<table>
<thead>
<tr>
<th>Title</th>
<th>Selective photocatalytic decomposition of formic acid over AuPd nanoparticle-decorated TiO2 nanofibers toward high-yield hydrogen production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhang, Zhenyi; Cao, Shao-Wen; Liao, Yusen; Xue, Can</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/24207</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 Elsevier B.V. This is the author created version of a work that has been peer reviewed and accepted for publication by Applied Catalysis B: Environmental, Elsevier B.V. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [Article DOI: http://dx.doi.org/10.1016/j.apcatb.2014.06.055].</td>
</tr>
</tbody>
</table>
Selective Photocatalytic Decomposition of Formic Acid over AuPd Nanoparticle-Decorated TiO$_2$ Nanofibers towards High-Yield Hydrogen Production

Zhenyi Zhang,a,b Shao-Wen Cao,b Yusen Liao,b Can Xue*,a,b

a School of Physics and Materials Engineering, Dalian Nationalities University, Dalian, 116600, PR China.

b Solar Fuels Laboratory, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

*Corresponding author:
Solar Fuels Laboratory, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
E-mail: cxue@ntu.edu.sg
Fax: +65 6790 9081; Tel: +65 6790 6180.
Abstract

We present high-yield hydrogen production through selective photocatalytic decomposition of formic acid by using electrospun TiO\textsubscript{2} nanofibers decorated with AuPd bimetallic alloy nanoparticles under simulated sunlight irradiation. By using only 5 mg of the AuPd/TiO\textsubscript{2} nanofibers containing the 0.75 % Au and 0.25 % Pd, we could achieve an optimal H\textsubscript{2} generation rate of 88.5 \(\mu\text{mol h}^{-1}\) with an apparent quantum yield at 365 nm as 15.6 %, which is higher than that of the Pd/TiO\textsubscript{2} and Au/TiO\textsubscript{2} nanofibers by a factor of 1.6 and 4.5, respectively. The enhanced photocatalytic decomposition of formic acid for H\textsubscript{2} generation could be attributed to the stronger electron-sink effect of AuPd alloy nanoparticles, the high selectivity of Pd for the dehydrogenation of formic acid, and the surface plasmon resonance effect of Au. More importantly, we demonstrate that the photocatalytic processes enable re-activation of the AuPd nanoparticles that were poisoned by CO during thermal decomposition of formic acid. As such, the presented AuPd/TiO\textsubscript{2} nanofibers are promising materials for re-generation of H\textsubscript{2} under mild conditions from liquid storage carrier of hydrogen.

Keywords: Photocatalysis; AuPd alloy; electrospinning; surface plasmon resonance; formic acid decomposition.
1. Introduction

The worldwide problem of air pollution induced by the excessive use of fossil fuels has become increasingly serious issues for human beings in modern society. Hydrogen gas has been recognized as one of clean and renewable energy sources to replace fossil fuels for the sustainable future [1, 2]. However, the extremely low density and highly explosive character of hydrogen gas lead to significant challenges in its storage and transportation [3]. Recently, considerable attentions have been received on the liquid phase storage of hydrogen by using solutions of small molecules that are capable of controllable H$_2$ releasing in mild conditions [4-6]. In particular, formic acid (FA), as a non-toxic and non-flammable matter, contains 4.4% (w/w) of hydrogen and has been considered as a promising hydrogen source because the FA decomposition into H$_2$ and CO$_2$ (HCOOH \rightarrow H$_2$ + CO$_2$) is thermodynamically favored (ΔG= -32.8 kJ/mol). However, a competitive route of FA decomposition into CO and H$_2$O (ΔG= -20.7 kJ/mol) usually occurs, which is undesirable [7-9]. Therefore, the major challenge of exploiting FA as a practical carrier of hydrogen is finding suitable catalysts that enable highly selective FA decomposition into H$_2$/CO$_2$ rather than CO/H$_2$O to occur with high efficiency and large throughput in ambient condition.

