<table>
<thead>
<tr>
<th>Title</th>
<th>Vibration energy harvesting using macro-fiber composites (Main article)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yang, Yaowen; Tang, Lihua; Li, Hongyun</td>
</tr>
<tr>
<td>Citation</td>
<td>Yang, Y., Tang, L., & Li, H. (2009). Vibration energy harvesting using macro-fiber composites. Smart materials and structures, 18(11), 115025-.</td>
</tr>
<tr>
<td>Date</td>
<td>2009</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/24057</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2009 IOP Publishing Ltd. This is the author created version of a work that has been peer reviewed and accepted for publication by Smart Materials and Structures, IOP Publishing Ltd. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI:http://dx.doi.org/10.1088/0964-1726/18/11/115025].</td>
</tr>
</tbody>
</table>
Vibration Energy Harvesting Using Macro-Fiber Composites

Yaowen YANG 1*, Lihua TANG 2 and Hongyun LI 3

1,2 School of Civil and Environmental Engineering,
Nanyang Technological University,
50 Nanyang Avenue, Singapore 639798

3 Department of Engineering Mechanics,
Shanghai Jiao Tong University,
1954 Huashan Road, Shanghai 200030, P.R.China

1* Corresponding author, cywyang@ntu.edu.sg
2 lihuatang@pmail.ntu.edu.sg
3 hyli@sjtu.edu.cn
ABSTRACT

The decreasing energy consumption of today's portable electronics has invoked the possibility of energy harvesting from ambient environment for self power supply. One common and simple method for vibration energy harvesting is to utilize the direct piezoelectric effect. Compared to traditional piezoelectric materials such as lead zirconate titanate (PZT), macro-fiber composites (MFC) are featured in their flexibility of large deformation. However, the energy generated by MFC is still far smaller than that required by electronics at present. In this paper, a vibration energy harvesting system prototype with MFC patches bonded to a cantilever beam is fabricated and tested. A finite element analysis (FEA) model is established to estimate the output voltage of the MFC harvester. The energy accumulation procedure in the capacitor is simulated by using the electronic design automation (EDA) software. The simulation results are validated by the experimental ones. Finally, to optimize the efficiency of energy harvesting, the effects of electrical properties of MFC as well as the geometric configurations of the cantilever beam and MFC are parametrically studied by combining the FEA and EDA simulations.

Keywords: energy harvesting; piezoelectric; macro-fiber composite; FEA; EDA.
1 INTRODUCTION

With the advancement of integrated circuitry, energy consumption of today’s electronics continues decreasing, invoking the possibility for micro electromechanical systems, wireless sensors and portable electronics to harvest energy from ambient environment for self power supply. There are many energy sources available in the environment but still not well utilized, such as the vibration energy. One simple method for vibration energy harvesting is to utilize the direct piezoelectric effect. Compared to the traditional piezoelectric materials such as lead zirconate titanate (PZT), the macro-fiber composites (MFC) [1] are featured in flexibility of large deformation, which enables them to harvest energy from ambient vibration sources with little brittle risk and long lifespan. However, the current and energy generated by MFC are still far from fulfilling the consumption requirements of most portable electronics at present.

In the past few years, many studies have been conducted on the energy generation ability of piezoelectric materials. Umeda et al [2] investigated the efficiency of a piezoelectric vibrator which converts the impact vibration energy into the electrical energy. Ramsey and Clark [3] investigated the feasibility of using a piezoelectric transducer as power supply for a bio-MEMS application. Since polyvinylidene fluoride (PVDF) exhibits considerable flexibility compared to PZT, Kymissis et al [4] developed a parasitic power harvester in shoes to gather energy during walking using
PVDF. As a new piezoelectric material, the energy harvesting capability of MFC has not been fully investigated. Sodano et al [5] compared the efficiencies of three piezoelectric materials, i.e., the traditional PZT, a quick pack actuator and MFC. It was concluded that MFC is less efficient compared to the conventional piezoelectric materials, but how to improve the efficiency of energy harvesting of MFC was not mentioned. If the efficiency of MFC could be improved, it is expected to be more applicable than PZT in real applications because of its attractive property of flexibility.

