<table>
<thead>
<tr>
<th>Title</th>
<th>Direct evidence of plasmon enhancement on photocatalytic hydrogen generation over Au/Pt-decorated TiO2 nanofibers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhang, Zhenyi; Li, Anran; Cao, Shao-Wen; Bosman, Michel; Li, Shuzhou; Xue, Can</td>
</tr>
<tr>
<td>Citation</td>
<td>Zhang, Z., Li, A., Cao, S. W., Bosman, M., Li, S., & Xue, C. (2014). Direct evidence of plasmon enhancement on photocatalytic hydrogen generation over Au/Pt-decorated TiO2 nanofibers. Nanoscale, 6(10), 5217-5222.</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/20215</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 Royal Society of Chemistry. This is the author created version of a work that has been peer reviewed and accepted for publication by Nanoscale, Royal Society of Chemistry. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: http://dx.doi.org/10.1039/c3nr06562f.</td>
</tr>
</tbody>
</table>
Direct evidence of plasmon-enhanced H₂ generation is observed in photocatalytic water reduction by using TiO₂ electrospun nanofibers co-decorated with Au and Pt nanoparticles through dual-beam irradiation. The Au/Pt/TiO₂ nanofibers exhibit certain activity for H₂ generation under a single irradiation at 420 nm that excites the defect/impurity states of TiO₂. Significantly, when a secondary irradiation at 550 nm is introduced to simultaneously excite Au SPR, we observed 2.5 times higher activity for H₂ generation. Further investigations by finely controlling the irradiation wavelengths reveal that the enhancement factor on photocatalytic H₂ generation is directly correlated with the plasmon absorption band of the Au nanoparticles in the Au/Pt/TiO₂ nanofibers. The control experiments with different sacrificial agents suggest that the hot plasmonic electrons of Au are responsible to the enhanced photocatalytic activity that can magnified when TiO₂ is simultaneously excited.

Introduction

In the past decade, semiconductor metal oxides have been widely used as highly stable photocatalysts for solar energy conversion to solve the problems of worldwide energy crisis and environmental pollution. Due to the limited visible light absorption of most metal oxides, plasmonic gold nanoparticles (NPs) have been extensively used to decorate metal oxide structures because the surface plasmon resonances of the gold particles can facilitate visible-light harvesting and induce strong localized electric field, which may enhance the activities for photocatalytic reactions, such as degradation of organic pollutants and water reduction for hydrogen generation. However, most of previous studies on the plasmon-enhanced photocatalytic activity, in particular hydrogen generation from water reduction, were based on irradiation of “visible-light” with λ> 400 nm or 420 nm. When this wide-range irradiation can also induce slight excitation of the metal oxide structures, it becomes very difficult to differentiate between the multiple effects including 1) electron-sink effect as electron transfer from excited metal oxides to contacted metal particles; 2) resonant energy transfer between gold particles and metal oxides; 3) injection of hot surface electrons of plasmonic nanoparticles into conduction band of contacted metal oxides. Although some researchers have clearly demonstrated that individual plasmon excitation of gold particles can induce certain photocatalytic activities, the efficiency is extremely low as compared to that of excited metal oxides with contacted metal particles as electron sinks.

As we know, electrospinning is a remarkably simple, versatile, and effective technique to process polymer, polymer/inorganic hybrid, and inorganic materials into continuous one-dimensional nanofibers with controllable composition, diameter and porosity, which provide a mean to bridge the dimensional and property gaps between nano- and macro-scale engineering materials and structures. As such, the functional electrospun nanofibers have received much attention in the fields of photovoltaics, chemical sensors, and photocatalysis.

