere, respectively, and \(\mathbf{\eta} \) denotes the normal vector to the surface of the border. The additional factors in eq 46 are due to the integration measure, written in new variables, i.e., \(dr \, dr_j = 4\pi(\mathbf{\eta} \cdot \mathbf{\eta}) \, dz \, r^2 \, d\mathbf{\eta} \).

Integration in eq 46 can be performed explicitly. We first integrate over \(r \), switching to the variable \(\mathbf{\eta} \) introduced earlier. We then integrate over \(n \), which eliminates the dependence on \(\mathbf{\eta} \), so that the integrals over \(\mathbf{\eta} \) and \(z \) in eq 46 are factorized, and we compute

\[\int_{S^2} 4\pi(\mathbf{\eta} \cdot \mathbf{\eta}) \, d\mathbf{\eta} = \int_0^{2\pi} d\phi \int_0^{\pi/2} \sin \phi \, \cos \phi = \pi \tag{47} \]

as well as

\[\int_{S^2} d\mathbf{\eta} = 6\pi \int_0^1 \frac{dz}{\sqrt{1 + 3z^2}} = 6 \alpha_\alpha \tag{48} \]

This results in

\[\zeta(t) \sim 1 - \frac{\zeta_1(\alpha_\alpha)}{(\alpha_\alpha)} \tag{49} \]

and

\[\zeta_1 = 4\pi \int_0^1 d\tau \left(1 + 3\tau^2\right)^3 \int_0^\infty dx x^{1/3} \left(1 - x \sin \left(\frac{1}{x}\right)\right) \tag{50} \]

To summarize, we identified the short- and long-time asymptotic behavior of the line shape function for our \(\alpha = 1 \) model of disorder as

\[g(t) = \zeta_1(\alpha_\alpha)^{4/3}, \quad \text{for } \alpha_\alpha \ll 1 \]

\[g(t) = \zeta_1(\alpha_\alpha), \quad \text{for } \alpha_\alpha \gg 1 \tag{51} \]

We next proceed to compare the analytically predicted time-domain response function calculated from numerical simulations (hollow circles) and its comparison with the analytical expressions of eq 49 and 50 in the short-time limit.

![Figure 7](image)

Figure 7. For completely disordered environment (\(\alpha = 1.0 \)), averaged response function calculated from numerical simulations (hollow circles) and its comparison with the analytical expressions of eqs 49 and 50 in the short-time limit.
Figure 8. (a) Schematic of a model in which the TLSs are uniformly distributed in a spherical shell (highlighted) centered on the single chromophore (red dot). (b–f) Calculated absorption line shape (hollow circles, black) for this model with \(r_0 = 0.001, 1.0, 2.0, 3.0, \) and 5.0 nm, respectively. Corresponding fits by a Gaussian function (G, in red points) and a Lorentzian function (L, in blue points) are also shown.

\[
g(t) = 4\pi p_0 \int_0^{r_0} dr \int_{-\infty}^{\infty} r^2 \sin \left(\frac{Bt_r + 1}{Bt_r + 3(r_0^2 - r^2)} \right)
\]

where \(r_0 \) is the outer radius of the shell. The chromophore with randomly uniformly distributed inside a spherical shell around it. The oriented dipole is fixed to the origin and 1331 TLSs are uniformly distributed inside a spherical shell around it. The inner radius of the shell \(r_0 \) serves as the control parameter, and the outer radius \(r_0' \) can be chosen so as to yield a density identical to that used in the lattice-based model. With an increase in \(r_0 \), the smallest possible separation between the chromophore and the TLSs increases, thereby influencing the line shape. From Figure 8b, it can be easily observed that the calculated absorption line shape for the case of negligible separation, \(r_0 = 0.001 \) nm, perfectly Lorentzian. Even with a small clearance allowed in the cases of \(r_0 = 1.0 \) nm and \(r_0 = 2.0 \) nm, which carries more appropriate physical meaning owing to the finite size of the TLSs and the chromophore, the Lorentzian profile is preserved well as is evident from Figure 8c,d. As \(r_0 \) is increased further, deviations from the Lorentzian profile start to appear. In particular, in the intermediate regime, represented by \(r_0 = 3.0 \) nm, the calculated line shape is neither Lorentzian nor Gaussian and assumes a complicated profile. More interestingly, when the minimum distance between chromophore and TLSs becomes large enough, as in Figure 8f with \(r_0 = 5.0 \) nm, one can note that the line shape pertains well to a Gaussian curve. The numerical results obtained here are thus in perfect agreement with the analytical predictions of the line shapes in both limiting cases.