Improvement of energy harvesting efficiency can be achieved by two ways. The first way is to improve the power output from the harvester. This can be achieved by changing the geometric configuration of the system or utilizing multiple pieces or stack configuration of piezoelectric materials [6, 7]. For a cantilever beam system, the length, width, thickness, beam shape and free end proof mass can be the candidate parameters to increase the vibration amplitude and to improve the strain-induced energy output. Jiang et al [8] modeled a cantilever bimorph with a proof mass attached to its free end and studied the effect of physical and geometrical parameters on the performance of power generation. Roundy et al [9] stated that, for the same volume of PZT, a trapezoidal cantilever could generate more than twice energy than a rectangular beam.

The second way to improve the efficiency of energy harvesting is to enhance the
power extraction ability using optimized energy harvesting circuit. Many researchers have investigated different energy storage methods and attempted to develop the optimized circuit for energy extracting. Sodano et al [10] compared the efficiency of a capacitor and a nickel metal hydride battery as energy storage media. Ottman [11] developed an adaptive approach for energy harvesting from mechanically excited piezoelectric element. By using a DC-DC converter with an adaptive control algorithm, the energy harvested was four times that of direct charging without the converter. Subsequently, self-adaptive power harvesting circuit using the techniques termed ‘synchronous electric charge extraction’ [12] and ‘synchronous switch harvesting on inductor’ [13] has been developed and results showed that the synchronous circuit was able to increase power transfer by 400%. Yet, the additional electronics for monitoring and power management on the other hand consumed some energy harvested. More efficient circuit is still under development.

In this paper, a vibration energy harvesting system prototype with MFC patches on a cantilever beam is developed. The output voltage of the MFC harvester is experimentally tested and estimated using the finite element method (FEM). Subsequently, the procedure of energy storing to the capacitor is simulated using the electronic design automation (EDA) software. The results are verified with the experimental ones. By combining the FEM and EDA simulations, parametric analysis is conducted to evaluate the effects of system parameters for optimal power harvesting.
2 EXPERIMENTAL STUDY

The energy harvesting system is composed of an aluminum cantilever beam, one piece of P1-type MFC as actuator and two pieces of P2-type MFCs as harvesters, an energy harvesting circuit EH300A, a small LED bulb and the power supply to the actuator. The entire system is shown in Fig.1. Note that the P1-type MFC actuator is used for a good controllable excitation of the system. It is not needed in the practical application.

The P1-type MFC utilizes d_{33} piezoelectric effect (Fig.2) to serve as the actuator to excite the beam. So the beam vibration amplitude can be tuned by altering the voltage input to the actuator. The two P2-type MFCs, which utilize the d_{31} effect (Fig.2), are attached beside the P1-type MFC, serving as energy harvesters. The reasons for choosing P1-type MFC as actuator are: (1) d_{33} is larger than d_{31}; (2) the operational voltage of P1-type ranges from -500V to +1500V [14], which enables it suitable for actuation, while the operational voltage of P2-type is only -60V~+360V; and (3) the interdigital electrode configuration of P1-type MFC limits the current output, which is not favorable for energy extraction. Two pieces of P2-type MFC harvesters are used to test the efficiency of the harvesting system for three cases, i.e., one single MFC, two MFCs electrically connected in series and in parallel.
For the energy harvesting circuit, we utilize an EH300A module (Fig.3), developed by Advanced Linear Devices, INC [15]. When an energy source starts to inject energy into the inputs of the EH300A module in the form of electrical charge impulses, these charge packets are collected and accumulated in an internal storage capacitor bank. Fig.4 shows the waveform of voltage across the capacitor bank in EH300A. Initially, the voltage across the capacitor bank, \(+V\), starts at 0.0V. When \(+V\) reaches \(V_H\), the module output \((V_P)\) is enabled to supply power to a load. In this study, the load is an LED bulb. As power is drawn by the LED from the capacitor bank during time duration \(t_3\) (Fig.4), \(+V\) decreases. When it reaches \(V_L\), output \(V_P\) switches off and stops supplying any further power. The charging cycle will restart until \(V_H\) is reached again. During each charging cycle that \(+V\) increases from \(V_L\) to \(V_H\) or energy is delivered to the load, around 30mJ energy (taken from the datasheet of EH300A [15]) is accumulated or released. In the experiment, time \(t_2\) in Fig.4 for different cases is our concern since it reflects the efficiency of energy harvesting of the system. The shorter is it, the higher the efficiency is.