To date, many researchers have explored the potentials of photocatalytic decomposition of FA for H$_2$ production by using different semiconductors (e.g. TiO$_2$, CdS, Cu$_2$O, etc.) though it often led to poor selectivity in the FA decomposition process with high CO concentration in the product [10-12]. In addition, to enhance the photocatalytic efficiency, people usually deposit noble metal (e.g. Pt, Pd, Au) nanoparticles that promote the separation of photogenerated charge carriers [13-16]. In particular, Pd nanoparticles have been reported to have high activity and
selectivity for the FA decomposition at near-ambient temperatures [17-20]. However, the existence of CO in the gaseous product can cause poisoning of Pd, leading to the deactivation of the metal catalysts during the FA decomposition process [18, 21, 22]. Recently, researchers found that Pd-based alloy catalysts may overcome the poisoning and improve the selectivity to enhance the H₂ production from FA decomposition [21-23]. Among the various bimetallic alloy materials, AuPd alloy nanoparticles are especially attractive due to their excellent catalytic activity and high stability [21-24]. Furthermore, the surface plasmon resonance (SPR) of Au may provide additional enhancement on the photocatalytic activity when the AuPd nanoparticles are conjugated with the semiconductor structures.

Herein, we report highly selective photocatalytic FA decomposition towards high-yield H₂ production by using AuPd nanoparticle-decorated TiO₂ nanofibers fabricated by a facile electrospinning technique. The electrospun nanofibrous materials have been known as excellent structures for catalytic applications due to the three-dimensional (3D) open structure, large surface areas, and high porosity. Under simulated sunlight (AM 1.5 sunlight, 100 mW/cm²) irradiation, the H₂ production rate of the optimal composite nanofibers containing 0.75% Au and 0.25% Pd could reach 88.5 μmol h⁻¹, which was about 1.6 and 4.5 times higher than that of Pd/TiO₂ and Au/TiO₂ nanofibers, respectively. The higher activity of AuPd/TiO₂ nanofibers for H₂ production through photocatalytic FA decomposition might be attributed to the high selectivity of Pd for the FA dehydrogenation, stronger electron-sink effect of AuPd nanoparticles and the surface plasmon resonance (SPR) effect of Au.

2. Experiments

2.1. Fabrication of Au-Pd/TiO₂ composite nanofibers
The AuPd/TiO$_2$ nanofibers were fabricated via electrospinning followed by calcination. Typically, 2.0 mL tetrabutyl titanate (Ti(OC$_4$H$_9$)$_4$) and a certain amount of Pd(C$_2$H$_3$O$_2$)$_2$ were added to a mixture solution containing of 2 mL acetic acid and 5 mL ethanol under vigorous stirring. Then, 0.4 g poly(vinyl pyrrolidone) (PVP) powder (Mn=1300000) were dissolved in the above solution followed by stirring for 3 h. Subsequently, a certain amount of HAuCl$_4$ was added to this solution which was kept stirring for another 6 h and used as the precursor solution of PVP/HAuCl$_4$/Pd(C$_2$H$_3$O$_2$)$_2$/Ti(OC$_4$H$_9$)$_4$. Afterward, this precursor solution was transferred into a plastic syringe with a stainless steel needle (23-gauge) for electrospinning. The distance between the needle tip and the collector was about 15 cm, and the feeding rate was 2.0 mL h$^{-1}$. The dense web of PVP/HAuCl$_4$/Pd(C$_2$H$_3$O$_2$)$_2$/Ti(OC$_4$H$_9$)$_4$ nanofibers was generated at an applied electric voltage of 15 KV between the needle tip and the collector, followed by calcination in air at 500 °C for 2h (ramping rate of 2 °C min$^{-1}$) to get the final AuPd/TiO$_2$ nanofibers.