Herein, in this work, we demonstrate a direct evidence, but at a different new sight of plasmon enhancement on photocatalytic hydrogen generation by using dual-beam irradiation, a primary beam at 420 nm (excite defect/impurity states of TiO₂) and a secondary beam at 550 nm (excite Au SPR), over the rationally designed structures, Au and Pt nanoparticles co-decorated TiO₂ (denoted as Au/Pt/TiO₂) nanofibers. We observe significantly enhanced hydrogen generation at simultaneous dual-beam irradiation comparing to the result when each irradiation (420 or 550 nm) is independently used. Further fine control on the secondary beam wavelength indicates that the enhancement factor can be directly correlated with the plasmon absorption band of the Au NPs in the Au/Pt/TiO₂ nanofibers. Moreover, we find that even if the primary beam is replaced by 365 nm irradiation for TiO₂ bandgap excitation, the secondary SPR irradiation still can enhance the hydrogen generation. Further control experiments suggest that the hot plasmonic electrons on gold are responsible to the enhanced photocatalytic activity, which may be magnified when TiO₂ is simultaneously excited. Our observations reveal a synergic effect between Au SPR and TiO₂ excitation, which may play important roles in the previous studies on plasmon-related photocatalytic and photoelectrochemical reactions with wide-range irradiation of UV-vis or visible light.

Experimental Section

Fabrication of Au/Pt/TiO₂ composite nanofibers:
The Au/Pt/TiO₂ composite nanofibers were prepared via electrosprinning followed by post-calcination. Typically, 2.0 mL of tetrabutyl titanate (Ti(OCH₂)₄) and 15 mg of HAuCl₄ (0.75 at.% Au to Ti) were introduced into a mixture solution of acetic acid (2 mL) and ethanol (5 mL) under stirring. Then, 0.4 g of poly(vinyl pyrrolidone) (PVP) powder (Mn=1300K) were added into the above solution which was kept stirring for 6 h. Then 8 mg H₃PtCl₆.H₂O (8 mg. 0.25 at.% Pt to Ti) was added into this solution which was kept stirring for another 3 h. This precursor solution of PVP/HAuCl₄/H₃PtCl₆/Ti(OCH₂)₄ was then transferred into a plastic syringe with a stainless steel needle (23-gauge) for electrosprinning, in which the feeding rate was 2.0 mL·h⁻¹ with ~15 cm distance between the needle tip and the collector. By applying an electric voltage of 15 kV between the needle tip and the collector, the dense web of electrosprun nanofibers of the PVP/HAuCl₄/H₃PtCl₆/Ti(OCH₂)₄ composite was generated. Finally, these nanofibers were calcined in air at 500 °C (ramp rate of 2 °C·min⁻¹) for 2 h. The final product, Au/Pt/TiO₂ composite nanofibers are denoted as Auₓ/Pt₁₋ₓ/TiO₂ NFs in which x is the molar concentration (%) of Au to Ti in the precursor solution. In our present work, Auₓ/TiO₂, Au₀.⁷⁵/Pt₀.₂₅/TiO₂, Au₀.₂₅/Pt₀.₇₅/TiO₂, and Pt/TiO₂ NFs were fabricated to investigate the photocatalytic activity for H₂ generation.

Characterization:

X-ray diffraction (XRD) tests were performed on a Shimadzu XRD-600 X-ray diffractometer with a Cu Kα line of 0.1541 nm. The morphologies and structures of the products were investigated by Field emission scanning electron microscopy (FESEM; JSM-7600F) and transmission electron microscopy (TEM; JEOL JEM-2100). The elemental composition was analysed through Energy dispersive X-ray (EDX) spectroscopy attached on the SEM and TEM. X-ray photoelectron spectroscopy (XPS) measurement was implemented on a Thermo Scientific Theta probe XPS with monochromatized Al K (hv=1486.7 eV) source. The binding energy values were calibrated with respect to C (1s) peak (284.6 eV). UV-vis diffuse reflectance spectra were collected on a Lambda 750 UV/Vis/NIR spectrophotometer (Perkin Elmer, USA).

