<table>
<thead>
<tr>
<th>Title</th>
<th>Infrared spectroscopic ellipsometry study of sulfur-doped In0.53Ga0.47As ultra-shallow junctions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Richard D'Costa, Vijay; Subramanian, Sujith; Li, Daosheng; Wicaksono, Satrio; Yoon, Soon Fatt; Tok, Eng Soon; Yeo, Yee-Chia</td>
</tr>
<tr>
<td>Citation</td>
<td>Richard D'Costa, V., Subramanian, S., Li, D., Wicaksono, S., Yoon, S. F., Tok, E. S., et al. (2014). Infrared spectroscopic ellipsometry study of sulfur-doped In0.53Ga0.47As ultra-shallow junctions. Applied Physics Letters, 104(23), 232102-..</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/20134</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 AIP Publishing LLC. This paper was published in Applied Physics Letters and is made available as an electronic reprint (preprint) with permission of AIP Publishing LLC. The paper can be found at the following official DOI: http://dx.doi.org/10.1063/1.4882917. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Infrared spectroscopic ellipsometry study of sulfur-doped In0.53Ga0.47As ultra-shallow junctions

Vijay Richard D'Costa, Sujith Subramanian, Daosheng Li, Satrio Wicaksono, Soon Fatt Yoon, Eng Soon Tok, and Yee-Chia Yeo

View online: http://dx.doi.org/10.1063/1.4882917
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/104/23?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Experimental demonstration for the implant-free In0.53Ga0.47As quantum-well metal-insulator-semiconductor field-effect transistors with ultra-low source/drain resistance

High mobility In0.53Ga0.47As quantum-well metal oxide semiconductor field effect transistor structures

Spectroscopic ellipsometry study on the dielectric function of bulk Ti 2 AlN , Ti 2 AlC , Nb 2 AlC , (Ti 0.5 , Nb 0.5) 2 AlC , and Ti 3 GeC 2 MAX-phases
J. Appl. Phys. 109, 013530 (2011); 10.1063/1.3525648

Ex situ spectroscopic ellipsometry and Raman spectroscopy investigations of chemical vapor deposited sulfur incorporated nanocrystalline carbon thin films
J. Appl. Phys. 92, 5457 (2002); 10.1063/1.1511269

Effect of Er dopant on the properties of In0.53Ga0.47As layers grown by liquid phase epitaxy
J. Appl. Phys. 81, 2391 (1997); 10.1063/1.364243
Infrared spectroscopic ellipsometry study of sulfur-doped In$_{0.53}$Ga$_{0.47}$As ultra-shallow junctions

Vijay Richard D’Costa,1,a) Sujith Subramanian,1 Daocheng Li,2 Satro Wicaksono,2 Soon Fatt Yoon,2 Eng Soon Tok,3 and Yee-Chia Yeo1,b)

1Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
2School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
3Department of Physics, National University of Singapore, Singapore 117551

(Received 11 April 2014; accepted 30 May 2014; published online 10 June 2014)

Sulfur mono-layer doped In$_{0.53}$Ga$_{0.47}$As films were investigated by infrared spectroscopic ellipsometry. The complex dielectric function of doped layers shows free carrier response which can be described by a single Drude oscillator. Electrical resistivities, carrier relaxation times, and active carrier depths are obtained for the shallow n-In$_{0.53}$Ga$_{0.47}$As films. Our results indicate that sub-10 nm sulfur-doped layers with active carrier concentration as high as $1.7 	imes 10^{19}$ cm$^{-3}$ were achieved. Sheet resistances estimated from infrared spectroscopic ellipsometry are in good agreement with those obtained by electrical methods. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4882917]

