<table>
<thead>
<tr>
<th>Title</th>
<th>Comparison between two types of large sample covariance matrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Pan, Guangming</td>
</tr>
<tr>
<td>Citation</td>
<td>Pan, G. (2014). Comparison between two types of large sample covariance matrices. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 50(2), 655-677.</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/20975</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 Institut Henri Poincaré. This is the author created version of a work that has been peer reviewed and accepted for publication by Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Institut Henri Poincaré. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1214/12-AIHP506].</td>
</tr>
</tbody>
</table>
Comparison between two types of large sample covariance matrices

Guangming Pan
Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University
Singapore 637371

Abstract

Let \(\{X_{ij}\}, \ i, j = \cdots \), be a double array of independent and identically distributed (i.i.d.) real random variables with \(EX_{11} = \mu, E|X_{11} - \mu|^2 = 1 \) and \(E|X_{11}|^4 < \infty \).

Consider sample covariance matrices (with/without empirical centering) \(S = \frac{1}{n} \sum_{j=1}^{n} (s_j - \bar{s})(s_j - \bar{s})^T \) and \(S = \frac{1}{n} \sum_{j=1}^{n} s_j s_j^T \), where \(\bar{s} = \frac{1}{n} \sum_{j=1}^{n} s_j \) and \(s_j = \frac{1}{T^{1/2}} \left(X_{1j}, \cdots, X_{pj} \right)^T \) with \((T^{1/2})^2 = T_n \), non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of \(S \) and \(S \) are different as \(n \to \infty \) with \(p/n \) approaching a positive constant. Moreover, it is also proved that such a different behavior is not observed in the average behavior of eigenvectors.

AMS 2000 subject classifications. 15A52, 60F15, 62E20; 60F17.

Key words: Central limit theorems, Eigenvectors and eigenvalues, Sample covariance matrix, Stieltjes transform, Strong convergence.

Email address: gmpan@ntu.edu.sg
1 Introduction

Let \(\{X_{ij}\}, i, j = \cdots \), be a double array of independent and identically distributed (i.i.d.) real random variables with \(EX_{11} = \mu, E|X_{11} - \mu|^2 = 1 \) and \(E|X_{11}|^4 < \infty \). Write \(x_j = (X_{1j}, \cdots, X_{pj})^T, s_j = T_n^{1/2}x_j \) and \(X_n = (s_1, \cdots, s_n) \) where \((T_n^{1/2})^2 = T_n \), non-random symmetric non-negative definite matrix. It is well known that the sample covariance matrix is defined by

\[
S = \frac{1}{n} \sum_{j=1}^{n} (s_j - \bar{s})(s_j - \bar{s})^T,
\]

where \(\bar{s} = \frac{1}{n} \sum_{j=1}^{n} s_j = T_n^{1/2}\bar{x} \) with \(\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j \). It lies at the roots of many methods in multivariate analysis (see [1]). However, the commonly used sample covariance matrix in random matrix theory is

\[
S = \frac{1}{n} \sum_{j=1}^{n} s_j s_j^T.
\]

Since the matrix \(S \) has been well studied in the literature (see [5]), a natural question is that whether the asymptotic results for eigenvalues and (or) eigenvectors of \(S \) apply for the matrix \(S \) as well. This paper attempts to address it.

First, observe that

\[
S = S - \bar{s}\bar{s}^T \tag{1.1}
\]

and thus by the rank inequality (see Theorem A. 44 in [5]) there is no difference when the limiting empirical spectral distribution (ESD) of eigenvalues is our concern only. Here the ESD of a matrix \(B \) is defined by

\[
F^B(x) = \frac{1}{p} \sum_{i=1}^{p} I(\mu_i \leq x), \tag{1.2}
\]

where \(\mu_1, \cdots, \mu_p \) are the eigenvalues of \(B \). When \(F^{T_n} \) converges weakly to a non-random distribution \(H \) and \(p/n \to c > 0 \), Marcenko and Pastur [14], Yin [25] and Silverstein [21]
proved that, with probability one, $F_{1}^{n \frac{1}{n}}X_{n}^{T}X_{n}(x)$ converges in distribution to a nonrandom distribution function $F_{c,H}(x)$ whose Stieltjes transform $m(z) = m_{F_{c,H}}(z)$ is, for each $z \in C^{+} = \{z \in \mathbb{C} : \Re z > 0\}$, the unique solution to the equation

$$m = -\left(z - c \int \frac{tdH(t)}{1 + tm}\right)^{-1}.$$ \hspace{1cm} (1.3)

Here the Stieltjes transform $m_{F}(z)$ for any probability distribution function $F(x)$ is defined by

$$m_{F}(z) = \int \frac{1}{x-z}dF(x), \ z \in C^{+}. \hspace{1cm} (1.4)$$

Noting the relationship between the spectra of S and $n^{-1}X_{n}^{T}X_{n}$, we have

$$m(z) = -\frac{1-c}{z} + cm(z), \hspace{1cm} (1.5)$$

where $m(z)$ is the Stieltjes transform of $F_{c,H}(x)$, the limit of F^{S}.

Particularly, when the population matrix T_{n} is the identity matrix the limiting ESD of S is Marcenko and Pastur’s law $F_{c}(x)$ (see [14] and [12]), which has a density function

$$p_{c}(x) = \begin{cases} (2\pi cx)^{-1} \sqrt{(b-x)(x-a)} & a \leq x \leq b, \\ 0 & \text{otherwise} \end{cases}$$

and has point mass $1 - c^{-1}$ at the origin if $c > 1$, where $a = (1 - \sqrt{c})^2$ and $b = (1 + \sqrt{c})^2$.

Secondly, when $T_{n} = I$, it was reported in [11] that the maximum eigenvalues of S and S have the same limit, while, [24] announced that the minimum eigenvalues of S and S also share the identical limit. That is,

$$\lambda_{\max}(S) \xrightarrow{a.s.} (1+\sqrt{c})^2$$ \hspace{1cm} (1.6)

3
and when $c < 1$

$$\lambda_{\min}(S) \xrightarrow{a.s.} (1 - \sqrt{c})^2,$$

(1.7)

where $\lambda_{\max}(S)$ and $\lambda_{\min}(S)$ denote, respectively, the maximum and minimum eigenvalues of S. Moreover, it was proved in [10] that asymptotic distribution of the maximum eigenvalues of S after centering and scaling is the Tracy-Widom law of order 1 when S has a Wishart distribution $W_p(n, I)$. In this case, note that nS has the same distribution as $\sum_{j=1}^{n-1} x_jx_j^T$ and hence it is not difficult to prove that the maximum eigenvalues of S and S share the same central limit theorem.

Thirdly, remarkable central limit theorems for the eigenvalues of S were established in [3]. Moreover, the constraint that $EX_{11}^4 = 3$, imposed in [3], was removed in [16]. Since the ESDs of S and S have the same limit it seems that they might have the same central limit theorem for eigenvalues. Surprisingly, a detailed investigation shows they have different central limit theorems. The main reason is that \bar{s} involved in S contributes to the central limit theorem as well. Formally, let

$$G_n(x) = p(F^S(x) - F_{c_n,H_n}(x)),$$

where $c_n = \frac{p}{n}$ and $F_{c_n,H_n}(x)$ denotes the function by substituting c_n for c and H_n for H in $F_{c,H}(x)$.

Theorem 1 Suppose that

(1) For each n $X_{ij} = X_{ij}^n$, $i, j = 1, 2, \ldots$, are i.i.d. real random variables with $EX_{11} = \mu, E|X_{11} - \mu|^2 = 1$ and $E|X_{11}|^4 < \infty$.

(2) $\lim_{n \to \infty} \frac{p}{n} = c \in (0, \infty)$.

(3) g_1, \ldots, g_k are functions on \mathbb{R} analytic on an open region \mathcal{D} of the complex plane, which contains the real interval

$$[\liminf_n \lambda_{\min}(T_n)I_{(0,1)}(c)(1 - \sqrt{c})^2, \limsup_n \lambda_{\max}(T_n)(1 + \sqrt{c})^2].$$
4) Let T_n be a $p \times p$ non-random symmetric non-negative definite matrix with spectral norm bounded above by a positive constant such that $H_n = F^{T_n}$ converges weakly to a non-random distribution H.

5) Let e_i be the vector of size $p \times 1$ with the i-th element 1 and others 0. The matrix T_n also satisfies

\[
\frac{1}{n} \sum_{i=1}^{n} e_i^T T_n^{1/2} (m(z_1) T_n + I)^{-1} T_n^{1/2} e_i \rightarrow h_1(z_1, z_2)
\]

and

\[
\frac{1}{n} \sum_{i=1}^{n} e_i^T T_n^{1/2} (m(z) T_n + I)^{-1} T_n^{1/2} e_i \rightarrow h_2(z).
\]

Then $\{ \int g_1(x) dG_n(x), \ldots, \int g_k(x) dG_n(x) \}$ converges weakly to a Gaussian vector $(X_{g_1}, \ldots, X_{g_k})$, with mean

\[
EX_g = -\frac{c}{2\pi i} \int g(z) \frac{\int \frac{m^3(z) t^2 dH(t)}{(1+m(z))^2} dz - c(E(X_{11} - \mu)^4 - 3)}{2\pi i} \int g(z) \frac{m^3(z) h_2(z)}{1 - c \int \frac{m^3(z) t^2 dH(t)}{(1+m(z))^2} dz} d\zeta + \frac{c}{2\pi i} \int g(z) \frac{m(z)}{z(1 - c \int \frac{m(z) t^2 dH(t)}{(1+m(z))^2} dz)} d\zeta (1.8)
\]

and covariance function

\[
Cov(X_{g_1}, X_{g_2}) = -\frac{1}{2\pi^2} \int \int \frac{g_1(z_1) g_2(z_2)}{(m(z_1) - m(z_2))^2} d\zeta_1 d\zeta_2 \int m(z_1) d\zeta_2 m(z_2) d\zeta_1 d\zeta_2
\]

\[
-\frac{c(E(X_{11} - \mu)^4 - 3)}{4\pi^2} \int \int g_1(z_1) g_2(z_2) d\zeta_1 d\zeta_2 \int \frac{d^2}{dz_1 dz_2} \left[m(z_1) m(z_2) h_1(z_1, z_2) \right] d\zeta_1 d\zeta_2. (1.9)
\]

The contours in (1.8) and (1.9) are both contained in the analytic region for the functions g_1, \ldots, g_k and both enclose the support of $F_{c_n, H_n}(x)$ for large n. Moreover, the contours in
Remark 1 From Theorem 1.1 of [3], Theorem 1.4 of [16] and Theorem 1 we see that functionals of eigenvalues of S and S have the same asymptotic variances but they have different asymptotic means. Indeed, the additional term in the asymptotic mean is the last term of (1.8), which can be further written as

$$
\frac{c}{2\pi i} \int g(z) \frac{\overline{m}(z) \int \frac{tdH(t)}{(1+\overline{m}(z))^2}}{z(1-c \int \frac{\overline{m}(z)^2 t^2 dH(t)}{(1+\overline{m}(z))^2})} dz = -\frac{1}{\pi} \int_a^b g'(x) \text{arg} \left[\overline{m}(x) \right] dx, \tag{1.10}
$$

where $\overline{m}(x) = \lim_{z \to x} m(z)$ for $0 \neq x \in \mathbb{R}$. Here one should note that that Theorem 1.1 of [3] did not handle the case when the common mean of the underlying random variables is not equal to zero.