Photocatalytic hydrogen generation:

In a typical test, the prepared nanofibers (5 mg) were suspended in 10-mL aqueous solution of L-ascorbic acid (0.1 M, pH=4). This suspension was sealed in a quartz reactor (40 mL) with a rubber plug, and then purged with Ar gas for 30 min to drive away the residual oxygen. Then the reactor was exposed under a 300-W xenon lamp (MAX-302, Asahi Spectra Co. Ltd.) coupled with different bandpass filters (e.g., 420±10 or 365±10 nm). The light intensities for 420±10 and 365±10 nm are about 8 and 4 mW/cm², respectively. The secondary irradiation was implemented by using a 150-Watt Xe lamp (MAX-150, Asahi Spectra Co. Ltd.) coupled with different bandpass filters such as 520±5, 540±5, 560±5, 580±5, and 550±20 nm. The light intensities are about 1.5 mW/cm² for 520±5, 540±5, 560±5, and 580±5 nm, while the light intensity of 550±20 nm is about 20 mW/cm². The gas product composition from the upper space above the liquid suspension in the quartz reactor was periodically analyzed by an Agilent 7890A gas chromatograph (GC) equipped with a thermal conductivity detector (TCD).

Results and Discussion

The TiO₂ nanofiber containing 0.75% Au and 0.25 % Pt (mole fraction), denoted as Au₀.⁷⁵/Pt₀.₂₅/TiO₂, were fabricated via electrosprinning. In this designed structure, the decorated Au NPs would provide the SPR effect, while the minor portion of Pt NPs would serve as effective electron-sinks with activation effect for H₂ evolution. The X-ray diffraction (XRD) pattern (Figure 1A) shows the signals of anatase TiO₂ (JCPDS, no. 21-1272) and cubic-phase Au (JCPDS, no. 04-0784) nanocrystals. But the signal of Pt nanocrystals was hardly observable due to the very low concentration of Pt in the sample. Note that the Au peaks in the XRD pattern did not show any shift comparing to the standard JCPDS pattern, suggesting no Au-Pt alloy formation which was further confirmed by the X-ray photoelectron spectroscopy (XPS) (Figure S1).

![Fig. 1](image-url) (A) XRD pattern, (B) SEM image, and (C) dark-field STEM image of the Au₀.⁷⁵/Pt₀.₂₅/TiO₂ nanofibers. HRTEM images of (D) Au NPs and (E) Pt NPs in the Au₀.⁷⁵/Pt₀.₂₅/TiO₂ nanofibers.

The scanning electron microscopy (SEM) image (Figure 1B) shows that the fabricated nanofibers have a mean diameter of ~190 nm with lengths up to several micrometers. The analysis by energy-dispersive X-ray spectroscopy (EDS) confirms that the element contents of Au and Pt in the as-electrosprun Au/Pt/TiO₂ nanofibers are very close to the theoretical value in the electrosprun precursor solution (Figure S2). The dark-field scanning transmission electron microscopy (TEM) clearly indicates the decoration of metal NPs with average size of 7.2 nm in the nanofiber (Figure S2). The EDS mapping images, shown in Figure S2, reveal a well-dispersed distribution of the metal (Au or Pt) NPs in the nanofibers. Although it is difficult to differentiate the composition of every particles, in the high-resolution TEM (HRTEM) images (Figure 1D and 1E) we can clearly observe the interplanar distances of 0.234, 0.203, and 0.224 nm, corresponding to the lattice spacing of the Au (111), Au (200), and Pt (111) planes, respectively. These observations suggest co-existence of metallic Au and Pt NPs in the Au/Pt/TiO₂ nanofibers. Nevertheless, we note that some Pt NPs as observed in HRTEM have very small size (<5 nm), and not be distinguishable in the dark-field TEM image (Figure 1C).