The Pd$_1$/TiO$_2$ nanofibers (1% Pd in mole fraction) were synthesized via photodeposition of Pd onto electrospun TiO$_2$ nanofibers. Briefly, quantitative Pd(C$_2$H$_3$O$_2$)$_2$ (1% mole ratio to Ti) and TiO$_2$ nanofibers (20 mg) were added into a mixed solution of 14 mL deionized water, 4 mL ethanol and 2 mL acetic acid. Then, this suspension was exposed under UV-Vis light (300-Watt xenon lamp) for 20 min to deposit Pd nanoparticles onto the TiO$_2$ nanofibers. Then the nanofibers were collected via centrifugation, washed with deionized water and ethanol for several times, and finally dried in an electric oven at 80 °C for 4 h.

2.2. Characterization

X-ray diffraction (XRD) measurements were carried out on a Shimadzu XRD-600 X-ray diffractometer with a Cu Kα line of 0.1541 nm. X-ray photoelectron spectroscopy (XPS) was
performed on a Thermo Scientific Theta probe XPS with monochromatized Al Kα (hν=1486.7 eV) source. Field emission scanning electron microscopy (FESEM; JSM-7600F) and transmission electron microscopy (TEM; JEOL JEM-2100) were used to characterize the morphologies and structures of the products. Energy dispersive X-ray (EDX) spectroscopy being attached to SEM and TEM was used to analyze the composition of products. UV-vis diffuse reflectance spectra were recorded on a Lambda 750 UV/Vis/NIR spectrophotometer (Perkin Elmer, USA). The photoluminescence (PL) spectra were recorded on a Shimazu RF-5310PC fluorophotometer.

2.3. Photocatalytic decomposition of formic acid

The photocatalytic tests were performed in a 40 mL quartz reactor. Typically, 5 mg of the as-electrospun nanofiber photocatalysts were suspended in 10 mL aqueous solution of formic acid aqueous solution (2.7 M). The above suspension was sealed in the quartz reactor by a rubber plug, and then purged with nitrogen gas for half an hour to drive away the residual oxygen. Finally, the reactor loading with the suspension was exposed under the simulated sunlight irradiation by using a solar simulator (67005, Newport Corp.) with a measured intensity equivalent to standard AM 1.5 sunlight (100 mW/cm²). The gas products composition from the upper space above the liquid suspension in the quartz reactor were periodically analyzed quantitatively by an Agilent 7890A gas chromatograph (GC) equipped with a thermal conductivity detector (TCD).

2.4. Photocurrent measurement

The photocurrent responses of the samples were tested by using an electrochemical analyzer (CHI 660D, CH Instruments Inc.) in a three-electrode system. Pt wire and Ag/AgCl
were employed as the counter and reference electrode, respectively. For the working electrode preparation, the prepared nanofibers (5 mg) were mixed with 0.1 ml deionized water and 0.01 ml Triton X-100 to form a paste, which was then coated onto a F-doped SnO$_2$ (FTO) glass with an effective area of 1 cm \times 1 cm and followed by calcination at 450 $^\circ$C for 2 h. Before irradiation, the electrolyte solution (2.7 M formic acid) was degassed by purging N$_2$ gas for 20 min. Then, the as-prepared working electrode was irradiated by a solar simulator (67005, Newport Corp.) with a measured intensity equivalent to standard AM 1.5 sunlight (100 mW/cm2).