Remark 2 When developing central limit theorems, it is necessary to study the limits of the products of $(E(X_{11} - \mu)^4 - 3)$ and the diagonal elements of $(S - zI)^{-1}$. For general T_n, the limits of such diagonal elements are not necessarily the same. That is why Assumption 5 has to be imposed. Roughly speaking, Assumption 5 is some kind of rotation invariance. For example, it is satisfied if T_n is the inverse of another sample covariance matrix with the population matrix being the identity. However, when $E(X_{11} - \mu)^4 = 3$, Assumption 5 can be removed as well because such diagonal elements disappear in this case thanks to the special fourth moment and one may see [3]. Also, when T_n is a diagonal matrix Assumption 5 in Theorem 1 is automatically satisfied, as pointed out in [16], and in this case

$$
h_1(z_1, z_2) = \int \frac{t^2 dH(t)}{(m(z_1)t + 1)((m(z_2)t + 1))}, \quad h_2(z) = \int \frac{t^2 dH(t)}{(m(z)t + 1)^3}.
$$
Particularly, when \(T_n = I \) we have

\[
EX_g = \frac{1}{2\pi} \int_a^b g'(x) \text{arg} \left[1 - \frac{cm^2(x)}{(1 + m(x))^2} \right] dx - \frac{1}{\pi} \int_a^b g'(x) \text{arg} \left[am(x) \right] dx
\]

\[- \frac{c(E(X_{11} - \mu)^4 - 3)}{\pi} \int_a^b g(x) \Im \left[\frac{m^3(x)}{(m(x) + 1)(m(x) + 1)^2 - cm^2(x)} \right] dx \]

(1.11)

where

\[
m(x) = \frac{-(x + 1 - c) + \sqrt{(x-a)(b-x)}}{2x},
\]

(see [3]). For some simplified formulas for covariance function, refer to (1.24) in [3] and (1.24) in [16].

Finally, let us take a look at the eigenvectors of \(S \) and \(S' \). The matrix of orthonormal eigenvectors of \(S \) has a Haar measure on the orthogonal matrices when \(X_{11} \) is normally distributed and \(T_n = I \). It is conjectured that for large \(n \) and for general \(X_{11} \) the matrix of orthonormal eigenvectors of \(S \) is close to being Haar distributed. Silverstein (1981) created an approach to address it. Further work along this direction can be found in Silverstein [20], [22], Bai, Miao and Pan [4] and Ledoit and Peche [13]. Here we would also like to point out that there are similar interests in eigenvectors of large Wigner matrix and one may see [6], [7], [9] and [23]. To consider the matrix \(S \), let \(U_n \Lambda_n U_n^T \) denote the spectral decomposition of \(S \), where \(\Lambda_n = \text{diag}(\lambda_1, \lambda_2, \cdots, \lambda_p) \), \(U_n = (u_{ij}) \) is an orthogonal matrix consisting of the orthonormal eigenvectors of \(S \). Assume that \(x_n \in \mathbb{R}^p, \|x_n\| = 1 \), is an arbitrary non-random unit vector and \(y = (y_1, y_2, \cdots, y_p)^T = U_n^T x_n \). Following their approach, we define an empirical distribution function based on eigenvectors and eigenvalues as

\[
F_1^S(x) = \sum_{i=1}^p |y_i|^2 I(\lambda_i \leq x), \tag{1.12}
\]

where \(\lambda_i \)'s are eigenvalues of \(S \). Based on the above empirical spectral distribution function,
we may further investigate central limit theorems of functions of eigenvalues and eigenvectors.

As will be seen below, the asymptotic properties of the eigenvectors matrix of S are the same as those of S in terms of this property (note: $EX_{11} = 0$ required for S). However, the advantage of S over S is that the common mean of underlying random variables is not necessarily zero to keep these types of properties. Unfortunately, this is not the case for S. For example, consider $e_T^TSe_1$ when X_{ij} are i.i.d. with $EX_{11} = \mu$ and $Var(X_{11}) = 1$, and $T_n = I$. Then it is a simple matter to show that

$$e_1^TSe_1 \overset{a.s.}{\to} 1 + \mu^2$$

which is dependent on μ, different from Corollary 1 in Bai, Miao and Pan [4] when $\mu \neq 0$. Indeed, when dealing with central limit theorems of functions of eigenvalues and eigenvectors, [20] also proved that $EX_{11} = 0$ is a necessary condition to keep this type of property for the matrix S with $T_n = I$.

Formally, let

$$G_{n1}(x) = \sqrt{n}(F_{S}^{x}(x) - F_{c,H}(x)).$$

Theorem 2 In addition to Conditions (1), (2) and (4) in Theorem 1 suppose that $x_n \in \mathbb{R}^p_1 = \{x \in \mathbb{R}^p, \|x\| = 1\}$ and $x_n^T(T_n - zI)^{-1}x_n \to m_H(z)$ where $m_H(z)$ denotes the Stieltjes transform of $H(x)$. Then, it holds that

$$F_{S}^{x}(x) \to F_{c,H}(x) \quad a.s.$$

By Theorem 2, we obtain

Corollary 1 Let $(S^m)_{II}$, $m = 1, 2, \cdots$, denote the i-th diagonal elements of matrices S^m.

Under the conditions of Theorem 2 for $x_n = e_i$, then for any fixed m,

$$\lim_{n \to \infty} \left| (S^m)_{ii} - \int x^m dF_{c,H}(x) \right| \to 0, \quad a.s..$$

Theorem 3 In addition to the assumptions in Theorem 1 and Theorem 2 suppose that as $n \to \infty$

$$\sup_x \sqrt{n} \left| x^T \left(m_{F_{c,H}}(z) T_n + I \right)^{-1} x - \int \frac{dH_n(t)}{m_{F_{c,H}}(z) t + 1} \right| \to 0. \quad (1.13)$$

Then the following conclusions hold.

(a) The random vector

$$\left(\int g_1(x) dG_{n1}(x), \ldots, \int g_k(x) dG_{n1}(x) \right)$$

forms a tight sequence.

(b) If $E(X_{11} - \mu)^4 = 3$, the above random vector converges weakly to a Gaussian vector X_{g1}, \ldots, X_{gk}, with zero means and covariance function

$$\text{Cov}(X_{g1}, X_{g2}) = \frac{1}{2\pi^2} \int \int g_1(z_1) g_2(z_2) \frac{(z_2 m(z_2) - z_1 m(z_1))^2}{c^2 z_1 z_2 (z_2 - z_1)(m(z_2) - m(z_1))} dz_1 dz_2, \quad (1.14)$$

where the contours in (1.14) are the same as in those in (1.9).

(c) Instead of $E(X_{11} - \mu)^4 = 3$, assuming that

$$\max_i \left| e_i^T T_n^{1/2} (zm(z) T_n + z I)^{-1} x_n \right| \to 0, \quad (1.15)$$

the assertions in (b) still holds.

Remark 3 Assumptions (1.13) and (1.15) are imposed for the same reason as given in
Remark 2. Besides, when T_n reduces to the identity matrix, (1.15) becomes

$$\max_i |x_{ni}| \to 0. \quad (1.16)$$

As can be seen from (1.14) the asymptotic covariance does not depend on the fourth moment of X_{11} and hence we have to impose the condition like (1.16) to ensure that the term involving the product of the fourth moment of X_{11} and the diagonal elements of $(S - zI)^{-1}$ converges to zero in probability. One may see [16] for more details.

Remark 4 As pointed out in [4], when $T_n = I$ condition (1.13) holds and formula (1.14) becomes

$$\text{Cov}(X_{g_1}, X_{g_2}) = \frac{2}{c} \left(\int g_1(x)g_2(x)dF(x) - \int g_1(x_1)dF(x_1) \int g_2(x_2)dF(x_2) \right). \quad (1.17)$$

Theorem 1 essentially boils down to the study of the Stieltjes transform of $F^S(x)$ while Theorems 2 and 3 boils down to the study of the Stieltjes transform of $F^S_1(x)$. In view of this we conjecture the same phenomenon holds for other objects involving $F^S(x)$ or $F^S_1(x)$. For example we believe central limit theorems of the normalized empirical spectral distribution functions of S and S are different ([17] considers central limit theorems of the smoothed empirical spectral distribution functions).

We conclude this section by stating the structure of this work. Section 2 gives the proof of Theorem 1. Section 3 and Section 4 pick up the proofs of Theorem 2 and 3, respectively. Throughout the paper M and C denote constants which may change from line to line, and all matrices and vectors are denoted by boldface letters.
2 Proof of Theorem 1 and (1.11)

The proof of Theorem 1 is essentially based on the Stieltjes transform following [3]. First, by analyticity of functions it is enough to consider the Stieltjes transforms of the empirical functions of sample covariance matrices. Moreover, note that the Stieltjes transform of the empirical function of \mathcal{S} can be decomposed as the sum of the Stieltjes transform of the empirical function of \mathbf{S} and some random variable involving sample mean and \mathbf{S}. Thus, our main aim is to prove that the extra random variable converges in probability in the C space to some nonrandom variable. Once this is finished, Theorem 1 follows from Slutsky’s theorem, the continuous mapping theorem and the results in [3] and [16].

Before proceeding we observe the following useful fact. By the structure of \mathcal{S}, without loss of generality, we can assume $EX_{11} = 0$, $EX_{11}^2 = 1$ in the course of establishing Theorems 1-3 (but the fourth moment will be $E(X_{11} - \mu)^4$).