InGaAs has high electron mobility and is a promising channel material to replace silicon in future n-channel metal-oxide-semiconductor field-effect transistors (MOSFETs).1,2 Sub-10 nm junctions will be required in the source and drain (S/D) regions and extensions of nanoscale InGaAs channel FETs. A damage-free and uniform doping process that provides high doping concentration levels is desired. Also, three-dimensional (3D) structures such as fin-type field-effect transistors (finFETs) and nanowires would require a conformal doping technique to form the S/D or extension regions. These requirements may not be achieved with the conventional ion implantation technique. Silicon, which is commonly used to dope InGaAs, could lead to either n- or p-type doping, due to its amphoteric nature in InGaAs. This can be avoided by using sulfur as the dopant. It is known that a sulfur-containing solution such as ammonium sulfide (NH$_4$)$_2$S provides effective surface passivation of III–V materials such as GaAs and InGaAs.3–5 Chemisorbed sulfur atoms resulting from (NH$_4$)$_2$S passivation can be used as a source of sulfur to dope GaAs and InGaAs n-type.6,7 This technique is attractive due to its simplicity and suitability for commercial applications. Recently, n-InGaAs ultra-shallow junctions formed using sulfur monolayer doping (SMLD) technique were reported.8–10 A prototype n-channel MOSFET using these shallow junctions in the S/D regions was demonstrated.10

Electrical techniques, such as four-point-probe (4PP) measurement, transmission line measurement (TLM), and Hall effect measurements, are routinely used for extracting sheet resistance R_s and active carrier concentration N of doped layers in semiconductors. However, sub-10 nm shallow junctions can be mechanically damaged by probe tips during 4PP measurement, leading to erroneous results.11 Furthermore, TLM and Hall measurements in a doped layer could be inaccurate if the underlying layers in the heterostructures are conducting resulting in poor current confinement in the doped region of interest. Similarly, it should be pointed out that defining the carrier junction depth for ultra-shallow junctions in InGaAs using the chemical profile obtained from secondary ion mass spectrometry (SIMS) may not be very accurate. The contactless and non-destructive nature of infrared spectroscopic ellipsometry offers an alternative to overcome these issues. Infrared ellipsometry has been used for the electrical and physical characterization of complex layered semiconductor structures.12 The presence of active carriers in the material modifies its optical response in the infrared range. The infrared dielectric function of a doped layer is dominated by free carrier absorption from which parameters such as electrical resistivity ρ, carrier relaxation time τ, and N can be determined using a classical Drude model.13 The thickness of the doped layer t obtained from ellipsometry could be related to the junction depth. R_s is calculated from ρ and t of the doped layer. Additionally, knowledge of the effective mass of the band involved in conduction may allow us to extract the doping profile.13,14 Infrared ellipsometry was applied to characterize sub-100 nm Si junctions formed by excimer laser annealing on bulk Si and Si-on-insulator.15 R_s values for junction depths down to ~30 nm were reported.

In this Letter, we report the optical characterization of n-In$_{0.53}$Ga$_{0.47}$As layers formed using SMLD process, by infrared spectroscopic ellipsometry from 0.05 to 0.65 eV. Electrical parameters of the doped layers were obtained from modeling the dielectric response with the Drude-like free carrier response. The results reveal that SMLD technique can dope the InGaAs with doping concentration in the order of $1.5 \times 10^{19} – 1.7 \times 10^{19}$ cm$^{-3}$. Our study shows that infrared spectroscopic ellipsometry may be used to characterize heavily doped ultra-thin In$_{0.53}$Ga$_{0.47}$As films.

The starting substrates consisted of a p-type In$_{0.53}$Ga$_{0.47}$As film with a doping level of 2×10^{16} cm$^{-3}$ epitaxially grown on heavily doped p-type InP substrates. The surface of the samples was cleaned with a mixture of hydrochloric acid (HCl) and H$_2$O in the ratio 1:3 to remove the native oxide prior to SMLD. A solution of 20% (NH$_4$)$_2$S in H$_2$O was used for SMLD.10 P-In$_{0.53}$Ga$_{0.47}$As films were
treated with the (NH₄)₂S₄ solution for 30 min at room temperature and capped with 20 nm SiO₂. In another set of samples, phosphorus pentasilphide (P₂S₅) was added to the (NH₄)₂S₄ solution for the SMLD process step. This was followed by rapid thermal annealing of the samples from 550–600 °C to form n-In₀.₅₃Ga₀.₄₇As films. The SiO₂ capping layer was then stripped using an HF solution. The doping concentration and the junction depth were tuned by varying the annealing temperature and the duration of annealing. Atomic force microscopy (AFM) showed that the root mean square (RMS) roughness of the InGaAs surface was between 0.3–0.8 nm after the SMLD process. The chemical profiles of the SMLD samples annealed at various temperatures were obtained using SIMS. Fig. 1 shows sulfur profiles for the SMLD samples along with an n-type reference In₀.₅₃Ga₀.₄₇As film with a Si dopant concentration of 1.1 × 10¹⁹ cm⁻³. A sharp sulfur profile is observed in the SMLD samples within the first 10 nm from the surface of the film. The profile for samples annealed at 600 °C have a longer tail extending up to ~85 nm for S concentration above 1 × 10¹⁸ cm⁻³, whereas it is ~30 nm for the two SMLD samples annealed at 550 °C. This suggests that the samples annealed at 550 °C may exhibit shallower carrier junction depth compared to those annealed at 600 °C.

