<table>
<thead>
<tr>
<th>Title</th>
<th>Plasmon-enhanced polymer photovoltaic cells based on large aspect ratio gold nanorods and the related working mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chen, S. F.; Cheng, F.; Mei, Y.; Peng, B.; Kong, M.; Hao, J. Y.; Zhang, R.; Xiong, Q. H.; Wang, L. H.; Huang, W.</td>
</tr>
<tr>
<td>Citation</td>
<td>Chen, S. F., Cheng, F., Mei, Y., Peng, B., Kong, M., Hao, J. Y., et al. (2014). Plasmon-enhanced polymer photovoltaic cells based on large aspect ratio gold nanorods and the related working mechanism. Applied Physics Letters, 104(21), 213903-.</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/20022</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 AIP Publishing LLC. This paper was published in Applied Physics Letters and is made available as an electronic reprint (preprint) with permission of AIP Publishing LLC. The paper can be found at the following official DOI: http://dx.doi.org/10.1063/1.4880575. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Plasmon-enhanced polymer photovoltaic cells based on large aspect ratio gold nanorods and the related working mechanism

S. F. Chen, F. Cheng, Y. Mei, B. Peng, M. Kong, J. Y. Hao, R. Zhang, Q. H. Xiong, L. H. Wang, and W. Huang

View online: http://dx.doi.org/10.1063/1.4880575
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/104/21?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Ultrathin organic bulk heterojunction solar cells: Plasmon enhanced performance using Au nanoparticles

Enhanced light harvesting in photovoltaics with ZnO nanorod arrays

Plasmon-enhanced upconversion fluorescence in NaYF4:Yb/Er/Gd nanorods coated with Au nanoparticles or nanoshells

Spectral conversion for solar cell efficiency enhancement using YVO4:Bi3+,Ln3+ (Ln=Dy, Er, Ho, Eu, Sm, and Yb) phosphors
J. Appl. Phys. 109, 113526 (2011); 10.1063/1.3592889

Thickness dependence of the MoO 3 blocking layers on ZnO nanorod-inverted organic photovoltaic devices
Appl. Phys. Lett. 98, 103305 (2011); 10.1063/1.3554381
Plasmon-enhanced polymer photovoltaic cells based on large aspect ratio gold nanorods and the related working mechanism

S. F. Chen, F. Cheng, Y. Mei, B. Peng, M. Kong, J. Y. Hao, R. Zhang, Q. H. Xiong, L. H. Wang, and W. Huang

1Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
3NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
4Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China

(Received 10 March 2014; accepted 13 May 2014; published online 29 May 2014)

Two types of Au nanorods (NRs) possessing longitudinal/transverse axes of 55/11 (NR_{11}) and 90/18 nm (NR_{18}) are, respectively, incorporated into the hole extraction layer to improve optical-to-electrical conversion performances in polymer photovoltaic cells. Totally different improvement factors in short-circuit current and power conversion efficiency occur in the NR_{11}- and NR_{18}-doped cells. Optical simulations, electrical analysis, and morphology alteration accompanying with the incorporation of NRs were proceeded to investigate the reason, and analysis demonstrates that a slower damping of field around NRs_{18} (results in a field and absorption enhancement around the active layer) and one order higher scattering cross section in the NR_{18}-incorporated cell are key factors contributed to the improvement of cell performances.