3 FINITE ELEMENT MODELING

To determine the ability of energy generation of MFC, a finite element model is developed using the commercial code ABAQUS6.6 to calculate the voltage output from MFC. The geometric configuration is shown in Fig.5. The parameters of energy harvesting system are list in Table 1. The mesh of finite element model is
shown in Fig. 6. The epoxy and aluminum beam are modeled using the reduced second order solid element, i.e. C3D20R, and the MFC actuator and harvesters are modeled using the piezoelectric element, i.e. C3D20RE.

3.1 Electrode Modeling

The entire top and bottom surface of P2-type MFC is covered by electrode. In finite element analysis (FEA), the equation constraint [16] should be imposed on the electrical potential degrees of the surface nodes to ensure a uniform potential, which simulates the real electrodes. For the actuator P1-type MFC, it is quite difficult to directly model the interdigital electrodes. For convenience of analysis, the P1-type MFC will be equivalently converted to the P2-type MFC so that the top surface and bottom surface are modeled as electrodes, as shown in Fig. 6. The voltage load on the P1-type MFC actuator is applied by setting the potential on the bottom electrode to be zero and imposing the sinusoidal electrical potential on the top electrode. The equivalent conversion should ensure that the piezoelectric and electrical properties of the P1-type MFC keep unchanged. For the piezoelectric property, when applying the same voltage, the strain generated by MFC should be the same:

\[
d'_{31} \cdot \frac{V}{t_m} = d_{33} \cdot \frac{V}{e_m}
\]

(1)

where \(t_m = 0.25 \text{mm} \) and \(e_m = 0.5 \text{mm} \) are the thickness and the distance between two neighboring interdigital electrodes of P1-type MFC, respectively. Hence, the equivalent \(d'_{31} \) parameter applied in FEA is calculated as 1.87 E-10 C/N. Besides,
the dielectric constant 1.5E-8 F/m before conversion should be changed to 0.3E-8 F/m after conversion such that the capacitance is still 5nF as that of the original P1-type MFC.

Rayleigh Damping

In FEA, the damping effect should be considered otherwise the calculation would be terminated because of the convergence problem near the beam resonance. Both energy extracted from the MFC harvesters and the damping from structure material contribute to the entire damping effect of the system. However, in FEA, only the open circuit voltage of MFC harvester is calculated and no energy is removed from the system, in which case, we assume that the damping of the system is only attributed to the damping of the beam material. Here, the Rayleigh damping [16] is considered for the aluminum beam,

\[
\xi_i = \frac{1}{2} \left(\frac{\alpha}{\omega_i} + \omega_i \beta \right)
\]

(2)

where \(\alpha \) and \(\beta \) are the unknown parameters; and \(\omega_i \) is the frequency of the \(i \)th vibration mode. To obtain \(\alpha \) and \(\beta \), the damping ratios for the 1st and 2nd resonance modes should be experimentally determined. Usually, the log decrement method [17] can be utilized to measure the damping ratio at the resonance frequency,

\[
\xi = \frac{1}{2\pi n} \ln \frac{A_i}{A_{n+1}}
\]

(3)

where \(A_1 \) and \(A_{n+1} \) are the 1st and the \((n+1)\)th peak value of voltage recorded by
digital multimeter. A simple experiment has been conducted to record the free vibration response of the system. Using the experiment data and equation (3), the damping ratios for the 1st and 2nd modes are obtained as $\xi_1 = 0.0064$ and $\xi_2 = 0.0077$. Applying ξ_1 and ξ_2 to equation (2), the two parameters of the Rayleigh damping can be determined as $\alpha = 0.66$ and $\beta = 3.544 \times 10^{-5}$.