Spectroscopic ellipsometry measurements were carried out at room temperature using an infrared variable angle spectroscopic ellipsometer (IR-VASE) manufactured by J. A. Woollam Co. The ellipsometric angles at room temperature using an infrared variable angle spectroscopic ellipsometer (IR-VASE) manufactured by J. A. Woollam Co. The ellipsometric angles were obtained using the model. The profile for samples annealed at 600 °C have a longer tail extending up to ~85 nm for S concentration above 1 × 10¹⁸ cm⁻³, whereas it is ~30 nm for the two SMLD samples annealed at 550 °C. This suggests that the samples annealed at 550 °C may exhibit shallower carrier junction depth compared to those annealed at 600 °C.

The model dielectric function of n-In₀.₅₃Ga₀.₄₇As films is shown in Fig. 2. The SMLD In₀.₅₃Ga₀.₄₇As samples show curves similar to the 35 nm thick in situ Si doped film indicating that their optical response is also dominated by the free carrier response. We verified using a point-by-point fit that the model dielectric function is a realistic representation of the true dielectric function of n-In₀.₅₃Ga₀.₄₇As. The imaginary part of pseudo-dielectric function (εᵢ) is shown in the inset of Fig. 2(b). Although the signal from p-In₀.₅₃Ga₀.₄₇As film dominates the pseudo-dielectric function, we can still distinguish the ultra-thin SMLD sample from the starting substrate in the energy range below 0.2 eV where the free carrier response is observed. The pseudo-dielectric function corresponding to SMLD samples shifts upward as a thicker S-doped layer is formed on the starting substrate.

The parameters obtained from our fits are summarized in Table 1. Fig. 3 shows the ρ, τ, and t of the heavily doped

\[\varepsilon(E) = C + \frac{-\hbar^2}{\varepsilon_0 \rho (\tau E^2 + i\hbar E)} + \frac{A_{pole}}{(E_{pole}^2 - E^2)}, \]

where C is a fitting parameter that is independent of energy. The second term is related to the Drude lineshape that describes the free electron behavior in the conduction band. ρ and τ are related to the plasma energy

\[E_p = \hbar \sqrt{\frac{1}{\varepsilon_0 \rho \tau^2}} = \hbar \sqrt{\frac{N_e q^2}{\varepsilon_{opt} \omega}}, \]

where \(\varepsilon_{opt} = C + \frac{A_{pole}}{E_{pole}^2} \). The third term in Eq. (1) accounts for the dispersion caused by absorption outside the measured spectral range. \(A_{pole} \) is the magnitude of the pole and \(E_{pole} \) is the pole energy. The thicknesses of p-In₀.₅₃Ga₀.₄₇As and n-In₀.₅₃Ga₀.₄₇As and all the adjustable parameters in the model were fitted by a least-square procedure which follows the Levenberg-Marquardt algorithm.

Since the infrared wavelengths are not sensitive to the surface, the thickness of the surface layer was kept fixed at ~2\(\sqrt{2} \) times the RMS value from AFM measurements. We found that neglecting the surface layer from the model introduces an error of up to 20% in thickness and resistivity values of ~3–4 nm shallow junctions. As a result, up to 6% error in \(R_t \) can be observed.