Organic photovoltaic (OPV) cells are attracting many attentions due to their potential for low-cost, high-throughput processing. However, the excitonic bottleneck (exciton diffusion length of \(\sim 10 \text{ nm} \)) in most organic polymers results in a tradeoff between light absorption and exciton harvesting efficiency in OPVs. Architectures used to overcome this problem have included bulk\(^1\) and mixed\(^2\) heterojunctions and the use of phosphorescent materials.\(^3\) While the bulk heterojunction blended architecture partially alleviates the problem of exciton dissociation in optically thick films, the internal quantum efficiency (IQE) in bulk heterojunction cells often decreases rapidly with increasing film thickness. This drop in IQE is particularly significant for many new low band gap, red, and near-IR absorbing materials because they typically have lower absorption coefficients.\(^4\) As an alternate approach, surface plasmons (SPs) have been exploited to improve the absorption efficiency. Ag and Au have dominated experimental researches in this area although other metals also support surface plasmons (SPs) have been exploited to improve the absorption efficiency. Ag and Au have dominated experimental researches in this area although other metals also support surface plasmons (SPs) have been exploited to improve the absorption efficiency. Ag and Au have dominated experimental researches in this area although other metals also support

provided a unique opportunity for utilizing the low energy range of the solar spectrum. In addition, Ag or Au nanorods (NRs) can be processed through wet chemical synthesis\(^{13}\) with the well-dispersion in a variety of aqueous/organic solutions and their size, shape, density can also be easily controlled.\(^{14}\) This approach of obtaining Ag or Au NRs present a less expensive choice compared with other methods, e.g., laser ablation,\(^{15}\) electron beam lithography,\(^{16}\) etc.

Although many researches on Au or Ag NR’s synthesis methods and optical properties, theirs application in OPVs is rarely reported. Janković et al.\(^{17}\) incorporated octadecyltrimethoxysilane (OTMS)-functionalized Au/SiO\(_2\) core/shell NRs into active layers in 2013. They found that the greatest enhancement in power conversion efficiency (PCE) was observed in spectral regions where the OPV polymer absorbs poorly. In their work, they did not further explore quantitatively the field distribution around Au NRs induced by LSPR and not consider the influence of scattering on PCE at all. Hsiao et al.\(^{18}\) first introduced series of Au nanospheres (NSs) with the LSPR peaks of 520, 530, and 540 nm and NRs with the longitudinal axis LSPR peaks of 660, 780, and 850 nm, covering from the visible to the NIR region, into OPVs to investigate the effects of the shape and size of Au NSs and NRs on optoelectrical performances in OPVs. By systematical analysis on film’s extinction and photoluminescence (PL) spectra, they deduced that LSPR and light scattering, respectively, play an important and a minor role in the enhancement of OPV’s performance, especially for Au NR780 (the LSPR peak of 780 nm). They also concluded that the integration of two kinds of Au NPs covering the whole absorption band-edge of the active layer is especially beneficial to the acquisition of a highest enhancement factor in OPVs, which is also powerfully proved recently by Lu et al. using Ag and...
Au NSs with complementary absorption spectra.19 In Hsiao’s work,18 differences of shapes, sizes, aspect ratios, absorption spectral ranges for those Au NSs or NRs bring too many variable factors, making rigorous analysis on a certain factor very difficult.

In order to further explore the influences of Au NRs on the optoelectrical conversion performances in OPVs and their major working mechanism, two kinds of Au NR, namely, NR\textsubscript{11} and NR\textsubscript{18} with the same AR but different sizes (55 \pm 5/11 \pm 3 and 90 \pm 10/18 \pm 3 nm for NR\textsubscript{11} and NR\textsubscript{18}’s longitudinal/transverse axes) are used in this paper, where they generate the same LSPR wavelength in the NIR region (940 nm). Synthesis method of these NRs refers to Ref.20. The NR\textsubscript{11} and NR\textsubscript{18} are, respectively, doped into the poly(3,4-ethylene dioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) hole extraction layer to observe their influences on photovoltaic performances. Before use, the Au nanorods were centrifugated for about two times to remove reactants and stabilizing agents with the final concentration of \(\sim 10^{17} \) particles/ml in aqueous solution. Each type of Au NR’s concentration is further optimized to acquire the best OPV performance (with structure in the inset of Figure 1). For NR\textsubscript{11}, the optimized volume ratio of rods to PEDOT:PSS is around 30%, resulting in a short-circuit current density (\(J_{sc} \)) and a PCE of 7.76 mA/cm\(^2\) and 3.17%, compared to 7.48 mA/cm\(^2\) and 3.07% in a standard cell without NRs, as the curves shown in Figure 1(a) and the result summarized in Table I. While for NR\textsubscript{18}, the optimal concentration is \(\sim 3\% \), and the corresponding \(J_{sc} \) and PCE exhibit enhancement factors of 12.2% and 12.7%, reaching 8.39 mA/cm\(^2\) and 3.46%, respectively. Both the corresponding external quantum efficiency (EQE) curves with an optimal NR\textsubscript{11} and NR\textsubscript{18} doping concentration (Figure 1(b)) exhibit some improvements over a wide wavelength range of 400–650 nm compared to that in the standard device, while for NR\textsubscript{18}, the magnitude of improvement is more significant, consistent with as-measured \(J-V \) characteristics. For both of the two kinds of NRs, the fill factor (FF) shows a slightly increase when using a low doping concentration and then gradually declines as the doping concentration becomes optimal in the OPVs.