3.3 Results of Steady-State Analysis

Fig.7 shows the strain distribution of the cantilever beam and MFC harvesters at the 1st natural frequency. Figs.8 and 9 show the peak value of strain and RMS voltage output from one single MFC harvester, respectively. It is noted that the values of strain and voltage from FEA match well with the experimental results except for minor shifts on the frequency axis. This could be attributed to the fact that the cantilever beam is not perfectly clamped, as shown in Fig.1. For the 1st mode, the natural frequencies obtained from the experiment and simulation results are 9.75Hz and 10.269Hz, respectively, and the RMS voltage output are 11.5V and 10.8V, respectively. The differences between the experiment and simulation results are around 5%. Therefore, the finite element model is able to accurately evaluate the voltage output of MFC harvester.

In energy harvesting applications with ultra-low frequency (around 1Hz) impulse input, the cantilever beam will experience free vibration with damping at the 1st
natural frequency. At this resonance frequency, the MFC harvester will be subjected to the maximum strain and hence release the maximum output voltage, as shown in Fig.9. As a result, the efficiency of energy harvesting at resonance is of great importance. In later sections, the efficiencies of MFC harvesters are considered at the 1st natural frequency.

4 ELECTRONIC SIMULATION

The voltage output of MFC harvester can be obtained from FEA. However, based on these results, we still cannot evaluate the power available to be extracted from the MFC harvester. Actually, because of the intrinsic capacitance, the power generated by the MFC harvester will be recovered back to the source. As a result, the efficiency of energy harvesting system depends on the amount of energy extracted and stored from the MFC. The EDA software Multisim10.0 by National Instrument is utilized to simulate the energy extraction and storing procedures from the MFC harvester. Fig.10 shows the circuit of the energy harvesting system. The EH300A module is simplified as a full-wave rectifier and a capacitor bank, and the power management module in EH300A is neglected. As the 1st natural frequency of cantilever beam is around 10Hz, the impedance from the internal capacitance (measured 25nF in experiment) is quite large around 637kΩ. The equivalent circuit [18] of the MFC harvester is composed of a voltage source in series with its internal capacitance, as shown in the dash box in Fig.10, which is similar to that for the
conventional piezoelectric material.

4.1 Efficiency at 1st Natural Frequency

The efficiency of the energy harvesting system at the 1st natural frequency is tested for 3 cases, namely, one single MFC, two MFCs electrically connected in series and in parallel. Figs.11 and 12 illustrate the history of charging current to the EH300A and the energy storing procedure in the capacitor bank of EH300A, respectively. Again, the simulation results match well with the experimental ones.

Table 2 lists the time t_2 (refer to Fig.4) for 30mJ accumulated in EH300A and the average power of energy storing from the experiment and electronic simulation for the three cases at the 1st natural frequency. It is noted that MFCs electrically connected in parallel generate the largest charging current to EH300A and hence are most efficient to charge the energy storage capacitor with capacitance 6.6mF in EH300A.

5 OPTIMIZATION OF ENERGY HARVESTING SYSTEM

As shown above, the FEA and EDA simulations are able to accurately evaluate the voltage output of MFC harvesters and the energy storing to the EH300A. By combing the two simulations, a parametric analysis can be performed to estimate the
optimal power generation of the system. In Table 2, it is noted that the parallel and series connections alter both the capacitance and the MFC output voltage. The parallel connection doubles the capacitance of the harvesting system without changing the voltage output, while the series connection halves the capacitance but doubles the MFC voltage output. The results of increased average power for energy storage to EH300A indicate that both the capacitance of MFC harvesters and the voltage output are the key factors to optimize the efficiency of the energy harvesting system.