3. Results and discussion

The Au-Pd/TiO$_2$ nanofibers with different mole fractions of Au and Pd were fabricated by electrospinning the precursor solution consisting of HAuCl$_4$, Pd(C$_2$H$_3$O$_2$)$_2$, tetrabutyl titanate (Ti(OCH$_3$)$_4$) and poly(vinylpyrrolidone) (PVP), followed by thermal decomposition for removal of the polymers (Figure S1). The products are denoted as Au$_x$Pd$_{1-x}$/TiO$_2$ nanofibers, in which x is the molar concentration (x%) of Au to Ti in the precursor solution. Figure 1A showed the X-ray diffraction (XRD) pattern of the prepared nanofibers of TiO$_2$, Au$_1$/TiO$_2$, Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ and the control sample Pd$_1$/TiO$_2$ prepared by photo-deposition of Pd nanoparticles over TiO$_2$ nanofibers because the post calcination process after electrospinning could not create Pd nanoparticles from the Pd$^{2+}$ precursors. The diffraction peaks for all products could be indexed as the tetragonal anatase TiO$_2$ (JCPDS, no. 21-1272). The enlarged view of XRD patterns (from 35 to 55$^\circ$) revealed the presence of face-centered cubic (fcc) Au nanocrystals (JCPDS, no. 04-0784) in the Au$_1$/TiO$_2$ nanofibers. But the diffraction peaks of Pd nanocrystals were hardly observable in the XRD pattern of Pd$_1$/TiO$_2$ nanofibers, which might be due to the low crystallinity of very small Pd nanoparticles (Figure S2). In the case of Au$_{0.75}$Pd$_{0.25}$/TiO$_2$
nanofibers, the diffraction peaks of metal nanocrystals exhibit slight shift as compared to that of typical fcc Au, indicating the formation of AuPd alloy in the TiO$_2$ matrix. The scanning electron microscopy (SEM) images (Figure 1B) showed that the prepared electrospun nanofibers had an average diameter of 200±20 nm and very large length (up to 20 µm) with random orientations. The analysis by energy-dispersive X-ray (EDX) spectroscopy from the corresponding transmission electron microscopy (TEM) image confirmed that the element contents of Au and Pd in the as-electrospun Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ sample were very close to the theoretical value in the precursor solution for electrospinning (Figure S3). As observed in Figure 1D, the AuPd nanoparticles with an average diameter of 13.8 nm are well-dispersed in the TiO$_2$ Nanofibers matrix. The lattice fringes of fcc AuPd alloy and anatase TiO$_2$ could be clearly observed in the high resolution TEM (HRTEM) image (insert of Figure 1D) of the Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ nanofibers.

In order to further verify the formation of AuPd alloy nanoparticles in the TiO$_2$ nanofibers, the Au$_1$/TiO$_2$ and Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ samples were examined by X-ray photoelectron spectroscopy (XPS). As shown in Figure 2, the Au 4f$_{7/2}$ and Au 4f$_{5/2}$ peaks in the spectrum of Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ nanofibers locate at 83.5 and 87.3 eV, respectively, which exhibit slight upshift as compared to that of Au$_1$/TiO$_2$ nanofibers [13, 15]. In addition, the Pd 3d core-level spectra of Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ nanofibers could be fitted into four symmetric peaks, suggesting the existence of two states of Pd species. The Pd 3d$_{5/2}$ peak at 334.9 eV and Pd 3d$_{3/2}$ peak at 340.2 eV are attributed to the metallic Pd0, while the binding energy peaks shown at 336.1 and 341.5 eV are originated from 3d$_{5/2}$ and 3d$_{3/2}$ of Pd$^{2+}$, respectively [26]. This result indicated that the oxide was present on the surface of the Pd. Note that the binding energy peaks of Pd 3d on the curve of Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ nanofibers showed a slight downshift relative to the Pd 3d peaks appeared on the curves Pd$_1$/TiO$_2$ nanofibers. The shift of the binding energy for Au and Pd in the

The Au_{0.75}Pd_{0.25}/TiO_2 nanofibers could be ascribed to the charge transfer between them due to the formation of AuPd alloy [27].

Figure 3 shows the UV-Vis absorption spectra of the prepared samples, which were converted from the measured diffuse reflectance spectra by using the Kubelka-Munk function. The intense UV absorption band below 400 nm could be assigned to the intrinsic bandgap absorption of anatase TiO_2 (Eg: ~3.2eV) [28]. Comparing with pure TiO_2 nanofibers, the Au/TiO_2 nanofibers exhibited a clear absorption band centered at ~590 nm that could be attributed to the surface plasmon resonance (SPR) of Au [15], while the Pd/TiO_2 nanofibers did not exhibit clear SPR signatures in the absorption spectrum. For the Au_{0.75}Pd_{0.25}/TiO_2 nanofibers, the Au SPR peak exhibited a blue-shift to 540 nm with decreased intensity, which could be ascribed to the increase of electron density in Au particle upon forming alloy with Pd [29].