TABLE I. Summary of the photovoltaic parameters with and without NRs.

<table>
<thead>
<tr>
<th>NR’s type</th>
<th>Rod concentration (v/v)</th>
<th>(V_{oc}) (V)</th>
<th>(J_{sc}) (mA/cm(^2))</th>
<th>FF</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/O</td>
<td>0</td>
<td>0.600</td>
<td>7.48</td>
<td>0.684</td>
<td>3.07</td>
</tr>
<tr>
<td>NR\textsubscript{11}</td>
<td>30%</td>
<td>0.610</td>
<td>7.76</td>
<td>0.670</td>
<td>3.17</td>
</tr>
<tr>
<td>NR\textsubscript{18}</td>
<td>3%</td>
<td>0.610</td>
<td>8.39</td>
<td>0.676</td>
<td>3.46</td>
</tr>
</tbody>
</table>

Photocurrent density (\(J_{ph} \)) versus effective voltage (\(V_{eff} \)) characteristic curves have been calculated to observe photo-generated excitons.21 Here, \(J_{ph} \) is determined as \(J_{ph} = J_{L} - J_{D} \), where \(J_{L} \) and \(J_{D} \) are the current density under illumination and in the dark, respectively. \(V_{eff} \) is determined as \(V_{eff} = V_{0} - V_{sat} \) where \(V_{0} \) is the voltage at which \(J_{ph} = 0 \) and \(V_{sat} \) is the applied bias voltage. Figure 2 clearly shows that \(J_{ph} \) increases linearly at low \(V_{eff} \) values and saturates at a high \(V_{eff} \) (i.e., \(V_{eff} > 0.6 \) V). Assuming that all the photo-generated excitons are dissociated into free charge carriers and collected by electrodes afterward at a high \(V_{eff} \) region, saturation current density (\(J_{sat} \)) is then only limited by total amount of absorbed incident photons. \(G_{max} \) could be calculated from \(J_{ph} = qG_{max}L \), where \(q \) is the electronic charge and \(L \) is the thickness of active layer (200 nm). The values of \(G_{max} \) for the control, NR\textsubscript{11}- and NR\textsubscript{18}-incorporated devices are \(2.35 \times 10^{27} \) m\(^{-3}\) s\(^{-1} \) \((J_{sat} = 75.2 \) A/m\(^2\))\), \(2.45 \times 10^{27} \) m\(^{-3}\) s\(^{-1} \) \((J_{sat} = 78.3 \) A/m\(^2\))\), and \(2.56 \times 10^{27} \) m\(^{-3}\) s\(^{-1} \) \((J_{sat} = 82 \) A/m\(^2\))\). Because the \(G_{max} \) value is only governed by the absorption of light,7 the enhanced values suggest that the incorporation of the Au NR\textsubscript{11} and NR\textsubscript{18} increases the degree of light harvesting in the devices, which is further testified with the significant enhancement in the absorption spectra (Figure 3(a)) for the multilayer films of PEDOT:PSS:N1\textsubscript{11} or NR\textsubscript{18}/poly(3-hexylthiophene) (P3HT):[6, 6] phenyl C71-butyric acid methyl ester (PC\textsubscript{71}BM) compared to the control PEDOT:PSS:P3HT:PC\textsubscript{71}BM film around 300–650 nm. From Figure 3(a), we also observe that the enhanced magnitude from NR\textsubscript{18} is obviously higher than that from NR\textsubscript{11}. To clearly explain this phenomenon, we simulate the absorption spectra of the NRs-doped PEDOT:PSS layer by using FDTD software. The calculation result shown in Figure 3(b) demonstrates that both Au NR\textsubscript{11} and NR\textsubscript{18} generate the same LSPR peaks with the longitudinal and