2.1 Truncation of underlying random variables and random processes

We begin the proof with the replacement of the underlying random variables X_{ij} with truncated and centralized variables. To this end, write

$$\mathcal{S} = \frac{1}{n}(X_n - \mathbf{B})(X_n^T - \mathbf{B}^T),$$

where $\mathbf{B} = (\bar{s}, \bar{s}, \cdots, \bar{s})_{p \times n}$. Since the argument for (1.8) (and two lines below (1.8)) in [3] can be carried over directly to the present case we can choose a positive sequence ε_n such that

$$\varepsilon_n \to 0, \quad \varepsilon_n^{-4}E|X_{11}|^4 I(|X_{11}| \geq \varepsilon_n \sqrt{n}) \to 0, \quad \varepsilon_n n^{1/4} \to \infty. \quad (2.18)$$
Let $\hat{S} = (1/n)(\hat{X}_n - \tilde{B})(\hat{X}_n^T - \tilde{B}^T)$ where \hat{X}_n and \tilde{B} are respectively obtained from X_n and B with the entries X_{ij} replaced by $X_{ij}I(\lambda_{ij} < \varepsilon_n \sqrt{n})$. We then obtain

$$P(\hat{S} \neq S) \leq P\left(\bigcup_{i \leq p, j \leq n} (|X_{ij}| \geq \varepsilon_n \sqrt{n}) \right) \leq pmP(\varepsilon_n \sqrt{n}) \leq M\varepsilon_n^{-4}E|\lambda_{11}|^4I(\lambda_{11} \geq \varepsilon_n \sqrt{n}) \rightarrow 0,$$

(2.19)

where and in what follows M denotes a constant which may change from line to line.

Define $\hat{S} = (1/n)(\hat{X}_n - \tilde{B})(\hat{X}_n^T - \tilde{B}^T)$ where \hat{X}_n and \tilde{B} are respectively obtained from X_n and B with the entries X_{ij} replaced by $(\hat{X}_{ij} - E\hat{X}_{ij})/\sigma_n$ with $\hat{X}_{ij} = X_{ij}I(|X_{ij}| < \varepsilon_n \sqrt{n})$ and $\sigma_n^2 = E|\hat{X}_{ij} - E\hat{X}_{ij}|^2$. Denote by $\hat{G}_n(x)$ and $\tilde{G}_n(x)$ the analogues of $G_n(x)$ with the matrix S replaced by \hat{S} and \tilde{S} respectively. As in [3] (one may also refer to the proof of Corollary A.42 of [5]) we have for any $g(x) \in \{g_1(x), \cdots, g_k(x)\},$

$$\left(\int g_j(x)d\hat{G}_n(x) - \int g_j(x)d\tilde{G}_n(x) \right) \leq M \sum_{k=1}^n |\lambda_k^{\hat{S}} - \lambda_k^{\tilde{S}}|$$

$$\leq \frac{M}{\sqrt{n}} \left[\text{tr}\left((\hat{X}_n - \tilde{B}) - (\tilde{X}_n - \tilde{B})\right)((\hat{X}_n - \tilde{X}_n) - (\tilde{B} - \tilde{B}))^T\right]^{1/2} \left[\text{tr}\left(\hat{S} + \tilde{S}\right)\right]^{1/2}$$

$$= M\sigma_n(1 - \frac{1}{\sigma_n}) \left[\text{tr}\hat{S} \right]^{1/2} \left[\text{tr}\left(\hat{S} + \tilde{S}\right)\right]^{1/2}$$

$$\leq M(\sigma_n^2 - 1)\left[n\lambda_{\max}(\hat{S}) \right]^{1/2} \left[n\lambda_{\max}(\tilde{S}) + n\lambda_{\max}(\hat{S}) \right]^{1/2},$$

where the third step uses the fact that by the structure of $(\hat{X}_n - \tilde{B}),$

$$\frac{1}{n}\left((\hat{X}_n - \tilde{B}) - (\tilde{X}_n - \tilde{B})\right)\left((\hat{X}_n - \tilde{X}_n) - (\tilde{B} - \tilde{B})\right)^T = \sigma_n^2(1 - \frac{1}{\sigma_n})^2\hat{S}.$$

From [25] and $\|T_n\| \leq M$ we obtain $\limsup_n \lambda_{\max}(\hat{S})$ is bounded by $M(1 + \sqrt{c})^2$ with probability one. Similarly, $\limsup_n \lambda_{\max}(\tilde{S})$ is bounded by $M(1 + \sqrt{c})^2$ with probability one by the
structure of \hat{S} and estimate (2.20) below. Moreover it is not difficult to prove that

$$\sigma_n^2 - 1 = o(\varepsilon_n^2 n^{-1}). \quad (2.20)$$

Summarizing the above we obtain

$$\int g(x)d\hat{G}_n(x) - \int g(x)d\tilde{G}_n(x) \xrightarrow{i.p.} 0.$$

This, together with (2.19), implies that

$$\int g(x)dG_n(x) - \int g(x)d\tilde{G}_n(x) \xrightarrow{i.p.} 0.$$

Therefore, in what follows, we may assume that

$$|X_{ij}| \leq \sqrt{n\varepsilon_n}, \quad EX_{ij} = 0, \quad E|X_{ij}|^2 = 1 \quad (2.21)$$

and for simplicity we shall suppress all subscripts or superscripts on the variables.

As in [3], by Cauchy’s formula, (1.6) and (1.7), with probability one for all n large,

$$\int g(x)dG_n(x) = -\frac{1}{2\pi i} \int g(z) \left(tr(S - zI)^{-1} - nm_{c_n}(z) \right) dz, \quad (2.22)$$

where $m_{c_n}(z)$ is obtained from $m(z)$ with c replaced by c_n and the complex integral is over C. The contour C is specified below. Let $v_0 > 0$ be arbitrary and set $C_u = \{ u + iv_0, u \in [u_l, u_r] \}$, where $u_r > \limsup_n \lambda_{\max}(T_n)(1 + \sqrt{c})^2$ and $0 < u_l < \liminf_n \lambda_{\min}(T_n)I_{(0,1)}(c)(1 - \sqrt{c})^2$ or u_l is any negative number if $\liminf_n \lambda_{\min}(T_n)I_{(0,1)}(c)(1 - \sqrt{c})^2 = 0$. Then define

$$C^+ = \{ u_l + iv : v \in [0, v_0] \} \cup C_u \cup \{ u_r + iv : v \in [0, v_0] \}$$
and let \(C^- \) be the symmetric part of \(C^+ \) about the real axis. Then set \(C = C^+ \cup C^- \). Moreover, since
\[
tr(S - zI)^{-1} = trA^{-1}(z) + \frac{s^T A^{-2}(z) \bar{s}}{1 - s^T A^{-1}(z) \bar{s}},
\]
we have
\[
\left(tr(S - zI)^{-1} - nm_c n(z) \right) = \left[trA^{-1}(z) - nm_c n(z) \right] + \frac{s^T A^{-2}(z) \bar{s}}{1 - s^T A^{-1}(z) \bar{s}},
\]
(2.23)
where \(A^{-1}(z) = (S - zI)^{-1} \). The first term on the right hand above was investigated in [3].

We next consider the second term on the right hand in (2.23). To this end, introduce a truncation version of \(s^T A^{-2}(z) \bar{s} \). Define \(C_r = \{ u_r + iv : v \in [-n^{-1} \rho, 0] \} \),
\[
C_l = \begin{cases}
\{ u_l + iv : v \in [n^{-1} \rho, v_0] \} & \text{if } u_l > 0 \\
\{ u_l + iv : v \in [0, v_0] \} & \text{if } u_l < 0
\end{cases}
\]
where
\[
\rho_n \downarrow 0, \quad \rho_n \geq n^{-\alpha}, \text{ for some } \alpha \in (0, 1).
\]
(2.24)
Let \(C^+_n = C_l \cup C_u \cup C_r \) and \(C^-_n \) denote the symmetric part of \(C^+_n \) with respect to the real axis.

We then define the truncated process \(\hat{s}^T \hat{A}^{-2}(z) \bar{\hat{s}} \) of the process \(s^T A^{-2}(z) \bar{s} \) for \(z = u + iv \) by
\[
\hat{s}^T \hat{A}^{-2}(z) \bar{\hat{s}} = \begin{cases}
\hat{s}^T \hat{A}^{-2}(z) \bar{s} & \text{for } z \in C_n = C^+_n \cup C^-_n \\
\frac{nv + \rho_n}{2 \rho} \hat{s}^T \hat{A}^{-2}(z_{r_1}) \bar{s} + \frac{\rho_n - nv}{2 \rho} \hat{s}^T \hat{A}^{-2}(z_{r_2}) \bar{s} & \text{for } u = u_r, v \in [-n^{-1} \rho, n^{-1} \rho] \\
\frac{nv + \rho_n}{2 \rho} \hat{s}^T \hat{A}^{-2}(z_{l_1}) \bar{s} + \frac{\rho_n - nv}{2 \rho} \hat{s}^T \hat{A}^{-2}(z_{l_2}) \bar{s} & \text{for } u = u_l > 0, v \in [-n^{-1} \rho, n^{-1} \rho],
\end{cases}
\]
where
\[
z_{r_1} = u_r - in^{-1} \rho, z_{r_2} = u_r + in^{-1} \rho, z_{l_1} = u_l - in^{-1} \rho, \text{ and } z_{l_2} = u_l + in^{-1} \rho.
\]
Similarly, one may define the truncation version \(\hat{s}^T \hat{A}^{-1}(z) \bar{\hat{s}} \) of \(s^T A^{-1}(z) \bar{s} \).
From Theorem 2 in [15] we have

\[\|s^T \bar{s}\| \leq \|T_n\| \|\bar{x}^T \bar{x}\| \leq M \|\bar{x}^T \bar{x}\| \rightarrow_{i.p.} Mc \]

(2.25)

Note that

\[s^T(S - zI)^{-1} \bar{s} = s^T A^{-1}(z) \bar{s} + \frac{(s^T A^{-1}(z) \bar{s})^2}{1 - s^T A^{-1}(z) \bar{s}}, \]

where we use the identity

\[r^T(D + ar^T)^{-1} = \frac{r^T D^{-1}}{1 + ar^T D^{-1} r}, \]

(2.26)

where \(D \) and \(D + ar^T \) are both invertible, \(r \in \mathbb{R}^p \) and \(a \in \mathbb{R} \). This implies that

\[\frac{1}{1 - s^T A^{-1}(z) \bar{s}} = 1 + s^T(S - zI)^{-1} \bar{s}. \]

(2.27)

We then conclude that

\[\left| \frac{1}{1 - s^T A^{-1}(z) \bar{s}} \right| \leq 1 + \left(\frac{M}{v_0} + \frac{M}{|\lambda_{\max}(S) - u_r|} + \frac{M}{|\lambda_{\min}(S) - u_l|} \right) s^T \bar{s}. \]

(2.28)

This, together with (2.25), (1.6) and (1.7), ensures that

\[\left| \int g(z) \left(\frac{s^T A^{-2}(z) \bar{s} - s^T A^{-2}(z) \bar{s}}{1 - s^T A^{-1}(z) \bar{s}} \right) \frac{1}{1 - s^T A^{-1}(z) \bar{s}} \right| \]

(2.29)

\[\leq \left| \int g(z) \left(\frac{s^T A^{-2}(z) \bar{s} - s^T A^{-2}(z) \bar{s}}{1 - s^T A^{-1}(z) \bar{s}} \right) \frac{1}{1 - s^T A^{-1}(z) \bar{s}} \right| \]

\[+ \left| \int g(z) \left(\frac{s^T A^{-2}(z) \bar{s}(s^T A^{-1}(z) \bar{s} - s^T A^{-1}(z) \bar{s})}{(1 - s^T A^{-1}(z) \bar{s})(1 - s^T A^{-1}(z) \bar{s})} \right) \right| \]
\[
\leq \frac{([\mathbf{s}^T \mathbf{s}]^2 + (\mathbf{s}^T \mathbf{s})^4)M \rho_n}{n} \left(\frac{1}{|\lambda_{\max}(\mathbf{S}) - u_r|} + \frac{1}{|\lambda_{\min}(\mathbf{S}) - u_l|} \right) \left(\frac{1}{|\lambda_{\max}(\mathbf{S}) - u_r|} + \frac{1}{|\lambda_{\min}(\mathbf{S}) - u_l|} \right),
\]
converging to zero in probability.