The model dielectric function of n-In₀.₅₃Ga₀.₄₇As films is shown in Fig. 2. The SMLD In₀.₅₃Ga₀.₄₇As samples show curves similar to the 35 nm thick in situ Si doped film indicating that their optical response is also dominated by the free carrier response. We verified using a point-by-point fit that the model dielectric function is a realistic representation of the true dielectric function of n-In₀.₅₃Ga₀.₄₇As. The imaginary part of pseudo-dielectric function (εᵢ) is shown in the inset of Fig. 2(b). Although the signal from p-In₀.₅₃Ga₀.₄₇As film dominates the pseudo-dielectric function, we can still distinguish the ultra-thin SMLD sample from the starting substrate in the energy range below 0.2 eV where the free carrier response is observed. The pseudo-dielectric function corresponding to SMLD samples shifts upward as a thicker S-doped layer is formed on the starting substrate.

The parameters obtained from our fits are summarized in Table 1. Fig. 3 shows the ρ, τ, and t of the heavily doped
TABLE I. Electrical and physical parameters for SMLD and in situ Si doped n-In$_{0.53}$Ga$_{0.47}$As samples. N and μ are obtained by assuming an effective electron mass of 0.074 m_e.

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Type</th>
<th>Annealing condition</th>
<th>ρ (mΩ-cm)</th>
<th>τ (fs)</th>
<th>t (nm)</th>
<th>N $(10^{19}$ cm$^{-3}$)</th>
<th>μ $(cm^2$ V$^{-1}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In situ Si doped</td>
<td></td>
<td>0.729</td>
<td>33.2</td>
<td>35.2</td>
<td>1.1</td>
<td>790</td>
</tr>
<tr>
<td>2</td>
<td>In situ Si doped</td>
<td></td>
<td>0.533</td>
<td>43.9</td>
<td>45.0</td>
<td>1.1</td>
<td>1044</td>
</tr>
<tr>
<td>3</td>
<td>In situ Si doped</td>
<td></td>
<td>0.448</td>
<td>52.3</td>
<td>56.6</td>
<td>1.1</td>
<td>1242</td>
</tr>
<tr>
<td>4</td>
<td>In situ Si doped</td>
<td></td>
<td>0.375</td>
<td>62.3</td>
<td>86.6</td>
<td>1.1</td>
<td>1481</td>
</tr>
<tr>
<td>5</td>
<td>In situ Si doped</td>
<td></td>
<td>0.320</td>
<td>72.4</td>
<td>106.7</td>
<td>1.1</td>
<td>1720</td>
</tr>
<tr>
<td>6</td>
<td>(NH$_4$)$_2$S$_x$</td>
<td>550 oC, 300 s</td>
<td>1.46</td>
<td>11.9</td>
<td>2.7</td>
<td>1.5</td>
<td>282</td>
</tr>
<tr>
<td>7</td>
<td>(NH$_4$)$_2$S$_x$</td>
<td>600 oC, 180 s</td>
<td>2.17</td>
<td>32.4</td>
<td>56.6</td>
<td>0.37</td>
<td>770</td>
</tr>
<tr>
<td>8</td>
<td>P$_2$S$_5$/ (NH$_4$)$_2$S$_x$</td>
<td>550 oC, 300 s</td>
<td>1.46</td>
<td>10.3</td>
<td>3.8</td>
<td>1.7</td>
<td>245</td>
</tr>
<tr>
<td>9</td>
<td>P$_2$S$_5$/ (NH$_4$)$_2$S$_x$</td>
<td>600 oC, 180 s</td>
<td>2.17</td>
<td>33.1</td>
<td>60</td>
<td>0.38</td>
<td>787</td>
</tr>
</tbody>
</table>

n-In$_{0.53}$Ga$_{0.47}$As films after SMLD. N and mobility μ are calculated from ρ and τ by using an effective conduction mass $m^* = 0.074 m_e$. N and τ are plotted as a function of t in Fig. 4. ρ for the SMLD samples is higher than the in situ Si doped samples. The samples annealed at 600 oC have larger t values compared to those annealed at 550 oC which is consistent with the SIMS trend. Also, the comparison of chemical profiles for the two SMLD samples annealed at 550 oC suggests that the one which was formed with P$_2$S$_5$ may possess larger active carrier depth. This appears to be corroborated by the measured τ values. We estimated the active carrier dose from ellipsometry and the total sulfur dose from SIMS. The SMLD samples formed with P$_2$S$_5$/ (NH$_4$)$_2$S$_x$ appear to show higher sulfur dose than the samples formed with (NH$_4$)$_2$S$_x$. The activation efficiency at 600 oC (\sim5.7%) is about 3 times higher than the activation efficiency at 550 oC (\sim1.7%). We note that the activation efficiency achieved in our experiments is comparable to that achieved in SMLD InGaAs annealed at 700 oC for 30 s.