The UV-Vis absorption spectrum of Au₀.⁷⁵/Pt₀.₂₅/TiO₂...
nanofibers is shown in Figure 2. The pure TiO$_2$ nanofibers and Pt$_{0.25}$/TiO$_2$ nanofibers (containing 1% Pt in mole fraction), were also prepared through similar electrospraying methods and used for comparison. The intense UV absorption band below 400 nm could be assigned to the intrinsic bandgap absorption of anatase TiO$_2$ (E$_g$ = 3.2 eV). Comparing with pure TiO$_2$ nanofibers, the Au$_{0.75}$/Pt$_{0.25}$/TiO$_2$ nanofibers exhibit a clear absorption band centered at ~540 nm which could be attributed to the SPR of embedded Au NPs. Note that this SPR peak wavelength is relatively red-shifted as compared to that of similar sized Au NPs due to the high refractive index of the anatase TiO$_2$ matrix (n = 2.49). However, this Au SPR peak (~540 nm) is blue-shifted as compared to the SPR peak of the Au$_0$/TiO$_2$ nanofibers (~590 nm) (Figure S3), which might be ascribed to the existence of Pt NPs with more negative dielectric function and the relative larger size of Au NPs in the Au$_{0.75}$/TiO$_2$ nanofibers. The SPR of Pt NPs is not observed due to the high imaginary part of the dielectric function of Pt. In addition, the weak absorption of Pt$_{0.25}$/TiO$_2$ nanofibers in the visible range might be attributed to defects/impurities induced by the Pt$^{2+}$ and Pt$^{4+}$ states in the TiO$_2$ nanofibers as revealed by XPS analyses (Figure S1).

The photocatalytic H$_2$ generation tests were conducted in aqueous solution of L-ascorbic acid (0.1 M, pH=4.0) as the sacrificial reagent to quench the photogenerated holes. As shown in Figure 3A, the Au$_{0.75}$/Pt$_{0.25}$/TiO$_2$ nanofibers show steady H$_2$ evolution with a rate of 0.043 μmol·h$^{-1}$ under irradiation at 420±10 nm. This result suggests that the defect/impurity states of the TiO$_2$ nanofiber can be excited by the visible light irradiation for proton reduction in the presence of Au and Pt NPs as cocatalysts, which can act as electron sinks to hold the electrons from the excitation of TiO$_2$ defect/impurity states and retard the recombination process of photogenerated charge carriers. In contrast, there was no H$_2$ evolution for the Au$_{0.75}$/Pt$_{0.25}$/TiO$_2$ nanofibers under irradiation at 550±20 nm which could strongly excite the SPR of Au NPs in the nanofibers, suggesting that plasmon-excited hot electrons could not directly induce activities for proton reduction under this condition, and also this 550±20 nm light could not excite the TiO$_2$ defect/impurity states for photocatalytic H$_2$ generation.

However, to our surprise, when these two irradiations (420±10 nm and 550±20 nm) were implemented simultaneously for the photocatalytic test, the H$_2$ evolution rate of the Au$_{0.75}$/Pt$_{0.25}$/TiO$_2$ nanofibers could reach 0.108 μmol·h$^{-1}$, which is about 2.5 times higher than the rate under single irradiation at 420±10 nm. Interestingly, this phenomenon can be also observed on the Au/Pt/TiO$_2$ nanofibers with different Au to Pt mole ratios (Figure S4). Among them, the Au$_{0.75}$/Pt$_{0.25}$/TiO$_2$ nanofibers show the optimal enhancement factor when the secondary irradiation at 550 nm is introduced to simultaneously excite Au SPR due to the higher content of Au in the nanofibers. These results imply that the secondary excitation at 550±20 nm for Au SPR excitation could significantly enhance the photocatalytic activity driven by the 420 nm excitation of TiO$_2$ defect/impurity states that are intrinsically inactive to the 550±20 nm light. In comparison, for the Pt$_{0.25}$/TiO$_2$ nanofiber, the dual-beam irradiation led to the same H$_2$ generation rate (0.062 μmol·h$^{-1}$) with single irradiation at 420±10 nm, suggesting no enhancement on the photocatalytic activity from the secondary 550 nm irradiation. This observation demonstrates that the SPR of Au NPs in the Au/Pt/TiO$_2$ nanofibers is responsible to enhanced photocatalytic H$_2$ generation upon the secondary irradiation at 550±20 nm.