The aim of subsequent sections 2.2-2.4 is to prove convergence of \(\mathbf{s}^T \hat{\mathbf{A}}^{-j}(z) \mathbf{s} \), \(j = 1, 2 \), in probability to nonrandom variables in the space of continuous functions for \(z \in \mathcal{C} \). It is well-known that convergence in probability is equivalent to convergence in distribution when the limiting variable is nonrandom (for example see page 25 of [8]). Thus, instead, we shall prove convergence of \(\mathbf{s}^T \hat{\mathbf{A}}^{-j}(z) \mathbf{s} \), \(j = 1, 2 \), in distribution to nonrandom variables in the space of continuous functions for \(z \in \mathcal{C} \).

2.2 Convergence of finite dimensional distributions of \(\mathbf{s}^T \hat{\mathbf{A}}^{-j}(z) \mathbf{s} - E(\mathbf{s}^T \hat{\mathbf{A}}^{-j}(z) \mathbf{s}), j = 1, 2 \).

Consider \(z \in \mathcal{C}_n \) and \(\mathbf{s}^T \mathbf{A}^{-2}(z) \mathbf{s} - E(\mathbf{s}^T \mathbf{A}^{-2}(z) \mathbf{s}) \) first. Define the \(\sigma \)-field \(\mathcal{F}_j = \sigma(s_1, \ldots, s_j) \), and let \(E_j(\cdot) = E(\cdot | \mathcal{F}_j) \) and \(E_0(\cdot) \) be the unconditional expectation. Introduce \(\mathbf{s}_j = \mathbf{s} - n^{-1} \mathbf{s}_j \),

\[
\mathbf{A}_j^{-1}(z) = (\mathbf{S} - n^{-1} \mathbf{s}_j \mathbf{s}_j^T - z \mathbf{I})^{-1}, \quad \gamma_j(z) = \frac{1}{n} \mathbf{s}_j^T \mathbf{A}_j^{-1}(z) \mathbf{s}_j - \frac{1}{n} \text{tr} \mathbf{A}_j^{-1}(z) \mathbf{T}_n,
\]

\[
\beta_j(z) = \frac{1}{1 + \frac{1}{n} \mathbf{s}_j^T \mathbf{A}_j^{-1}(z) \mathbf{s}_j}, \quad b_1(z) = \frac{1}{1 + \frac{1}{n} \text{tr} \mathbf{A}_1^{-1}(z) \mathbf{T}_n}.
\]

Write

\[
\mathbf{s}^T \mathbf{A}^{-2}(z) \mathbf{s} - E(\mathbf{s}^T \mathbf{A}^{-2}(z) \mathbf{s}) = \sum_{j=1}^{n} E_j(\mathbf{s}^T \mathbf{A}^{-2}(z) \mathbf{s} - E_j^{-1}(\mathbf{s}^T \mathbf{A}^{-2}(z) \mathbf{s})))
\]

\[
= \sum_{j=1}^{n} (E_j - E_j^{-1}) \left[\mathbf{s}^T \mathbf{A}^{-2}(z) \mathbf{s} - \mathbf{s}_j^T \mathbf{A}_j^{-2}(z) \mathbf{s}_j \right]
\]

\[
= \sum_{j=1}^{n} (E_j - E_j^{-1}) \left[d_{n1} + d_{n2} + d_{n3} \right],
\]

16
where
\[d_{n1} = (\bar{s} - \bar{s}_j)^T A^{-2}(z) \bar{s}, \quad d_{n2} = \bar{s}_j^T (A^{-2}(z) - A_j^{-2}(z)) \bar{s}, \]
and
\[d_{n3} = \bar{s}_j^T A_j^{-2}(z)(\bar{s} - \bar{s}_j). \]

Consider \(d_{n3} \) first. It is proved in (3.12) of [15] that
\[E|x_1^T B \bar{x}_1|^k = O(n^{\frac{k}{2} - 2} \varepsilon_n^{k-4}), \text{ for } k \geq 4, \quad (2.30) \]
where \(x_1 \) and \(\bar{x}_j = \bar{x} - n^{-1} x_j \) are independent of \(B \) with a bounded spectral norm. This implies that
\[E|s_1^T A_j^{-2}(z) s_j|^k = E|x_1^T T_n^{1/2} A_j^{-2}(z) T_n^{1/2} \bar{x}_1|^k = O(n^{\frac{k}{2} - 2} \varepsilon_n^{k-4}), \text{ for } k \geq 4, \quad (2.31) \]
where yields
\[\sum_{j=1}^{n} (E_j - E_{j-1})d_{n3} \xrightarrow{i.p.} 0. \]

Furthermore, write
\[d_{n1} = d_{n1}^{(1)} + d_{n1}^{(2)} + d_{n1}^{(3)} + d_{n1}^{(4)}, \]
where
\[d_{n1}^{(1)} = \frac{1}{n} s_j^T A_j^{-2}(z) s_j, \quad d_{n1}^{(2)} = \frac{1}{n^2} s_j^T A_j^{-2}(z) s_j, \]
and
\[d_{n1}^{(3)} = \frac{1}{n} s_j^T (A^{-2}(z) - A_j^{-2}(z)) s_j, \quad d_{n1}^{(4)} = \frac{1}{n^2} s_j^T (A^{-2}(z) - A_j^{-2}(z)) s_j. \]

From (2.31) we have
\[\sum_{j=1}^{n} (E_j - E_{j-1})d_{n1}^{(1)} \xrightarrow{i.p.} 0. \]
By Lemma 2.7 in [3] and (2.21)

$$n^{-k}E|s_1^T B(z)s_1 - trBT|^k = O(\varepsilon_n^{2k-4}n^{-1}), \quad k \geq 2. \quad (2.32)$$

This gives

$$E\left|\sum_{j=1}^{n}(E_j - E_{j-1})d^{(2)}_{n_1}\right|^2 = \frac{1}{n^4} \sum_{j=1}^{n} E|(E_j - E_{j-1})(s_j^T A_j^{-2}(z)s_j - trT_n A_j^{-2}(z))|^2 = O(n^{-2}).$$

Since $\|A^{-2}(z)\| \leq 1/v^2$ we obtain

$$E\left|\sum_{j=1}^{n}(E_j - E_{j-1})d^{(4)}_{n_1}\right|^2 \leq \frac{M}{n^4 v^4} \sum_{j=1}^{n} E||s_j||^4 \leq \frac{M}{n}. \quad (2.32)$$

Note that

$$A^{-1}(z) - A_j^{-1}(z) = -\frac{1}{n} A_j^{-1}(z)s_j s_j^T A_j^{-1}(z)\beta_j(z). \quad (2.33)$$

Applying it we may write

$$d^{(3)}_{n_1} = -\frac{1}{n^2} s_j^T A_j^{-1}(z)s_j s_j^T A_j^{-2}(z)s_j \beta_j(z) + \frac{1}{n^2} s_j^T A_j^{-1}(z)s_j s_j^T A_j^{-2}(z)s_j s_j^T A_j^{-1}(z)s_j \beta_j^2(z)$$

$$-\frac{1}{n^2} s_j^T A_j^{-2}(z)s_j s_j^T A_j^{-1}(z)s_j \beta_j(z).$$

It follows from (2.31), (2.32) and the fact that $|\beta_j(z)| \leq 1/v$ that

$$E\left|\sum_{j=1}^{n}(E_j - E_{j-1})d^{(3)}_{n_1}\right|^2 \leq \frac{M}{n}. \quad (2.32)$$

So far we have proved that

$$\sum_{j=1}^{n}(E_j - E_{j-1})d_{n_1} \xrightarrow{i.p.} 0. \quad (2.32)$$
As in dealing with d_{n1}, one may verify that

$$\sum_{j=1}^{n} (E_j - E_{j-1}) d_{n2} \xrightarrow{i.p.} 0.$$

Summarizing the above we have obtained

$$\bar{s}^T A^{-2}(z) \bar{s} - E(\bar{s}^T A^{-2}(z) \bar{s}) \xrightarrow{i.p.} 0.$$

Applying the argument for $\bar{s}^T A^{-2}(z) \bar{s}$ to $\bar{s}^T A^{-1}(z) \bar{s}$ yields

$$\bar{s}^T A^{-1}(z) \bar{s} - E(\bar{s}^T A^{-1}(z) \bar{s}) \xrightarrow{i.p.} 0.$$

2.3 Tightness of $(\bar{s}^T A^{-j}(z) \bar{s} - E(\bar{s}^T A^{-j}(z) \bar{s}))$, $j = 1, 2$.

This section is to prove tightness of $K_n^{(j)}(z)$, $j = 1, 2$ where

$$K_n^{(j)}(z) = \bar{s}^T A^{-j}(z) \bar{s} - E(\bar{s}^T A^{-j}(z) \bar{s}).$$

We shall use Theorem 12.3 of [8]. In what follows, we consider the case $j = 2$ only and the case $j = 1$ can be handled similarly, even simpler. As pointed out in [3], condition (i) of Theorem 12.3 of [8] can be replaced with the assumption of tightness at any point in the interval. From (3.18) of [15] we see that

$$E|\bar{s}^T A^{-2}(z) \bar{s}|^2 \leq M,$$

which ensures condition (i) of Theorem 12.3 of [8]. We next verify condition (ii) of Theorem 12.3 of [8] by proving

$$\sup_{n, z_1, z_2 \in C_n} \frac{E|K_n^{(2)}(z_1) - K_n^{(2)}(z_2)|^2}{|z_1 - z_2|^2} < \infty.$$

Below we only prove the above inequality on C_n^+ and the remaining cases can be verified similarly.
Since the truncation steps are the same as those in [25] we have

\[P(\|\lambda_{\text{max}}(S)\| \geq \zeta_r) = o(n^{-l}), \quad P(\lambda_{\text{min}}(S) \leq \zeta_l) = o(n^{-l}), \]