transverse axes peaks at 920 and 597 nm, respectively, but the absolute intensity from NR18 is one order higher than that from NR11, as shown in the inset of Figure 3(b), indicating a much stronger absorption ability from NR18 and a larger local field intensity distribution around NR18. From the simulation results of the field distribution around the NRs (Figure 4), one surprisingly observes that the largest electric field occurring at the surface of Au NR18 is almost equal to that at the surface of Au NR11 (excited with 597 nm, the resonance peak of transverse axis). Here, in order to obtain the above simulation results, it should be noted that we assumed that (1) the ideal distribution of NRs is in the layer center of the 50-nm thick PEDOT:PSS, (2) most of Au NRs lie but not stand in the PEDOT:PSS film, (3) x axis is along the longitudinal axis of Au NRs and z axis (the incident direction of sun light is along with the backwards of z axis) is perpendicular to the PEDOT:PSS film, and (4) the periodic distribution of Au NRs is 200 nm × 200 nm. However, from careful comparison of the local field around NRs in Figure 4(c), we find that although the field quickly declines down to 1 for both NR11 and NR18 when far away from the surface of Au NR, the field intensity around NR11 decreases more quickly than that around NR18, with no more gain when the distance from the center of NR11 is larger than 21 nm, indicating the active layer cannot absorb the additive energy generated by LSPR for a 50-nm thick PEDOT:PSS film if the NRs are mainly distributed in the center of the PEDOT:PSS film. In contrast, the field around NR18 showing a slower damping can extend to 38 nm away from the center of the NR structure and maintain about 1.2 times of the incident absorption intensity.
incident field intensity ($|E|^2$) even at the P3HT/PEDOT:PSS interface, thus resulting in the PL enhancement of the P3HT active layer considering of the overall increase in PL intensity proportional to $|1.2E|^2$ due to LSPR. This can be further proved with the measurement of the PL spectra for the PEDOT:PSS:NR$_{11}$ or NR$_{18}$/P3HT:PC$_{71}$BM films (Figure 3(c)). A slight enhancement for the PEDOT:PSS:NR$_{11}$/P3HT:PC$_{71}$BM film compared to the non-doped one in Figure 3(c) indicates the Au NRs are randomly distributed and not totally lied in the center of the PEDOT:PSS layer. From above measurement of the absorption and PL spectra and the simulation work on the local field around Au NRs, we can clearly explain the obvious J_{sc} and PCE improvement in the NR$_{18}$-doped OPVs.

Besides the magnified electric field generated by LSPR, the influence of scattering from Au NRs should be taken for granted to be considered. Our common sense tells us that a large-size NR, e.g., NR$_{18}$, will bring larger scattering intensity than the small one and result in lengthened light transport path, which further increases light absorption in OPV cells. The above idea has been identified by the simulated scattering cross section, as shown in Figure 3(d), from which one observes that the scattering cross section from NR$_{18}$ is one order higher than that from NR$_{11}$. As a conclusion, the OPVs doping NR$_{18}$ show a higher photon-to-electrical conversion performance due to both LSPR-induced field enhancement and the relatively large scattering cross section.