The tests of photocatalytic formic acid decomposition over the electrospun nanofibers were carried out under simulated sunlight irradiation (100 mW/cm^2). Figure 4A showed the amount of H_2 production over different samples as a function of irradiation time. The pure TiO_2 nanofibers showed a very low H_2 generation rate (4.0 μmol h^{-1}), which could be ascribed to the fast recombination of photogenerated charge carriers and the high overpotential for H_2 evolution on TiO_2 surfaces. In comparison, the H_2 production rates of Au/TiO_2 and Pd/TiO_2 nanofibers were about 19.5 and 54.5 μmol h^{-1}, respectively. This indicated that the metallic Au or Pd nanoparticles could act as electron sinks to hold the photogenerated electrons from excited TiO_2, and serve as active sites for FA dehydrogenation into hydrogen gas. Further, the higher H_2 generation rate on Pd/TiO_2 nanofibers than on the Au/TiO_2 nanofibers can be attributed to the two aspects: (1) Pd has higher activity for FA dehydrogenation as compared to Au [17-20]; (2)
co-catalytic effect due to the larger work function of Pd (5.2 eV) than that of Au (5.1 eV) [30]. Notably, as shown in Figure 4D, the TiO$_2$ nanofibers decorated with AuPd alloy nanoparticles shower even higher H$_2$ generation rate. In particular, the H$_2$ production rate of Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ nanofibers could reach 88.5 μmol h$^{-1}$, which was about 1.6 times higher than that of Pd$_1$/TiO$_2$. However, under visible light irradiation (λ: 420~780 nm), no appreciable hydrogen production was observed over the Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ nanofibers, indicating that the hydrogen production from photocatalytic decomposition of formic acid is mainly caused by the TiO$_2$ excitation. Moreover, the cycling test over Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ nanofibers for 9 hours (Figure 4C) showed steady H$_2$ production rate after three cycles, indicating very stability of the sample in the photocatalytic FA decomposition process. The apparent quantum efficiency (QE) could be estimated as \sim15.6 % at 365 nm (See Supporting Information). The higher activity for H$_2$ evolution might be attributed to more efficient FA dehydrogenation over AuPd alloy surfaces [21, 22, 26].

In addition, the AuPd alloy nanoparticles may provide stronger electron-sink effect that increases the photocatalytic activity. To prove this, we carried out photoelectrochemical tests (Figure 5) in formic acid solution by using the prepared nanofibers. It was found that the dark currents were very low for all the nanofibers while their anodic photocurrents could be clearly observed under simulated sunlight irradiation. As shown in Figure 5, the Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ nanofibers showed the highest photocurrent density as compared with the other nanofibers, suggesting promoted charge separation from the excitation of the TiO$_2$ matrix by the decorated AuPd alloy nanoparticles. The stronger electron-sink effect of Au-Pd alloy nanoparticles is also supported by the comparison of photoluminescence (PL) spectra of these nanofibers (Figure S4). The Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ nanofibers exhibited obviously lower PL intensity than other samples,
suggesting that more efficient transfer of photogenerated electrons from TiO$_2$ to the AuPd nanoparticles in these nanofibers.

The selectivity of FA decomposition for H$_2$ production can be identified by comparing the CO generation rate. As shown in Figure 4B and D, all samples containing Pd exhibit very low CO generation rate ($< 1.0 \, \mu$mol h$^{-1}$), which is about 7 and 8 times lower than that of TiO$_2$ and Au$_1$/TiO$_2$ nanofibers, respectively. This observation indicates that the Pd or AuPd alloy surfaces provide very high selectivity for FA dehydrogenation for H$_2$ evolution as opposed to FA dehydration for CO generation. It was generally known that the CO molecules could adsorb on the surface of Pd and reduce its catalytic activity [3, 18, 21, 22]. However, interestingly, in the present condition, the metal particles were not poisoned by the produced CO gas, suggesting that the light irradiation might prevent poisoning by CO or re-activate the CO-poisoned Pd.