\(2.36\)

for any \(l\) (see (1.9a) and (1.9b) in [3]), where \(\limsup_n \lambda_{\text{max}}(T_n)(1 + \sqrt{c})^2 < \zeta_r\) and \(0 < \zeta_l < \liminf_n \lambda_{\text{min}}(T_n)(1 - \sqrt{c})^2\). It is also proved in section 3 of [3] that for any positive \(k\) on \(\mathbb{C}^+\)

\[
\max \left(E\|A^{-1}(z)\|^k, E\|A_j^{-1}(z)\|^k \right) \leq M. \tag{2.37}
\]

As in the last section we write

\[
\frac{K_n^{(2)}(z_1) - K_n^{(2)}(z_2)}{z_1 - z_2} = [\bar{s}^T A^{-2}(z_1)A^{-1}(z_2)\bar{s} - E(\bar{s}^T A^{-2}(z_1)A^{-1}(z_2)\bar{s})] + [\bar{s}^T A^{-1}(z_1)A^{-2}(z_2)\bar{s} - E(\bar{s}^T A^{-1}(z_1)A^{-2}(z_2)\bar{s})].
\]

Since the above two terms on the right hand side are similar we only prove the tightness of the first term. To this end, write

\[
\bar{s}^T A^{-2}(z_1)A^{-1}(z_2)\bar{s} - E(\bar{s}^T A^{-2}(z_1)A^{-1}(z_2)\bar{s})
\]

\[= \sum_{j=1}^{n} (E_j - E_{j-1}) \left[\bar{s}^T A^{-2}(z_1)A^{-1}(z_2)\bar{s} - \bar{s}_j^T A_j^{-2}(z_1)A_j^{-1}(z_2)\bar{s}_j \right].\]

\[= \sum_{j=1}^{n} (E_j - E_{j-1}) \left[a_{n1} + a_{n2} + a_{n3} \right],\]

where

\[a_{n1} = (\bar{s} - \bar{s}_j)^T A^{-2}(z_1)A^{-1}(z_2)\bar{s}, \quad a_{n2} = \bar{s}_j^T (A^{-2}(z_1)A^{-1}(z_2) - A_j^{-2}(z_1)A_j^{-1}(z_2))\bar{s},\]

\[a_{n3} = \bar{s}_j^T A_j^{-2}(z_1)A_j^{-1}(z_2)\bar{s} - E(\bar{s}_j^T A_j^{-2}(z_1)A_j^{-1}(z_2)\bar{s}).\]
\[a_{n3} = \bar{s}_j^T A_j^{-2}(z_1) A_j^{-1}(z_2)(\bar{s} - s_j). \]

It is straightforward to check that \(E\|s_j^T\|^4 = E(s_j^T s_j)^2 = O(n^2). \) As in (3.17) of [15] one can prove that
\[
E|s^T s|^k = E|x^T T_n \bar{x}|^k \leq ME|x^T \bar{x}|^k = O(1), \quad \text{for } k \geq 4. \tag{2.38}
\]

This, together with (2.37), implies that
\[
E \left| \sum_{j=1}^{n}(E_j - E_{j-1})(a_{n1}) \right|^2 \leq \frac{M}{n^2} \sum_{j=1}^{n} E\|s_j^T A^{-2}(z_1) A^{-1}(z_2)\bar{s}\|^2
\]
\[
\leq \frac{M}{n^2} \sum_{j=1}^{n} \left(E\|s_j^T\|^4 \right)^{1/2} \left(E\|A^{-2}(z_1)\|^4 E\|A^{-1}(z_2)\|^4 E\|\bar{s}\|^4 \right)^{1/6} \leq M.
\]

This argument also works for \(a_{n3}. \)

We further write
\[a_{n2} = a_{n2}^{(1)} + a_{n2}^{(2)} + a_{n2}^{(3)}, \]

where
\[a_{n2}^{(1)} = \bar{s}_j^T (A^{-1}(z_1) - A_j^{-1}(z_1))A^{-1}(z_1)A^{-1}(z_2)\bar{s}
\]
\[= -\frac{1}{n} \bar{s}_j^T A_j^{-1}(z_1)s_j s_j^T A_j^{-1}(z_1)A^{-1}(z_1)A^{-1}(z_2)\bar{s} \beta_j(z) \]

\[a_{n2}^{(2)} = \bar{s}_j^T A_j^{-1}(z_1)A^{-1}(z_1) - A_j^{-1}(z_1))A^{-1}(z_2)\bar{s}
\]
\[= -\frac{1}{n} \bar{s}_j^T A_j^{-2}(z_1)s_j s_j^T A_j^{-1}(z_1)A^{-1}(z_2)\bar{s} \beta_j(z) \]

21
and

\[
 a^{(3)}_{n2} = \bar{s}_j^T A_j^{-2}(z_1)(A_j^{-1}(z_2) - A_j^{-1}(z_2))\bar{s} \\
 = -\frac{1}{n} s_j^T A_j^{-2}(z_1)A_j^{-1}(z_2)s_j s_j^T A_j^{-1}(z_2)\bar{s}\beta_j(z).
\]

In the second equality of each \(a^{(j)}_{n2}, j = 1, 2, 3\) above we also use (2.33). Note that (one may see the remark to (3.2) in [3])

\[
|\beta_j(z)| = |1 - n^{-1}s_j^T A_j^{-1}(z)s_j| \leq 1 + M\eta_r + Mn^{2+\alpha}I(\|S\| \geq \eta_r) \text{ or } \lambda_{\min}(S) \leq \eta_l), \quad (2.39)
\]

where \(\lim sup_{n} \lambda_{\max}(T_n)(1 + \sqrt{c})^2 < \eta_r < u_r\) and \(u_l < \eta_l < \lim sup_{n} \lambda_{\min}(T_n)I(0,1)(1 - \sqrt{c})^2\).

Also we have

\[
n^{-1/2}s_j^T A_1^{-1}(z_1)A_1^{-1}(z)\bar{s} \leq n^{-1/2}\|s_j^T\||\bar{s}||\|A_1^{-1}(z_1)A_1^{-1}(z_2)|| \\
\leq M\eta_r\|\bar{s}\| + Mn^{6+4}\alpha I(\|S\| \geq \eta_r) \text{ or } \lambda_{\min}(S_1) \leq \eta_l), \quad (2.40)
\]

where we use (2.24) and the fact that \(n^{-1/2}\|s_1\|^2\) is smaller than \(\eta_r\) if \(\|S\| < \eta_r\), and \(n^{-1/2}\|s_1\|^2 \leq n\) otherwise. Here \(S_1 = S - n^{-1}s_s^sT\). One should note that (2.31) still holds when \(B\) is replaced by \(A_j^{-1}(z)\) or \(A_j^{-2}(z)\) due to (2.37). We then conclude from (2.36), (2.39), (2.31), (2.38) and (2.40) that

\[
E\left|\sum_{j=1}^{n}(E_j - E_{j-1})(a^{(1)}_{n2})\right|^2 \leq M\sum_{j=1}^{n} E|a^{(1)}_{n2}|^2 \\
\leq M\left(E|s_j^T A_j^{-1}(z)\bar{s}|^4E\|\bar{s}\|^4\right)^{1/2} + Mn^{2+12\alpha}P(\|S\| \geq \eta_r) \text{ or } \lambda_{\min}(S_1) \leq \eta_l) \leq M.
\]

This argument apparently applies to the terms \(a^{(j)}_{n2}, j = 2, 3\). Therefore (2.35) is satisfied and \(K_n^{(2)}(z)\) is tight.

22
2.4 Convergence of $E(\bar{s}^T \mathbf{A}^{-2}(z) \bar{s})$ and $E(\bar{s}^T \mathbf{A}^{-1}(z) \bar{s})$

The aim in this section is to find the limits of $E(\bar{s}^T \mathbf{A}^{-2}(z) \bar{s})$ and $E(\bar{s}^T \mathbf{A}^{-1}(z) \bar{s})$. In what follows, all bounds including $O(\cdot)$ and $o(\cdot)$ expressions hold uniformly on \mathcal{C}_n.

Consider $E(\bar{s}^T \mathbf{A}^{-2}(z) \bar{s})$ first. Applying $\bar{s} = \frac{1}{n} \sum_{j=1}^{n} s_j$, (2.26) and (2.33) we obtain

$$E[\bar{s}^T \mathbf{A}^{-2}(z) \bar{s}] = \frac{1}{n} \sum_{j=1}^{n} E[s_j^T \mathbf{A}^{-1}(z) \mathbf{A}^{-1}(z) \bar{s} \beta_j(z)]$$

$$= \frac{1}{n} \sum_{j=1}^{n} E[s_j^T \mathbf{A}^{-2}(z) s_j \beta_j(z)] - \frac{1}{n^2} \sum_{j=1}^{n} E[s_j^T \mathbf{A}^{-2}(z) s_j s_j^T \mathbf{A}^{-1}(z) \bar{s} \beta_j^2(z)]$$

$$= q_{n1} + q_{n2} + q_{n3} + q_{n4},$$

where

$$q_{n1} = \frac{1}{n} \sum_{j=1}^{n} E[s_j^T \mathbf{A}^{-2}(z) s_j \beta_j(z)], \quad q_{n3} = -\frac{1}{n^2} \sum_{j=1}^{n} E[s_j^T \mathbf{A}^{-2}(z) s_j s_j^T \mathbf{A}^{-1}(z) \bar{s} \beta_j^2(z)]$$

and

$$q_{n2} = \frac{1}{n^2} \sum_{j=1}^{n} E[s_j^T \mathbf{A}^{-2}(z) s_j \beta_j(z)], \quad q_{n4} = -\frac{1}{n^3} \sum_{j=1}^{n} E[s_j^T \mathbf{A}^{-2}(z) s_j s_j^T \mathbf{A}^{-1}(z) s_j \beta_j^2(z)].$$

Using

$$\beta_j(z) = b_1(z) - \beta_j(z) b_1(z) \gamma_j(z) \quad (2.41)$$

we further obtain

$$q_{n1} = -\frac{1}{n} \sum_{j=1}^{n} E[s_j^T \mathbf{A}^{-2}(z) s_j \beta_j(z) b_1(z) \gamma_j(z)].$$

Moreover, it is proved in [3] (see (3.5) and three lines below it in [3]) that

$$E|\gamma_1(z)|^k \leq M n^{-1} \varepsilon n^{2k-4}, \quad E|\beta_1(z)|^k \leq M, \quad k \geq 2, \quad |b_1(z)| \leq M. \quad (2.42)$$
We then conclude from (2.39), (2.31), (2.40) and (2.42) that

\[
|q_{n1}| \leq M \left(E[s_1^T A_1^{-2}(z)s_1^2 E|\gamma_1(z)|^2] \right)^{1/2} + M n^{7+4\alpha} P(\|S\| \geq \eta_r) \text{ or } \lambda_{\min}(S_1) \leq \eta_l) \leq \frac{M}{\sqrt{n}}.
\]

(2.43)

Applying a similar approach one can prove that

\[
|q_{n3}| \leq \frac{M}{\sqrt{n}}.
\]

By (2.41) we have

\[
q_{n2} = b_1(z) E\left[\frac{1}{n} tr A_1^{-2}(z)T_n \right] + \frac{b_1(z)}{n^2} \sum_{j=1}^{n} E\left[s_j^T A_j^{-2}(z)s_j\beta_j(z)\gamma_j(z) \right]
\]

\[
= b_1(z) E\left[\frac{1}{n} tr A_1^{-2}(z)T_n \right] + O\left(\frac{1}{\sqrt{n}} \right),
\]

(2.44)

where the last step uses the fact that the absolute value of the second term of q_{n2} is bounded by M/\sqrt{n} by the same approach as that used in (2.43).