5.1 Effect of MFC Capacitance

The capacitance of MFC can be changed by the dielectric constant, the thickness and the area of MFC.

Dielectric constant

With the advancement of material science, the dielectric constant of piezoceramics can be changed during fabrication. Here, 5 values of dielectric constant are considered to study its effect on the performance of energy harvesting system. On the contrary to expectation, the dielectric constant fails to show significant influence on energy harvesting power, as demonstrated in Table 3. This should be attributed to the accompanying variation of output voltage from the MFC harvester. In Tables 3, 4 and 5, the values with ‘*’ are the actual values of MFC harvester in the experiment.
Thickness of MFC

With decrease in MFC thickness, the capacitance will relatively increase. To our disappointment, varying the MFC thickness also fails to improve the power extraction from the MFC, as shown in Table 4.

MFC stack configuration

The fact that changing the dielectric constant or MFC thickness can not improve the energy harvesting power is probably attributed to that the charges available to be extracted do not increase or even decrease for the specific MFC area. As for increasing the area of MFC, multiple MFCs electrically connected in parallel have been proven the most efficient. But increasing MFC area as in the experiment is not suitable for a wearable energy harvesting application. Thus, we try another way to equivalently increase the area of MFC, i.e., using the MFC stack configuration where multiple MFCs are geometrically connected in series while electrically in parallel, which is favorable to reduce the size of the energy harvesting system. In Table 5, it is observed that for the 2-layer MFC stack configuration, the energy extraction power can achieve a maximum increase of 26% compared to the non-stack configuration. But for more layers of MFC, the energy extraction power decreases. This is due to the fact that the multilayer stack configuration limits the flexibility of MFC, which in turn reduces the beam vibration and hence the output voltage, as shown in Table 5.
5.2 Varying Beam Dimensions

The above results on the variation of MFC capacitance affirm that the MFC voltage output is another important factor that affects the system performance. In this section, the beam dimensions will be optimized to increase the beam vibration amplitude. Besides, the beam dimensions will also affect the 1st natural frequency. Here, only the thickness and length of the beam are considered for optimization. With larger thickness and smaller length, higher natural frequency is expected, while with larger thickness and length, lower voltage output from the MFC harvester is expected, as shown in Figs.13 and 14.

With the given impedance, higher open circuit voltage means higher current, which is favorable for charge accumulation in a capacitor or battery. However, besides the capacitance in the capacitive energy harvesting circuit (Fig.10), the impedance also depends on the excitation frequency. In this work, we only consider the power achieved at the 1st natural frequency. The structural configuration for maximum open circuit voltage does not ensure the maximum power output at the 1st natural frequency (used as the excitation frequency). The maximum power output is achieved with the trade-off between the open circuit voltage and the natural frequency, as shown in Figs.13-15. With 7 values of length and 6 values of thickness in the simulation, the optimized power can be obtained at length=250mm and thickness=1.5mm, as shown in Fig.15.
5.3 Optimized Energy Harvesting Performance

Based on the above parametric analysis, for optimal energy harvesting performance, it is recommended to use the 2-layer MFC stack configuration with the beam dimensions of 250mm×62mm×1.5mm. The energy harvesting power can be optimized as 151.6 μw when the beam vibrates at the 1st natural frequency, as listed in Table 6.

6 CONCLUSION

In this paper, an energy harvesting system prototype with MFC patches on a cantilever beam is developed and the efficiency of energy harvesting is tested. A finite element model for the system is developed and verified with the experimental results, showing its capability of accurate evaluation of the voltage output from the MFC harvesters. Subsequently, the procedure of energy extraction and storing to the capacitor in EH300A is simulated by using the electronic design automation (EDA) software. By combining the FEM and EDA simulations, parametric analysis is conducted to optimize the energy harvesting performance of the system. It is found that with the MFC stack configuration with 2 layers and the beam dimensions of 250mm×62mm×1.5mm, energy extraction from the MFC harvesters can be optimized. The optimized power of 151.6 μw is achieved when the beam vibrates at the 1st natural frequency. It is demonstrated that the combined FEM and EDA
simulations are useful tools for evaluating and optimizing the efficiency of MFC based energy harvesting systems, which are also applicable to other piezoelectric material based systems.