To verify this hypothesis, we carried out FA decomposition at 80 °C without light irradiation by using the Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ nanofibers as the catalyst. As shown in Figure 6, at the beginning, the catalyst was active for the FA decomposition, and both H$_2$ and CO evolution could be observed. However, the gas evolution rate decreased after 10 min, and the reaction stopped after 30 min due to the CO-poisoning on the AuPd surfaces. Interestingly, after we irradiated the reaction suspension with simulated sunlight for one hour and purged the reactor with N$_2$ for 30 min, the thermal FA decomposition at 80 °C without light irradiation occurred again with similar gas evolution rate at the first 10 min and stopped again after 30 min. This observation demonstrated that the CO-poisoned metal surface can be re-activated through light excitation of the contacted TiO$_2$ matrix. However, under visible light irradiation (λ: 420~780 nm), the re-activation of AuPd/TiO$_2$ nanofibers could not occur.
The re-activation mechanism might be explained by the following processes. First, under light irradiation, the photogenerated electrons in the TiO₂ conduction band can transfer to the AuPd nanoparticles, whereas the photogenerated holes remain in the valence band due to the electron-sink effect as aforementioned. As such, the photogenerated holes can be trapped by surface hydroxyl groups of TiO₂ to yield hydroxyl radicals (OH•) that could oxidize the CO adsorbed at the interfaces of TiO₂ and AuPd nanoparticles. The presence of OH• may be proved by the test shown in Figure S5. Second, the residual oxygen in the reaction system could be adsorbed on the AuPd surfaces and react with the photogenerated electrons to form superoxide radical anions (O₂•⁻) as well as hydroperoxy radicals (HO₂•) and hydroxyl radical (OH•) upon protonation [31, 32]. These radicals are able to oxidize the CO adsorbed on the AuPd surface to form the CO₂ [33], leading to the re-activation of AuPd nanoparticles.

It is noteworthy pointing out that among these AuPd/TiO₂ nanofibers, the Au₀.75Pd₀.25/TiO₂ possessed the highest H₂ production rate. Even though Pd is a better catalyst for FA dehydrogenation than Au, the higher Pd content in the nanofibers did not result in higher H₂ generation rate. From the UV-Vis absorption spectra (Figure S6), we could observe a clear Au SPR band for the Au₀.75Pd₀.25/TiO₂ nanofibers while the other two samples, Au₀.5Pd₀.5/TiO₂ and Au₀.25Pd₀.75/TiO₂ could not show distinguishable SPR band from the Au. Therefore, the SPR effect of Au might also provide enhancement to the photocatalytic activity of the AuPd/TiO₂ nanofibers [34]. In order to verify the contribution of SPR for FA dehydrogenation, we carried out a 2-hour photocatalytic tests by using the Au₀.75Pd₀.25/TiO₂ nanofibers under dual-beam irradiation, in which one beam at 365±10 nm for TiO₂ excitation and a secondary beam at 550±20 nm for Au SRP excitation. As shown in Figure S7, comparing to the H₂ production amount under single irradiation at 365±10 nm, a simultaneous secondary irradiation at 550±20
nm led to an enhanced H₂ generation amount by about 1.12 times, while the single irradiation at 550±20 nm could not result in observable H₂ evolution. This observation demonstrated that when the TiO₂ matrix is excited for FA decomposition, the simultaneous SPR excitation of Au in the Au₀.75Pd₀.25/TiO₂ nanofibers could provide additional enhancement for the photocatalytic process, which might be attributed to the involvement of hot plasmonic electrons in FA decomposition and the promoted electron-hole separation in the TiO₂ matrix near the Au or AuPd nanoparticles.