In order to clarify the enhancement effect of plasmon excitation, we carry out comparison experiments by using different secondary irradiation (with the same intensity of 1.5 mW/cm2) at 520±5, 540±5, 560±5, and 580±5 nm, respectively. This wavelength selection is based on the Au SPR band (~540 nm) according to the absorption spectrum (Figure 2). As shown in Figure 3B, all different secondary irradiation wavelengths led to certain enhancement on the H$_2$ generation rate, and the enhancement factor exhibits strong dependence on the secondary irradiation wavelength which correlates well with the plasmon absorption of Au NPs (Figure 3B inset) in the Au$_{0.75}$/Pt$_{0.25}$/TiO$_2$ nanofibers. The irradiation at 540±5 nm provides the highest enhancement factor (1.9x) on the photocatalytic activity of H$_2$ evolution driven by the 420±10 nm irradiation. These results unambiguously demonstrate the direct evidence of SPR-enhanced photocatalytic H$_2$ generation on the Au/Pt/TiO$_2$ nanofibers.

To gain further understanding on how the SPR enhances H$_2$ generation under the present experimental conditions with dual-beam irradiation, we would like to firstly separate the electron-sink effect from the Au NPs in the Au$_{0.75}$/Pt$_{0.25}$/TiO$_2$ nanofibers.
Since Pt has lower H₂ evolution overpotential than Au, Pt NPs are known as better electron sinks than Au NPs for H₂ evolution. Consistently, the control sample, Au/TiO₂ nanofiber (containing 1% mole fraction of Au) showed 24 times lower H₂ evolution rate (0.0018 μmol h⁻¹) than the Au₀.₇₅/Pt₀.₂₅/TiO₂ nanofibers under irradiation at 420±10 nm (Figure S5). This result suggests that in the Au/Pt/TiO₂ nanofibers, the proton reduction occurs mainly on the Pt NP surfaces, and Au NPs play very minor roles as electron sink in the present studies. Therefore, in the following discussion, we only consider hydrogen evolution on Pt NP surfaces.

![Graph showing H₂ evolution amount for the Au₀.₇₅/Pt₀.₂₅/TiO₂ nanofibers versus the irradiation wavelength after 2 h irradiation using L-ascorbic acid (H₂A), isopropanol, triethanolamine (TEOA), and methanol as the sacrificial agents in 10 mL aqueous solution, respectively; (B) Schematic diagram showing the proposed principle of plasmon enhanced photocatalytic hydrogen generation on the Au₀.₇₅/Pt₀.₂₅/TiO₂ nanofibers.](image)

In our studies, the two irradiation beams play separate roles. The 420 nm irradiation creates TiO₂ excitons that separate at the TiO₂-Pt interface to reduce water for H₂ evolution, but hardly excites Au SPR. The 550 nm irradiation can excite Au SPR, but can not excite the TiO₂ defect/impurity states for H₂ generation. Therefore, the resonance energy transfer between Au and TiO₂ is not applicable in our observed SPR-enhanced activity. Interestingly, if the primary excitation is set at 365±10 nm, which can induce bandgap excitation of TiO₂, a secondary excitation at 550±20 nm still can leads to enhanced photocatalytic activity for H₂ generation with factor of 1.5x (Figure 4A), though it is lower than that (2.5x) in case of primary excitation at 420±10 nm. Further, we carried out similar photocatalytic studies with different sacrificial agents such as isopropanol, triethanolamine (TEOA), and methanol. The individual irradiation at 550±20 nm could not lead to observable H₂ generation for methanol and TEOA, while trace amount of H₂ was observed (~0.002 μmol after 2-hour irradiation) when using isopropanol. By comparing the H₂ generation rate between single irradiation (365±10 nm) and dual-beam irradiation (365±10 nm and 550±20 nm), we observed an enhancement factor of 1.12 and 1.51 for TEOA and isopropanol, respectively, but no enhancement was observed for methanol.