REFERENCES

Table 1 Material and geometric parameters of MFC and cantilever beam

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFC active area dimensions (both P1- and P2-type)</td>
<td>28mm×14mm×0.25mm</td>
</tr>
<tr>
<td>MFC piezoelectric constant d_{33}</td>
<td>3.74E-10 C/N</td>
</tr>
<tr>
<td>MFC piezoelectric constant d_{31}</td>
<td>1.7E-10 C/N</td>
</tr>
<tr>
<td>MFC dielectric constant</td>
<td>1.5E-8 F/m</td>
</tr>
<tr>
<td>MFC elastic constants</td>
<td>E_1 = 30.34 GPa, E_3 = 15.86 GPa, v_{13}=0.31, G_{13}=5.52 GPa</td>
</tr>
<tr>
<td>MFC density</td>
<td>7500 Kg/m³</td>
</tr>
<tr>
<td>Epoxy dimensions</td>
<td>28mm×14mm×0.1mm</td>
</tr>
<tr>
<td>Epoxy elastic constants</td>
<td>E=0.1 GPa, v=0.38</td>
</tr>
<tr>
<td>Epoxy density</td>
<td>2200 Kg/m³</td>
</tr>
<tr>
<td>Aluminum beam dimensions</td>
<td>350mm×62mm×1.5mm</td>
</tr>
<tr>
<td>Aluminum elastic constants</td>
<td>E = 68 GPa, v=0.35</td>
</tr>
<tr>
<td>Aluminum density</td>
<td>2700 Kg/m³</td>
</tr>
</tbody>
</table>

Table 2 Energy harvesting performance for three cases

<table>
<thead>
<tr>
<th>MFC connection</th>
<th>Capacitance (nF)</th>
<th>Open circuit Vrms (V)</th>
<th>t_2 (sec)</th>
<th>Average power (μw)</th>
<th>t_2 (sec)</th>
<th>Average power (μw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>25</td>
<td>11.5</td>
<td>978</td>
<td>30.67</td>
<td>942</td>
<td>31.85</td>
</tr>
<tr>
<td>in series</td>
<td>12.5</td>
<td>21.5</td>
<td>845</td>
<td>35.50</td>
<td>835</td>
<td>35.93</td>
</tr>
<tr>
<td>in parallel</td>
<td>50</td>
<td>11.85</td>
<td>450</td>
<td>66.67</td>
<td>471</td>
<td>63.69</td>
</tr>
</tbody>
</table>

Table 3 Energy harvesting performance of MFC with various dielectric constants

<table>
<thead>
<tr>
<th>MFC dielectric constant (F/m)</th>
<th>Open circuit Vrms (V)</th>
<th>Capacitance (nF)</th>
<th>Time for 30mJ accumulated (sec)</th>
<th>Average power (μw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00E-08</td>
<td>15.9466</td>
<td>16.667</td>
<td>860.403</td>
<td>34.87</td>
</tr>
<tr>
<td>1.25E-08</td>
<td>12.8666</td>
<td>20.833</td>
<td>889.418</td>
<td>33.73</td>
</tr>
<tr>
<td>1.5E-08(*)</td>
<td>10.7967</td>
<td>25</td>
<td>922.260</td>
<td>32.53</td>
</tr>
<tr>
<td>1.75E-08</td>
<td>9.2997</td>
<td>29.17</td>
<td>960.776</td>
<td>31.22</td>
</tr>
<tr>
<td>2.00E-08</td>
<td>8.16694</td>
<td>33.33</td>
<td>1004.428</td>
<td>29.87</td>
</tr>
</tbody>
</table>
Table 4 Energy harvesting performance of MFC with various thicknesses