From (2.41) we may write

\[
q_{n4} = -b_1^2(z) E\left[\frac{1}{n} tr A_1^{-1}(z)T_n \right] E\left[\frac{1}{n} tr A_1^{-2}(z)T_n \right] + q_{n4}^{(1)} + q_{n4}^{(2)} + q_{n4}^{(3)},
\]

where

\[
q_{n4}^{(1)} = -\frac{1}{n^3} \sum_{j=1}^{n} E\left[s_j^T A_j^{-2}(z)s_j s_j^T A_j^{-1}(z)s_j\beta_j^2(z)\gamma_j^2(z) \right],
\]

\[
q_{n4}^{(2)} = \frac{2}{n^3} \sum_{j=1}^{n} E\left[s_j^T A_j^{-2}(z)s_j s_j^T A_j^{-1}(z)s_j\beta_j(z)\gamma_j(z) \right]
\]

and

\[
q_{n4}^{(3)} = -\frac{1}{n^2} \sum_{j=1}^{n} E\left[(n^{-1}s_j^T A_j^{-2}(z)s_j - n^{-1} E tr A_j^{-2}(z))\gamma_j(z)\beta_j^2(z) \right].
\]

24
By (3.2) in [3], as in (2.43), we may prove that \(|q_{n4}^{(k)}| \leq M/\sqrt{n}, k = 1, 2, 3\). It follows from that
\[
q_{n4} = -b_1^2(z)E\left[\frac{1}{n}trA_1^{-1}(z)T_n\right]E\left[\frac{1}{n}trA_1^{-2}(z)T_n\right] + O\left(\frac{1}{\sqrt{n}}\right). \tag{2.45}
\]
This, together with (2.44), (2.43), (2.33) and (2.42), yields
\[
E\left[\bar{s}^T A^{-2}(z)\bar{s}\right] = q_{n1} + q_{n2} + q_{n3} + q_{n4} = b_1^2(z)E\left[\frac{1}{n}trA^{-2}(z)T_n\right] + O\left(\frac{1}{\sqrt{n}}\right). \tag{2.46}
\]
It was proved in Section 4 of [3] (see three lines above (4.14) there) that
\[
b_1(z) + zm(z) \to 0. \tag{2.47}
\]
Consider \(E\left[\frac{1}{n}trA^{-2}(z)T_n\right]\) now. To this end we need formula (4.13) in [3], which states
\[
A^{-1}(z) = -H^{-1}(z) + b_1(z)A(z) + B(z) + C(z), \tag{2.48}
\]
where
\[
H^{-1}(z) = (zI - b_1(z)T_n)^{-1}, \quad A(z) = \sum_{j=1}^{n}H^{-1}(z)(s_j s_j^* - n^{-1}T_n)A_j^{-1}(z),
\]
\[
B(z) = \sum_{j=1}^{n}(\beta_j(z) - b_1(z))H^{-1}(z)s_j s_j^* A_j^{-1}(z)
\]
and
\[
C(z) = n^{-1}b_1(z)H^{-1}(z)T_n \sum_{j=1}^{n} \beta_j(z)A_j^{-1}(z)s_j s_j^* A_j^{-1}(z).
\]
It was proved in (4.15) and (4.16) of [3] that
\[
\frac{1}{n}trB(z)M \leq Cn^{-1/2}(E\|M\|^4)^{1/4}, \quad \frac{1}{n}trC(z)M \leq Cn^{-1}(E\|M\|^4)^{1/4}. \tag{2.49}
\]
Taking the matrix $M = I$ in (4.17)-(4.19) of [3] yields

$$En^{-1}A_1(z) = -b_1(z)(En^{-1}trA^{-1}(z)T_nA^{-1}(z)T_n)(En^{-1}trA^{-1}(z)H^{-1}(z)T_n) + o(1).$$ (2.50)

From (2.48)-(2.49) we have

$$En^{-1}trA^{-1}(z)H^{-1}(z)T_n = n^{-1}tr \left[(-H^{-1}(z) + EB(z) + EC(z))H^{-1}(z)T_n \right]$$

$$= \frac{cn}{z^2} \int \frac{tdH_n(t)}{(1 + tE_m)^2} + o(1).$$ (2.51)

It follows from (2.48)-(2.50) that

$$E\left[\frac{1}{n}trA^{-2}(z)T_n \right] = -E\left[\frac{1}{n}trA^{-1}(z)H^{-1}(z)T_n \right]$$

$$-b_1^2(z)E\left[n^{-1}trA^{-1}(z)T_nA^{-1}(z)T_n \right] E\left[n^{-1}trA^{-1}(z)H^{-1}(z)T_n \right] + o(1).$$

By (4.22) of [3] we obtain

$$E\left[n^{-1}trA^{-1}(z)T_nA^{-1}(z)T_n \right] = \frac{cn}{z^2} \int \frac{t^2dH_n(t)}{(1 + tE_m)^2} + o(1).$$

This, together with (2.51), yields

$$E\left[\frac{1}{n}trA^{-2}(z)T_n \right] = \frac{cm}{z^2} \int \frac{tdH_n(t)}{(1 + tE_m)^2} + o(1).$$

It was proved in (4.1) of [3] that

$$\sup_{z \in \mathbb{C}_n} |Em_n(z) - m(z)| \to 0.$$
This, (2.46) and (2.47) ensure that

$$E\left[\mathbf{s}^T A^{-2}(z) \mathbf{s} \right] = \frac{cm^2(z) \int \frac{tdH(t)}{(1+tm)^2}}{1 - c \int \frac{tmz^2dH(t)}{(1+tm)^2}} + o(1).$$

Consider $E(\mathbf{s}^T A^{-1}(z) \mathbf{s})$ next. As in dealing with the term $E(\mathbf{s}^T A^{-2}(z) \mathbf{s})$, write

$$E(\mathbf{s}^T A^{-1}(z) \mathbf{s}) = \frac{1}{n} \sum_{j=1}^{n} E\left[s_j^T \mathbf{A}_j^{-1}(z) \mathbf{s}_j \beta_j(z) \right] + \frac{1}{n^2} \sum_{j=1}^{n} E\left[s_j^T \mathbf{A}_j^{-1}(z) s_j \beta_j(z) \right].$$

By (2.41) and (2.42) the absolute value of the first term on the right hand side of the above equality converges to zero as $n \to \infty$. From (2.41), (2.42) and (2.47) the above second term becomes

$$b_1(z) \frac{1}{n} \text{tr} \mathbf{A}_1^{-1}(z) \mathbf{T}_n = 1 - b_1(z) \to 1 + zm(z).$$

Therefore

$$E(\mathbf{s}^T A^{-1}(z) \mathbf{s}) = 1 - b_1(z) \to 1 + zm(z). \quad (2.52)$$

2.5 Convergence of $\mathbf{s}^T A^{-2}(z) \mathbf{s} / (1 - \mathbf{s}^T A^{-1}(z) \mathbf{s})$

From sections 2.2 to 2.4 we see that after centering the stochastic processes $\mathbf{s}^T A^{-2}(z) \mathbf{s}$ and $\mathbf{s}^T A^{-1}(z) \mathbf{s}$ converge in distribution in the C space, the space of continuous functions, to zero for $z \in C$. This implies that

$$\sup_{z \in C} \left| \mathbf{s}^T A^{-2}(z) \mathbf{s} - \frac{cm^2(z) \int \frac{tdH(t)}{(1+tm)^2}}{1 - c \int \frac{tmz^2dH(t)}{(1+tm)^2}} \right| \overset{\text{i.p.}}{\to} 0,$$

and that

$$\sup_{z \in C} \left| \mathbf{s}^T A^{-1}(z) \mathbf{s} - 1 - zm(z) \right| \overset{\text{i.p.}}{\to} 0. \quad (2.53)$$
Thus we conclude from (2.25), (2.28) and (2.59) below that
\[
\sup_{z \in \mathbb{C}} \left| \frac{\mathbf{s}^T \mathbf{A}^{-2}(z) \mathbf{s}}{1 - \mathbf{s}^T \mathbf{A}^{-1}(z) \mathbf{s}} + \frac{cm(z) \int \frac{tdH(t)}{(1 + tm(z))^2}}{z \left(1 - c \int \frac{(m(z))^2 t^2 dH(t)}{(1 + tm(z))^2} \right)} \right| \xrightarrow{i.p.} 0. \quad (2.54)
\]

Theorem 1 follows from Lemma 1.1 of [3], the argument of Theorem 1.4 of [16], Theorems 4.4 and 5.1 of [8], (2.22), (2.23), (2.29) and (2.54). Formulae (1.8) and (1.9) follow from (1.18) and (1.19) of [16].