τ for both SMLD and in situ Si doped samples appear to be strongly correlated to t. As thickness reduces, τ for the SMLD samples decreases. The values extracted are similar to the reference in situ samples with comparable thicknesses. Note that N is nearly constant at \sim1.1 \times 1019 cm$^{-3}$ as expected for an in situ Si doped sample which was thinned down to 35 nm from 107 nm. Our sub-10 nm n-In$_{0.53}$Ga$_{0.47}$As junctions also possess similar active carrier concentration of \sim1.5 \times 1019–1.7 \times 1019 cm$^{-3}$. The N and t obtained are similar to that reported by Kort et al. Furthermore, the corresponding τ values appear to fall on the line extrapolated from the thicker reference samples.

R_s obtained from electrical measurements using the micro-four-point-probe (µ4PP) setup and TLM structures are compared with that obtained from infrared ellipsometry measurements in Fig. 5(a). It can be observed that the R_s of SMLD samples increases as t decreases despite the fact that N is higher in the ultra-shallow doped films. R_s of sub-10 nm doped films is \sim3–5 kΩ for. These are higher than the target set by ITRS. The trend of R_s decreasing with thickness is also observed in the in situ Si doped reference samples and can be expressed as

$$R_s \sim 8 + (2.4 \times 10^9) t^{-2}. \quad (2)$$

This is shown in Fig. 5(b). Equation (2) predicts R_s values in kΩ for sub-10 nm thick in situ Si doped n-In$_{0.53}$Ga$_{0.47}$As films containing an active carrier concentration of 1.1 \times 1019 cm$^{-3}$. The t^{-2} dependence of R_s in the SMLD samples is similar to that found in thin metallic films. We note that the trend in R_s observed in our SMLD samples is identical to that found in sub-10 nm doped Si layers.

![FIG. 3](image3.png)

![FIG. 4](image4.png)
Equation (2) captures the essence of the Fuchs model to explain the dependence of R_s on t. Our results indicate that N higher than 1.7×10^{19} cm$^{-3}$ in the ultra-thin SMLD samples would be needed to accomplish R_s below $1 \Omega \square$ to meet the ITRS target. We are working towards optimizing the SMLD process and annealing conditions to enhance the active carrier concentration in our samples.

Of the two electrical methods, TLM shows better agreement with the ellipsometry values, whereas the μ4PP method seems to underestimate R_s values with respect to both TLM and ellipsometry. The agreement between the electrical and optical methods deteriorates as the doped regions get shallower with the μ4PP method underestimating R_s for ultra-shallow films with respect to TLM and ellipsometry. The discrepancy between ellipsometry and TLM results may be reduced by introducing active dopant profiles in the ellipsometry model. A systematic study is ongoing to detect the true active carrier concentration profile in our SMLD samples. The R_s values obtained by infrared ellipsometry with uniform doping profile are in good agreement with those reported by Loh et al.9 We propose that the relevant parameters required in evaluating electrical properties of sub-10 nm junctions can also be investigated by infrared ellipsometry in a non-contact and non-destructive manner.

In conclusion, SMLD In$_{0.53}$Ga$_{0.47}$As was studied by infrared spectroscopic ellipsometry. The optical response of n-In$_{0.53}$Ga$_{0.47}$As films can be described with a Drude-like free carrier response from which electrical resistivity and carrier relaxation time are obtained. The results confirm that the monolayer doping technique results in ultra-shallow junctions \sim3-4 nm with doping level as high as 1.7×10^{19} cm$^{-3}$. Infrared spectroscopic ellipsometry could be an alternative for simultaneous characterization of electrical and physical properties of heavily doped ultra-thin films for future technology nodes.

This work was supported by the National Research Foundation under the Competitive Research Programme (Grant No. NRF-CRP6-2010-4).