The different enhancement factor suggests that the strong localized electric field by SPR excitation may not be the dominating factor on the enhanced H₂ generation. Otherwise, one would expect the same enhancement factor no matter what sacrificial agent is used because the SPR-induced local electric field at the Au/TiO₂ interfaces is essentially identical under the same 550 nm irradiation with no dependence on the sacrificial agent. Consequently, the possible explanation on the enhanced H₂ generation activity would rely on the hot plasmon electrons. However, we note that in the presence of the primary irradiation at 365 nm, the additional H₂ generation activity induced by the secondary 550 nm irradiation is far beyond H₂ evolution induced by the individual 550 nm irradiation that hardly led to H₂ generation. Thus the question is converted to why the hot plasmon electrons can not induce H₂ generation if TiO₂ is not excited, but can induce apparent H₂ generation when TiO₂ is excited.

A recent study by Kominami et al. suggests that the hot electrons by SPR excitation might be able to transport through TiO₂ nanocrystals to the nearby Pt NPs for reactions. If this is true, the conductivity of TiO₂ becomes critical to the lifetime of the hot plasmon electrons, which is consistent with our observation. It is known that the photoexcited semiconductor exhibits higher conductivity because more charge carries are created in the structure by the excitation. In our studies, when dual-beam irradiation is used, both TiO₂ matrix and Au SPR are excited, the hot plasmon electrons are able to rapidly transport through the contacted TiO₂ nanocrystal to the nearby Pt NPs for proton reduction into H₂ due to the high conductivity of excited TiO₂. In comparison, if the individual 550 nm light is used, it only excite Au SPR, the hot electrons can hardly pass through TiO₂ crystal to reach the near Pt NPs due to the low conductivity of un-excited TiO₂, thus almost no H₂ generation was observed. This explanation, as illustrated in figure 4B, also agrees with the observed dependence of enhancement factor on the sacrificial agent and its capability of quenching the photogenerated holes on gold. Similar dependence of photocatalytic activity on the hole scavenger agent was also reported by Berr et al.

In our case, the trend of enhancement factor would critically depends on the oxidation reaction on gold surface rather than the redox potential of different sacrificial agents. Even though methanol can efficiently quench the holes on TiO₂ upon 365 nm excitation, it may be hardly oxidized by the holes of gold under SPR excitation, thus no enhanced H₂ generation was observed under dual-beam irradiation in case of methanol as electron donor. More details on the effect of sacrificial agents and their reaction kinetics on gold surfaces are under investigation.

Conclusion

We have demonstrated direct evidence of SPR-enhanced photocatalytic hydrogen evolution by combining two separate irradiations on Au and Pt NPs co-decorated TiO₂ nanofibers. The
enhancement factor is directly correlated with the plasmon absorption band of the Au NPs in the nanofibers. Further studies suggest that the hot plasmon electrons are responsible to the enhanced H₂ generation when the matrix of TiO₂ nanofibers is simultaneously excited. Importantly, this work reveals a synergic effect between Au SPR and TiO₂ excitation. We believe that similar synergic effect may also exist and play important roles in other plasmon-related photocatalytic reactions and photoelectrochemical systems under wide range irradiation that excites both metal SPR and semiconductors. Our studies also demonstrate that by introducing SPR excitation at relatively low energy photons, one can enhance the photocatalytic efficiency of semiconductors excited by high energy photons (UV- or blue-light), which allows for more effective utilization of the wide range of solar irradiation.

Acknowledgements

This work is financially supported by NTU seed funding for Solar Fuels Laboratory, MOE AcRF-Tier1 RG 44/11, MOE AcRF-Tier 2 (MOE2012-T2-2-041, ARC 5/13), and CRP (NRF-CRP5-2009-04) from NRF Singapore.

Notes and references

1 School of Physics and Materials Engineering, Dalian Nationalities University, Dalian,116600, PR China.
2 Solar Fuels Laboratory, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore. Fax: +65 6790 9081; Tel: +65 6790 6180; E-mail: czxre@ntu.edu.sg
3 Institute of Materials Research and Engineering A*STAR, 3 Research Link, 117602, Singapore.
4 Electronic Supplementary Information (ESI) available: [XPS, TEM, EDX, and photocatalytic H₂ evolution data]. See DOI: 10.1039/b000000dx/