2.6 Derivations of (1.10) and (1.11)

We now verify (1.10) and (1.11). Consider (1.10) first. As in [3], we select the contour to be the rectangle with sides parallel to the axes. It intersects the real axis at \(a_1 \neq 0 \) and \(b_1 \) (the support of \(E_{c, H} \) is a subset of \((a_1, b_1) \)), and the horizontal sides are a distance \(v \) away from the real axis. We let \(v \to 0 \). By (1.3) we obtain
\[
\frac{dm(z)}{dz} = \frac{m(z)}{1 - c \int \frac{(m(z))^2 t^2 dH(t)}{(1 + tm(z))^2}}.
\]

This, together with (1.3) and integration by parts, ensures that
\[
\frac{1}{2\pi i} \int g(z) \frac{c m(z) \int \frac{tdH(t)}{(1 + tm(z))^2}}{z \left(1 - c \int \frac{(m(z))^2 t^2 dH(t)}{(1 + tm(z))^2} \right)} dz = \frac{1}{2\pi i} \int g(z) \frac{d}{dz} \left(\text{Log}(zm(z)) \right) dz = - \frac{1}{2\pi i} \int g'(z) \text{Log}(zm(z)) dz, \quad (2.55)
\]

where \(\text{Log} \) denotes any branch of the logarithm. By the fact that \(|m(z)| \leq 1/v \) and (5.1) in [3] the integrals on the two vertical sides in (2.55) are bounded in absolute value by
$Mv \log v^{-1}$, which converges to zero. Therefore the integral in (2.55) equals

$$-\frac{1}{\pi} \int_{a_1}^{b_1} g'_i(x+iv) \log[(x+iv)\bar{m}(x+iv)]dx - \frac{1}{\pi} \int_{a_1}^{b_1} g'_r(x+iv) \arg[-(x+iv)\bar{m}(x+iv)]dx. \quad (2.56)$$

By the fact that $|\bar{m}(z)| \leq 1/v$, (5.6) and (5.1) in [3] the first term in (2.56) is bounded in absolute value by $Mv \log v^{-1}$, converging to zero. Therefore we conclude from the dominated convergence theorem that

$$-\frac{1}{2\pi i} \int g'(z) \log(z\bar{m}(z))dz \rightarrow -\frac{1}{\pi} \int g'(x) \log[x\bar{m}(x)]dx. \quad (2.57)$$

Consider (1.11) now. Keep in mind that $T_n = I$ in this case. We select the same contour for evaluating (1.11) as that for (1.10) but with a_1 and b_1 replaced by a and b (a and b are defined in the introduction). The simplified formula for the first term on the right hand of (1.8) is given in [3]. By remark 2 the second term on the right hand of (1.8) then becomes

$$-c(Ex^4_{11} - 3) \int \frac{g'(z)m^3(z)}{(1+m(z))^3} \frac{m^3(z)}{(1+m(z))^2} dz. \quad (2.58)$$

To calculate (2.58), solving (1.3) gives

$$m(z) = \frac{(-(z + 1 - c) + \sqrt{(z - 1 - c)^2 - 4c})}{2z}.$$

It follows that $|\bar{m}(z)|$ and $|m(z)|$ are bounded on the contour C. Hence by (1.3) and (1.5)

$$\frac{1}{1 + cm(z)} = |1 - c - czm(z)| \leq M \quad (2.59)$$

and by (1.3)

$$\frac{cm(z)}{1 + m(z)} = |1 + zm(z)| \leq M.$$

29
One can verify that

\[1 - c \frac{m^2(z)}{(1 + m(z))^2} = \frac{\sqrt{(z - 1 - c)^2 - 4c(1 + cm(z))}}{2c}, \]

where we use (1.5) and (1.3). Note that

\[|\sqrt{(z - 1 - c)^2 - 4c}| = |\sqrt{(z - a)(z - b)}| \]

and that

\[\int_a^b \frac{1}{\sqrt{(x - a)(b - x)}} dx < \infty. \quad (2.60) \]

We then conclude from (2.59)-(2.60) that the integrals on the vertical lines in (2.58) are bounded in absolute value by

\[Mv \int_a^b \frac{1}{\sqrt{(x - a)(b - x)}} dx, \]

converging to zero. The integral on the two horizontal lines equals

\[-\frac{c(EX^4_{11} - 3)}{\pi} \int g_i(z) \text{Re} \left[\frac{m^3(z)}{(1 + m(z))^2} \right] dz - \frac{c(EX^4_{11} - 3)}{\pi} \int g_r(z) \text{Im} \left[\frac{m^3(z)}{(1 + m(z))^2} \right] dz, \quad (2.61) \]

where \(g_i(x + iv) \) and \(g_r(x + iv) \) denote, respectively, the imaginary part and real part of \(g'(x + iv) \) and \(\text{Re}(\cdot) \) and \(\text{Im}(\cdot) \) also denote, respectively, the imaginary part and real part of the corresponding function. It follows from (5.6) in [3] and (2.59)-(2.60) that the first term in (2.61) is bounded in absolute value by

\[Mv \int_a^b \frac{1}{\sqrt{(x - a)(b - x)}} dx, \]

converging to zero. Applying the generalized dominated convergence theorem and (2.59)-
\[3.1\]

\[\frac{1}{n^2} \sum_{j=1}^{n} (\hat{s}_j^T \hat{s}_j - E(\hat{s}_j^T \hat{s}_j))^2 = \frac{1}{n^4} \sum_{j=1}^{n} E[(\hat{s}_j^T \hat{s}_j - E(\hat{s}_j^T \hat{s}_j))^2] \leq \frac{M}{n^2} \]

we have \[\frac{1}{n^2} \sum_{j=1}^{n} (\hat{s}_j^T \hat{s}_j - E\hat{s}_j^T \hat{s}_j) \xrightarrow{a.s.} 0\] by the Borel-Cantelli Lemma. Obviously \[\frac{1}{n^2} \sum_{j=1}^{n} E(\hat{s}_j^T \hat{s}_j)\]

\(3.2\)
can be arbitrarily small by choosing K large sufficiently. A direct calculation indicates that

$$
E\left|\frac{1}{n^2} \sum_{j_1 \neq j_2}^{n} \bar{s}_{j_1} \bar{s}_{j_2}\right|^4 \leq \frac{M}{n^8} \sum_{j_1 \neq j_2}^{n} E|\bar{s}_{j_1} \bar{s}_{j_2}|^4 + \frac{M}{n^8} \sum_{j_1 \neq j_2}^{n} \sum_{j_3 \neq j_4}^{n} E|\bar{s}_{j_1} \bar{s}_{j_2} \bar{s}_{j_3} \bar{s}_{j_4}|^2
+ \frac{M}{n^8} \sum_{j_1 \neq j_2, j_3 \neq j_4}^{n} E|\bar{s}_{j_1} \bar{s}_{j_2} \bar{s}_{j_3} \bar{s}_{j_4} \bar{s}_{j_5} \bar{s}_{j_6} \bar{s}_{j_7} \bar{s}_{j_8}|^4
$$

(3.3)

Therefore $\|(\bar{s} - \bar{s})(\bar{s} - \bar{s}^T)\|$ can be arbitrary small with probability one by choosing K large sufficiently. Likewise, one can also verify that $\|(\bar{s} - \bar{s})\bar{s}^T\|$ can be arbitrary small by choosing K large sufficiently. The re-scaling of \hat{X}_{ij} can be treated similarly, because $\lim_{n \to \infty} E|\hat{X}_{11}|^2 = 1$.

Hence, in what follows, we may assume $|X_{ij}| \leq K$, $EX_{11} = 0$ and $E|X_{11}|^2 = 1$ (for simplicity, suppressing all super- or sub-scripts on the variables X_{ij}).

Recalling $A^{-1}(z) = (S - zI)^{-1}$, it is observed that

$$
x_n^T(S - zI)^{-1}x_n = x_n^TA^{-1}(z)x_n + \frac{x_n^TA^{-1}(z)\bar{s}\bar{s}^TA^{-1}(z)x_n}{1 - \bar{s}^T A^{-1}(z)\bar{s}}. \quad (3.4)
$$

To prove Theorem 2, according to the argument of Theorem 1 in [4] it is sufficient to show that

$$
\frac{x_n^TA^{-1}(z)\bar{s}\bar{s}^TA^{-1}(z)x_n}{1 - \bar{s}^T A^{-1}(z)\bar{s}} \xrightarrow{a.s.} 0. \quad (3.5)
$$

To this end, we first show that

$$
x_n^TA^{-1}(z)\bar{s} - E(x_n^TA^{-1}(z)\bar{s}) \xrightarrow{a.s.} 0. \quad (3.6)
$$
We use the same notation as in the proof of Theorem 1. Write
\[
\mathbf{x}_n^T A^{-1}(z) \bar{s} - E(\mathbf{x}_n^T A^{-1}(z) \bar{s}) = \sum_{j=1}^{n} E_j(\mathbf{x}_n^T A^{-1}(z) \bar{s}) - E_{j-1}(\mathbf{x}_n^T A^{-1}(z) \bar{s})
\]
\[
= \sum_{j=1}^{n} (E_j - E_{j-1})(\mathbf{x}_n^T A^{-1}(z) \bar{s} - \mathbf{x}_n^T A^{-1}(z) \bar{s}_j). \quad (3.7)
\]
Furthermore, we have
\[
\mathbf{x}_n^T A^{-1}(z) \bar{s} - \mathbf{x}_n^T A_j^{-1}(z) \bar{s}_j = c_{n1} + c_{n2} + c_{n3}, \quad (3.8)
\]
where, via (2.33),
\[
c_{n1} = \mathbf{x}_n^T (A^{-1}(z) - A_j^{-1}(z))(\bar{s} - \bar{s}_j) = -\frac{1}{n^2} \mathbf{x}_n^T A_j^{-1}(z) s_j s_j^T A_j^{-1}(z) s_j \beta_j(z),
\]
\[
c_{n2} = \mathbf{x}_n^T (A^{-1}(z) - A_j^{-1}(z)) \bar{s}_j = -\frac{1}{n} \mathbf{x}_n^T A_j^{-1}(z) s_j s_j^T A_j^{-1}(z) \bar{s}_j \beta_j(z)
\]
and
\[
c_{n3} = \mathbf{x}_n^T A_j^{-1}(z)(\bar{s} - \bar{s}_j) = \frac{1}{n} \mathbf{x}_n^T A_j^{-1}(z) s_j.
\]
Observe that \(|\beta_j(z)| \leq |z|/v\) and \(|b_j(z)| \leq |z|/v\) (see (3.4) in [2]). Using an argument similar to (3.19) of [15] one can prove that
\[
E|\mathbf{x}_n^T A_j^{-1}(z) s_j|^4 = O(1). \quad (3.9)
\]
By the Burkholder inequality and the fact that \(|s_j^T A_j^{-1}(z) s_j/n| \leq M/v\) we have
\[
E|\sum_{j=1}^{n} (E_j - E_{j-1}) c_{n1}|^4 \leq \frac{M}{n^4} E \left[\sum_{j=1}^{n} -\frac{1}{n} \mathbf{x}_n^T A_j^{-1}(z) s_j s_j^T A_j^{-1}(z) s_j \right]^2
\]
\[
\leq \frac{M}{n^3} \sum_{j=1}^{n} E|\mathbf{x}_n^T A_j^{-1}(z) s_j|^4 = O\left(\frac{1}{n^2}\right), \quad (3.10)
\]
which implies that \(\sum_{j=1}^{n}(E_j - E_{j-1})c_{n1} \overset{a.s.}{\to} 0 \). The above argument also ensures that \(\sum_{j=1}^{n}(E_j - E_{j-1})c_{n3} \overset{a.s.}{\to} 0 \). Similarly, by the Burkholder inequality, Lemma 2.7 in [2] and (2.38) we have

\[
E|\sum_{j=1}^{n}(E_j - E_{j-1})c_{n2}|^4 \leq \frac{M}{n^3} \sum_{j=1}^{n} E|s_j^T A_j^{-1}(z)s_j x_n^T A_j^{-1}(z)s_j|^4
\]

\[
\leq \frac{M}{n^3} \sum_{j=1}^{n} \left[E|s_j^T A_j^{-1}(z)s_j x_n^T A_j^{-2}(z)s_j|^4 + E|x_n^T A_j^{-2}(z)s_j|^4 \right]
\]

\[
\leq \frac{M}{n^3} \sum_{j=1}^{n} E\|s_j^T s_j\|^2 = O\left(\frac{1}{n^2}\right).
\] (3.11)

Thus we prove (3.6), as expected.