In addition to the absorbance and scattering enhancement in the NR$_{18}$-doped OPVs, other possible factors, such as the alteration of the hole extraction and transport ability induced by Au NR$_{18}$ and the morphology changes of the PEDOT:PSS film by incorporating Au NRs, have been further investigated to observe their influences on solar cells. Hole- and electron-dominated single-carrier devices with the structures of ITO/PEDOT:PSS (~50 nm, with 3% or without Au NR$_{18}$/Ag and ITO/LiF (1 nm)/PEDOT:PSS (~50 nm, with 3% or without Au NR$_{18}$/CaAg have been designed in order to observe the influence of NRs. The J-V curves (not shown here) indicate that the incorporation of Au NR$_{18}$ brings no obvious alteration in injection and transport of the current, indicating a negligible influence of the shallow impurity energy level induced by Au on hole extraction and transport.

It has been suggested that a rough P3HT:PCBM surface creates defect sites that assist exciton dissociation. Besides, increasing anode surface roughness will increase the interface area between the anode and the active layer, providing shorter routes for holes to travel to the anode and enhancing hole collection at the anode. The increased interfacial area between PEDOT:PSS and P3HT:PCBM allows the collection of a larger number of holes in the P3HT:PCBM layer, thus increasing J_{sc}. Thus, the morphology changes of the PEDOT:PSS layer with 3% or with the absence of Au NR$_{18}$ are measured by applying atomic force microscopy on the PEDOT:PSS or PEDOT:PSS:Au NR$_{18}$ film. With introducing the Au NR$_{18}$, we observe a slight change in surface morphology of the rod-doped PEDOT:PSS film with an increase in surface roughness (R_α) from 1.53 to 1.63 nm. This result indicates that the doping of NR$_{18}$ is beneficial to exciton dissociation and the collection of a larger number of holes to some extent, resulting in the increase in J_{sc}, but we simultaneously infer that the roughness-induced increase in J_{sc} will not be significant due to a small alteration of R_α.

In conclusion, two types of Au NRs possessing longitudinal/transverse axes of 55/11 (NR$_{11}$) and 90/18 nm (NR$_{18}$) are, respectively, incorporated into PEDOT:PSS to improve the OPV performances. Totally different improvement factors in J_{sc} and PCE are obtained in the NR$_{11}$- and NR$_{18}$-doped cells, indicating the introduction of NR$_{11}$ and NR$_{18}$ into the PEDOT:PSS layer brings different influences on distribution and transport of light. To explore the origin of the improved performance, several characterizations including optical simulation, electrical transport performance, and film morphology have been investigated. Simulation results demonstrate that NR$_{18}$ generates a similar electric field intensity with NR$_{11}$ at the rods/PEDOT:PSS interface but a slower damping of field around NR$_{18}$, which keeps an enhanced field when reaching the active layer in NR$_{18}$-doped cells. In addition, the scattering cross section from NR$_{18}$ is one order higher than that from NR$_{11}$. The incorporation of NR$_{18}$ results in a slight increase in surface roughness of the PEDOT:PSS film, which is beneficial to exciton dissociation and the collection of a larger number of holes to some extent. Both the enhanced field intensity around rods and large scattering from NR$_{18}$, together with a slight increase in surface roughness of the film contribute to the improved cell performances.

The authors acknowledge financial support from the Ministry of Science and Technology (Grant No. 2012CB933301), NSFC(Grant Nos. 61274065, 60907047, 51173081, 61136003, and B22010043). Q.H.X. gratefully thanks the strong support from Singapore National Research Foundation through a Competitive Research Program (NRF-CRP-6-2010-2), Singapore Ministry of Education via two Tier2 grants (MOE2011-T2-2-051 and MOE2011-T2-2-085).