4. Conclusion

In summary, the high-yield H₂ production was achieved through photocatalytic formic acid decomposition by using the electrospun AuPd/TiO₂ nanofibers as the photocatalysts under simulated sunlight irradiation. The optimal nanofibers photocatalyst with 0.75 at.% Au and 0.25 at.% Pd displayed a high selectivity of H₂ production with the rate of 88.5 μmol h⁻¹, which was about 22 times higher than the rate of pure TiO₂ nanofibers, and exceeded the rates of Pd₁/TiO₂ and Au₁/TiO₂ nanofibers by a factor of 1.6 and 4.5, respectively. The high photoactivity of AuPd/TiO₂ nanofibers for the H₂ production through decomposition of FA might be attributed to the high selectivity of Pd for the dehydrogenation reaction, the strong electron-sink effect of AuPd NPs, and the SPR effect of Au. We also found that the photocatalytic processes enable re-activation of the AuPd nanoparticles that were poisoned by CO during thermal decomposition of formic acid. This work offers a new strategy to obtain the high-yield H₂ production at ambient condition with solar irradiation, and provides a useful platform for the development of solar-to-fuel energy conversion.

Acknowledgments
This work was financially supported by NTU seed funding for Solar Fuels Laboratory, MOE AcRF-Tier1 RG 44/11, MOE AcRF-Tier2 (MOE2012-T2-2-041, ARC 5/13), and CRP program (NRF-CRP5-2009-04) from the Singapore National Research Foundation (NRF). Z. Y. Zhang thanks the support from the 973 Program (Grant No. 2012CB626801) and National Natural Science Foundation of China (Grant No. 11274057).

Supporting Information Available: Additional characterization data (Figure S1-S7)

Reference:

Figure Captions:

Figure 1. (A) XRD patterns of the as-electrospun nanofibers: (a) TiO$_2$; (b) Au$_1$/TiO$_2$; (c) Au$_{0.75}$Pd$_{0.25}$/TiO$_2$; (d) Pd$_1$/TiO$_2$; (B) SEM and (C, D) TEM images of the Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ nanofibers; The inset shows the corresponding HRTEM image.

Figure 2. XPS spectra of the (a) Au$_1$/TiO$_2$; (b) Pd$_1$/TiO$_2$; (c) Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ nanofibers, showing the binding energy of Au 4f core-level (left) and Pd 3d core-level (right).

Figure 3. UV-Vis absorption spectra of the as-electrospun nanofibers: (a) TiO$_2$; (b) Au$_1$/TiO$_2$; (c) Au$_{0.75}$Pd$_{0.25}$/TiO$_2$; (d) Pd$_1$/TiO$_2$ nanofibers.

Figure 4. Results of photocatalytic formic acid decomposition under simulated sunlight irradiation over different nanofibers: (a) TiO$_2$; (b) Au$_1$/TiO$_2$; (c) Au$_{0.75}$Pd$_{0.25}$/TiO$_2$; (d) Au$_{0.5}$Pd$_{0.2}$/TiO$_2$, (e) Au$_{0.25}$Pd$_{0.75}$/TiO$_2$; (f) Pd$_1$/TiO$_2$ nanofibers. (A) Photocatalytic H$_2$ production amount versus irradiation time; (B) Photocatalytic CO production amount versus irradiation time; (C) Cycling test of photocatalytic H$_2$ production over the Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ nanofibers; (D) H$_2$ production rates and CO production amounts (after 4h).

Figure 5. Chopped I-V curves of the electrospun nanofibers: (a) TiO$_2$; (b) Au$_1$/TiO$_2$; (c) Au$_{0.75}$Pd$_{0.25}$/TiO$_2$; (d) Pd$_1$/TiO$_2$ nanofibers.

Figure 6. H$_2$ and CO production amount versus reaction time over the Au$_{0.75}$Pd$_{0.25}$/TiO$_2$ nanofibers at 80 °C without light irradiation.