Finally applying \(\bar{s} = \sum_j s_j/n \) gives

\[
E(x_n^T A^{-1}(z)\bar{s}) = \frac{1}{n} \sum_{j=1}^{n} E(x_n^T A^{-1}(z)s_j) = \frac{1}{n} \sum_{j=1}^{n} E(x_n^T A_j^{-1}(z)s_j \beta_j(z))
\]

\[
= -\frac{1}{n} \sum_{j=1}^{n} E\left(x_n^T A_j^{-1}(z)s_j b_1(z)\beta_j(z)\gamma_j(z)\right)
\]

\[
= O\left(\frac{1}{\sqrt{n}}\right),
\] (3.12)

where the step before to the last one uses (2.41) and the last step uses Holder’s inequality, (2.42) and (3.9). Therefore (3.5) follows from (3.6), (3.12), (2.28), and the fact that \(\bar{s}^T \bar{s} \leq M\bar{x}^T \bar{x} \overset{a.s.}{\to} Mc \), which can be verified by an argument similar to (3.1)-(3.3).

4 Proof of Theorem 3

Proof.

The proof of Theorem 3 is similar to that of Theorem 1. The only difference is that the extra random variable here converges in probability in the \(C \) space to zero.

34
Similar to (2.19) we can also truncate the underlying random variables at $\varepsilon_n\sqrt{n}$ with ε_n defined as before. Thus, in view of the structure of S we may assume that the following additional conditions hold:

$$|X_{ij}| \leq \sqrt{n}\varepsilon_n, \ EX_{ij} = 0, \ EX_{11}^2 = 1 + o(p^{-1})$$

and under assumption (b) of Theorem 3

$$E(X_{11} - \mu)^4 = 3 + o(1).$$

It is proved in section 10.7 of [5] that Lemma 2 in [4] holds under conditions (4.1) and (4.2). Also, we see that Theorem 1.3 of [16] is true under conditions (4.1) and (4.2) by carefully checking on the argument of Theorem 1.3 of [16]. Thus, to prove Theorem 3, by Theorems 4.4 and 5.1 of [8], (2.53) and (3.4) it is sufficient to prove that on the contour C (C is defined in Theorem 1)

$$n^{1/4}x_n^T\hat{A}^{-1}(z)\bar{s} \xrightarrow{i.p.} 0,$$

where the truncated process $x_n^T\hat{A}^{-1}(z)\bar{s}$ is obtained from $x_n^T\hat{A}^{-1}(z)\bar{s}$ like the truncated process $\bar{s}^T\hat{A}^{-2}(z)\bar{s}$ is obtained from $\bar{s}^T\hat{A}^{-2}(z)\bar{s}$ in Theorem 1.

To prove (4.3), as in Theorem 1, it is sufficient to prove that

$$n^{1/4}x_n^T\hat{A}^{-1}(z)\bar{s} \xrightarrow{d} 0.$$ (4.4)

For each $z \in \mathbb{C}_u$ from the definition of c_{n1} in (3.8) we have

$$E|n^{1/4}\sum_{j=1}^n (E_j - E_{j-1})c_{n1}|^2 \leq M\sqrt{n}\sum_{j=1}^n E|c_{n1}|^2 \leq Mn^{-1/2},$$

35
because by Holder's inequality, (2.42), (2.20) and (3.9)

\[E|c_{n1}|^2 \leq M \left(E\left| \frac{1}{n} x_n^T A_j^{-1}(z)s_j \right|^4 E\left| \frac{1}{n} s_j^T A_j^{-1}(z)s_j \right|^4 \right)^{1/2} = O(n^{-2}). \]

Appealing to (3.9) yields

\[E|n^{1/4} \sum_{j=1}^{n} (E_j - E_{j-1}) c_{nj}|^2 \leq Mn^{-1/2}. \]

By (2.31), (2.20) and (3.9) we obtain

\[E|n^{1/4} \sum_{j=1}^{n} (E_j - E_{j-1}) c_{n2}|^2 \leq Mn^{-1/2}. \]

With \(M_n(z) = n^{1/4}(x_n^T A^{-1}(z)\bar{s} - Ex_n^T A^{-1}(z)\bar{s}) \) we thus have

\[E|M_n(z)|^2 = O(n^{-1/2}). \] (4.5)

By (2.37) and (2.40), (3.9) holds for \(z \in \mathbb{C}_n^+ \). For \(z \in \mathbb{C}_n^+ \), it follows from (3.12), (3.9), (2.20), (2.36), (2.39) and (2.42) that

\[
\begin{align*}
|E\left(n^{1/4} x_n^T A^{-1}(z)\bar{s}\right)| &= |\frac{1}{n^{1/4}} \sum_{j=1}^{n} E\left(x_n^T A_j^{-1}(z)s_j b_1(z)\beta_j(z)\gamma_j(z)\right)| \\
&\leq Mn^{1/4}\left(E|x_n^T A_1^{-1}(z)s_1|^2 E|\gamma_1(z)|^2\right)^{1/2} + Mn^{-4}n^3P(\lambda_{\text{max}}(S) > \eta_r \text{ or } \lambda_{\text{min}}(S_1) \leq \eta_l) \\
&\leq M/n^{1/4}. \end{align*}
\] (4.6)

From (3.12) one can verify that for \(\Im(z) = v_0 \) (\(v_0 \) is defined in the proof of Theorem 1)

\[E|n^{1/4} x_n^T A^{-1}(z)\bar{s}|^2 \leq M, \]
which implies condition (i) of Theorem 12.3 of [8]. Thus, in view of (4.5) and (4.6), to ensure
that convergence in (4.4) is true on the contour C, it suffices to show that

$$E \frac{|M_n(z_1) - M_n(z_2)|^2}{|z_1 - z_2|^2} \leq M, \quad \text{if } z_1, z_2 \in C_n^+ \cup C_n^-, \quad (4.7)$$

where C_n^+ and C_n^- are defined in Theorem 1. Write

$$\frac{M_n(z_1) - M_n(z_2)}{z_1 - z_2} = n^{1/4} \left(x_n^T A^{-1}(z_1) A^{-1}(z_2) \bar{s} - E(x_n^T A^{-1}(z_1) A^{-1}(z_2) \bar{s}) \right)$$

$$= n^{1/4} \sum_{j=1}^n (E_j - E_{j-1}) (x_n^T A^{-1}(z_1) A^{-1}(z_2) \bar{s} - x_n^T A^{-1}(z_1) A^{-1}(z_2) \bar{s}_j)$$

$$= d_{n1} + d_{n2} + d_{n3} + d_{n4} + d_{n5} + d_{n6},$$

where

$$d_{n1} = \frac{n^{1/4}}{n^3} \sum_{j=1}^n (E_j - E_{j-1}) \beta_j(z_1) \beta_j(z_2) s_j^T A_j^{-1}(z_1) A_j^{-1}(z_2) s_j s_j^T A_j^{-1}(z_2) s_j x_n^T A_j^{-1}(z_1) s_j,$$

$$d_{n2} = -\frac{n^{1/4}}{n^2} \sum_{j=1}^n (E_j - E_{j-1}) \beta_j(z_1) s_j^T A_j^{-1}(z_1) A_j^{-1}(z_2) s_j x_n^T A_j^{-1}(z_1) s_j,$$

$$d_{n3} = -\frac{n^{1/4}}{n^2} \sum_{j=1}^n (E_j - E_{j-1}) \beta_j(z_2) x_n^T A_j^{-1}(z_1) A_j^{-1}(z_2) s_j s_j^T A_j^{-1}(z_2) s_j,$$

$$d_{n4} = \frac{n^{1/4}}{n^2} \sum_{j=1}^n (E_j - E_{j-1}) \beta_j(z_1) \beta_j(z_2) s_j^T A_j^{-1}(z_1) A_j^{-1}(z_2) s_j s_j^T A_j^{-1}(z_2) s_j x_n^T A_j^{-1}(z_1) s_j,$$

$$d_{n5} = -\frac{n^{1/4}}{n} \sum_{j=1}^n (E_j - E_{j-1}) \beta_j(z_1) s_j^T A_j^{-1}(z_1) A_j^{-1}(z_2) s_j x_n^T A_j^{-1}(z_1) s_j,$$

and

$$d_{n6} = -\frac{n^{1/4}}{n} \sum_{j=1}^n (E_j - E_{j-1}) \beta_j(z_2) x_n^T A_j^{-1}(z_1) A_j^{-1}(z_2) s_j s_j^T A_j^{-1}(z_2) s_j.$$
Here we also use the fact that \(\bar{s} = \bar{s}_j + s_j/n \) and the identity above (3.7) in [3]. By (2.36), (2.40), (2.39), (3.9) and (2.39) we obtain

\[
E|d_{n1}|^2 \leq \frac{M}{\sqrt{n}} E|x_n^T A_1^{-1}(z_1)s_1|^2 + M v^{-12} n^{1/2} P(\lambda_{\text{max}}(S) > \eta_r \text{ or } \lambda_{\text{min}}(S_1) \leq \eta_l) \leq \frac{M}{\sqrt{n}}.
\]

This argument of course handles the terms \(d_{n2} \) and \(d_{n3} \). Furthermore, we conclude from (2.36), (2.40), (2.39), (3.9), (2.39), (2.31) and Holder’s inequality that

\[
E|d_{n4}|^2 \leq \frac{M}{\sqrt{n}} \left(E|s_1^T A_1^{-1}(z_2)s_1|^2 E|x_n^T A_1^{-1}(z_1)s_1|^2 \right)^{1/2} + M v^{-12} n^{1/2} P(\lambda_{\text{max}}(S) > \eta_r \text{ or } \lambda_{\text{min}}(S_1) \leq \eta_l) \leq \frac{M}{\sqrt{n}}.
\]

Obviously, the argument for \(d_{n4} \) also applies to \(d_{n5} \) and \(d_{n6} \). Thus, the proof of (4.3) is complete.

Acknowledgments

The author would like to thank the editor and two referees for their constructive comments, which have helped to improve the paper a great deal. G.M. Pan is partially supported by the Ministry of Education, Singapore, under a grant #ARC 14/11.

References

39