<table>
<thead>
<tr>
<th>MFC thickness (mm)</th>
<th>1st natural frequency (Hz)</th>
<th>Open circuit Vrms (V)</th>
<th>Capacitance (nF)</th>
<th>Time for 30mJ accumulated (sec)</th>
<th>Average power (μw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>10.205</td>
<td>5.41591</td>
<td>62.5</td>
<td>1028.865</td>
<td>29.16</td>
</tr>
<tr>
<td>0.15</td>
<td>10.227</td>
<td>7.49473</td>
<td>41.67</td>
<td>912.697</td>
<td>32.87</td>
</tr>
<tr>
<td>0.2</td>
<td>10.249</td>
<td>9.24628</td>
<td>31.25</td>
<td>905.464</td>
<td>33.13</td>
</tr>
<tr>
<td>0.25 (*)</td>
<td>10.269</td>
<td>10.7967</td>
<td>25</td>
<td>922.260</td>
<td>32.53</td>
</tr>
<tr>
<td>0.3</td>
<td>10.291</td>
<td>12.1485</td>
<td>20.833</td>
<td>952.331</td>
<td>31.50</td>
</tr>
<tr>
<td>0.35</td>
<td>10.311</td>
<td>13.3117</td>
<td>17.857</td>
<td>991.425</td>
<td>30.26</td>
</tr>
</tbody>
</table>

Table 5 Energy harvesting performance of MFC multilayer stack configurations

<table>
<thead>
<tr>
<th>Multilayer number</th>
<th>1st natural frequency (Hz)</th>
<th>Open circuit Vrms (V)</th>
<th>RMS tip deflection (mm)</th>
<th>Capacitance (nF)</th>
<th>Time for 30mJ accumulated (sec)</th>
<th>Average power (μw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(*)</td>
<td>10.269</td>
<td>10.7967</td>
<td>9.28</td>
<td>25</td>
<td>922.260</td>
<td>32.53</td>
</tr>
<tr>
<td>2</td>
<td>10.367</td>
<td>7.62901</td>
<td>8.64</td>
<td>50</td>
<td>732.332</td>
<td>40.97</td>
</tr>
<tr>
<td>3</td>
<td>10.436</td>
<td>5.47782</td>
<td>8.18</td>
<td>75</td>
<td>823.795</td>
<td>36.42</td>
</tr>
<tr>
<td>4</td>
<td>10.487</td>
<td>4.07801</td>
<td>7.84</td>
<td>100</td>
<td>1142.759</td>
<td>26.25</td>
</tr>
</tbody>
</table>

Table 6 Optimized performance of MFC energy harvesting system

<table>
<thead>
<tr>
<th>1st natural frequency (Hz)</th>
<th>Open circuit Vrms (V)</th>
<th>Capacitance (nF)</th>
<th>Time for 30mJ accumulated (sec)</th>
<th>Average power (μw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.575</td>
<td>12.702</td>
<td>50</td>
<td>197.94</td>
<td>151.6</td>
</tr>
</tbody>
</table>
Figure 1 MFC energy harvesting system prototype

Figure 2 P1- and P2-type MFCs (a) P1-type, (b) P2-type

Figure 3 EH300A

Figure 4 Voltage waveform across the capacitor bank in EH300A (from EH300A datasheet [15])
Figure 5 Geometric configuration of cantilever beam with MFC patches

Figure 6 Finite element model
Figure 7 Strain and electrical potential distribution at 1st natural frequency
Figure 8 Peak value of strain at centre of top surface of MFC harvester

Figure 9 RMS voltage output of MFC harvester
Figure 10 Circuit of energy harvesting system
Figure 11 Charging curves for three cases at the first natural frequency

Figure 12 Energy storing procedure for three cases at the first natural frequency
Figure 13 1st natural frequency with various beam dimensions

Figure 14 MFC voltage output with various beam dimensions
Figure 15 Average power of energy extraction with various beam dimensions