E. Further Discussions. In this work, especially for carrying out the numerical simulations, we have employed the necessary parameters which have been derived for terylene in polystyrene; however, they are regarded in general to be representative of typical glassy matrices. We also note that the experimentally measured values of the line widths are on the order of gigahertz, for example, for terylene in polystyrene. The fwhm of the spectral lines calculated in this work can, however, be as large as 30 GHz for the case of \(\alpha = 1.0 \) (cf. Figure 3d) in the lattice-based model. The TLS specific parameters \((\alpha_j, M_j) \) employed in this work yield a TLS energy splitting \((\epsilon_j/k_B) \) of 0.01 K, which is much smaller than the system temperature \(T = 1.7 \) K. This results in the probability of a TLS being in the excited state equal to 0.5, implying the high-temperature regime with respect to thermal occupation of TLSs. The average energy splitting of the TLSs
surrounding a given chromophore in experimental systems can, however, be on the order of a few kelvin as estimated in earlier studies.36 This implies that in our simulations, considering the parameter regime employed, a greater number of “active” TLSs are dispersed surrounding the chromophore as compared to the chromophores studied in experiments, which leads to stronger modulation of the chromophore’s frequency and thus to greater line widths. We have carried out additional calculations by employing the lattice-based model for two different sets of TLS parameters \([\{A_j, B_j\} = (0.6 \text{ K}, 0.8 \text{ K}) \text{ and } (3.0 \text{ K}, 4.0 \text{ K})]\), while keeping all the other parameters identical to those used in this work. The corresponding energy splitting of the TLSs is then 1 and 5 K, respectively. As shown in Figure 9a,b, the calculated dynamics of their environment, especially for disordered opportunity for probing the submicroscopic structure and experimentally reported range.

The corresponding energy splitting of the TLSs is then 1 and 5 K, respectively. As shown in Figure 9a,b, the calculated dynamics of their environment, especially for disordered opportunity for probing the submicroscopic structure and experimentally reported range.

The corresponding energy splitting of the TLSs is then 1 and 5 K, respectively. As shown in Figure 9a,b, the calculated dynamics of their environment, especially for disordered opportunity for probing the submicroscopic structure and experimentally reported range.

The corresponding energy splitting of the TLSs is then 1 and 5 K, respectively. As shown in Figure 9a,b, the calculated dynamics of their environment, especially for disordered opportunity for probing the submicroscopic structure and experimentally reported range.

The corresponding energy splitting of the TLSs is then 1 and 5 K, respectively. As shown in Figure 9a,b, the calculated dynamics of their environment, especially for disordered opportunity for probing the submicroscopic structure and experimentally reported range.
large r_0 and the Lorentzian line shape in the opposite limit of vanishing r_0. The present work is focused on the investigation of the influence of positional disorder of TLSs on the spectral characteristics of an embedded chromophore. In a realistic system, according to the standard tunneling TLS model, the characteristic parameters of the TLSs are assumed to follow certain distributions. We have adopted the assumption of identical TLSs in order to simplify the analysis and have chosen the TLS parameters suitably to correspond to the high-temperature regime. The parameter regime thus specified allows us to derive a simple expression for the time-domain response function and, subsequently, the line shape for the chromophore embedded in static TLSs in a high-temperature regime. The relatively small energy splitting of the TLSs as compared to the system temperature for the parameter regime in our work implies that, in realistic systems, where TLS flipping may be associated with the motion of domain walls, such TLSs are likely to be situated very close to a domain boundary. Accordingly, the comparison of our results on spectral line shapes with experimental results can be seen to be most relevant for the line shapes measured for individual chromophores which interact with the TLSs situated near domain walls. In the early studies, it has been found that, for the TLSs distributed on a regular lattice, the absorption line shape is Gaussian in the high-temperature limit, i.e., when the probability of a given TLS to be in an excited state is 0.5. We have demonstrated under the same condition that when spatial and steric disorder effects are taken into account, which are more likely to mimic the realistic distribution, the line shape may even morph into a Lorentzian profile. Furthermore, our results based on both the lattice-based model and the homogeneously distributed model show that the line shape observed remains Gaussian irrespective of the degree of disorder of the relatively distant TLSs, provided that the minimum TLS–chromophore separation is sufficiently large enough. The Lorentzian line shape is realized due to the strong modulation in the chromophore’s frequency by closely spaced TLSs.

Finally, we draw an interesting parallel of our current findings to the important role played by static disorder on magnetic hysteresis in finite sized single-domain micromagnetic particle arrays. In two-dimensional arrays, it was found that an increase in the disorder leads to an increase in the coercivity. Similar results were also demonstrated earlier for three-dimensional systems apart from the fact that in this case there exists no hysteresis without disorder. Our current work may thus help emphasize the importance of disorder in the immediate microscopic environment, in governing the macroscopic properties of a system of interest.

REFERENCES

