<table>
<thead>
<tr>
<th>Title</th>
<th>Low-frequency acoustic atomization with oscillatory flow around micropillars in a microfluidic device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Cheung, Yin Nee; Nguyen, Nam Trung; Wong, Teck Neng</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/24217</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 AIP Publishing LLC. This paper was published in Applied Physics Letters and is made available as an electronic reprint (preprint) with permission of AIP Publishing LLC. The paper can be found at the following official DOI: [http://dx.doi.org/10.1063/1.4897343]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Low-frequency acoustic atomization with oscillatory flow around micropillars in a microfluidic device

Yin Nee Cheung, Nam Trung Nguyen, and Teck Neng Wong

Citation: Applied Physics Letters 105, 144103 (2014); doi: 10.1063/1.4897343

View online: http://dx.doi.org/10.1063/1.4897343

View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/105/14?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Versatile on-demand droplet generation for controlled encapsulation
Biomicrofluidics 8, 034112 (2014); 10.1063/1.4874715

Splitting a droplet with oil encapsulation using surface acoustic wave excited by electric signal with low power
AIP Advances 3, 072119 (2013); 10.1063/1.4816464

Cell-enclosing gelatin-based microcapsule production for tissue engineering using a microfluidic flow-focusing system
Biomicrofluidics 5, 013402 (2011); 10.1063/1.3516657

Valve-based microfluidic device for droplet on-demand operation and static assay
Appl. Phys. Lett. 97, 233701 (2010); 10.1063/1.3521283

Low-frequency ac electro-flow-focusing microfluidic emulsification
Appl. Phys. Lett. 96, 174103 (2010); 10.1063/1.3424791
Low-frequency acoustic atomization with oscillatory flow around micropillars in a microfluidic device

Yin Nee Cheung,1,a) Nam Trung Nguyen,2,b) and Teck Neng Wong1,a)

1School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798
2Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane QLD 4111, Australia

(Received 16 July 2014; accepted 25 September 2014; published online 9 October 2014)

This letter reports a low frequency acoustic atomization technique with oscillatory extensional flow around micropillars. Large droplets passing through two micropillars are elongated. Small droplets are then produced through to the pinch-off process at the spindle-shape ends. As the actuation frequency increases, the droplet size decreases with increasing monodispersity. This method is suitable for in-situ mass production of fine droplets in a multi-phase environment without external pumping. Small particles encapsulation was demonstrated with the current technique. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4897343]

Acoustic atomization with ultrasound is a useful tool for the production of micron to submicron droplets for food and biomedical applications. The early type atomizer, fountain-type atomizer,1 focuses the acoustic power to the surface of a pool of liquid with specific depth for efficient atomization. The capillary wavelength on the liquid surface decreases with increasing acoustic frequency (10–1000 kHz) and causes a reduction in the droplet size. Another type of ultrasonic atomizer is the single lead zirconium titanate (PZT) element thickness mode piston atomizer.2 This type of atomizer operates in the early MHz range (1–5 MHz) and is able to produce submicron droplets.

Surface acoustic wave (SAW) atomizer has been proposed for miniaturization and low-power-consumption production of micron to submicron droplets.3–6 The SAW works in the MHz frequency range (10–500 MHz) and can handle a small fluid volume.7,8 The SAW type atomizer is composed of patterned metal interdigitated transducer (IDT) electrodes deposited on a piezoelectric substrate. The SAW waves with amplitudes in the order of nanometers travel along and near the surface of the substrate. The wave is diffracted into a droplet due to the difference of wave propagation speeds in liquid and solid media. Thus, acoustic wave induced inside the droplet generates destabilized capillary waves on the surface of the droplet upon sufficient acoustic excitation. The mechanism for the SAW atomizer is still under active investigation. Several papers have been reported on the possible applications of the device for the generation of different types of small particles.9–11 Submicron polymeric particle aggregates (150–200 nm) were formed through a continuously operating SAW device at a resonance frequency of 8.611 MHz.9 These large particle aggregates consist of 5–10 nm particles. The biocompatible and degradable nanoparticles are useful for drug delivery applications. Similarly, the SAW platform is able to produce insulin liquid aerosols (3 μm) and solid protein nanoparticles (50–100 nm) at 20 MHz acoustic actuation,10 as well as multilayer nanoparticles for drug encapsulation.12

We propose here a microfluidic atomization technique, which is facilitated by the oscillatory extensional flow around micropillars. Oscillatory refers to the back-and-forth motion of the droplet caused by the piezoelectric actuation. Extensional refers to the extensional flow affecting droplet deformation and breakup. Small liquid droplets are generated in an oil medium through the pinch-off of the spindle shaped end of the elongated droplet interface due to the extensional flow between two micropillars. Our current investigation demonstrates a method of small droplet production with several advantages. First, the actuation frequency is low, ranging only from several to tens of Hz. Second, the method allows in-situ production of small droplets in another immiscible liquid. And third, the device is standalone and does not need external pumping.

Fig. 1 shows the device configuration investigated in this paper. Micropillars with a diameter of 200 μm were fabricated in a microfluidic chamber with a width of 1400 μm. Several aqueous droplets (deionized water, DI) were injected into the chamber before the atomization experiment. DI water was used as the dispersed phase and light mineral oil (M5904, Sigma Aldrich Co.) with 0.7% w/w of Span 80 (S6760, Sigma Aldrich Co.) was used as the continuous phase. Span 80 was used to reduce the interfacial tension and to change the wetting property of the oil film separating the droplet and the channel wall. Polydimethylsiloxane (PDMS) and its curing agent (Sylgard 184, Dow Corning Corp.) were mixed in a proportion of 10:1 by weight and used for replicating the microfluidic chamber patterns from an SU-8 mold (SU8–100, MicroChem Corp.). The PDMS device was cured at 80 °C for 2.5 h and then bonded to a glass slide coated with a thin layer of PDMS. The height of the microfluidic chamber is around 130 μm. A piezoelectric disk with a diameter of 31.8 mm (T216-A4NO-373X, Piezo Systems, Inc.) was embedded within the PDMS device using adhesive spacers. The PDMS membrane between the bottom of the piezoelectric disk and the top of the microfluidic chamber has a thickness of around 1.1 mm. The piezoelectric disk was actuated by sinusoidal waveforms from a signal generation

a)Electronic addresses: mailccheung@gmail.com and mtnwong@ntu.edu.sg
b)Email: nam-trung.nguyen@griffith.edu.au
The flow across micropillars array can be analyzed based on the porous media approach. The pressure drop through the array is related to the volume averaged (superficial) velocity as

\[
dP = \frac{\mu}{K}U_s
dx
\]

where \(P \) is the pressure, \(\mu \) is the liquid viscosity, \(K \) is the permeability of the medium, and \(U_s \) is the superficial velocity. Considering fluid flow through a confined porous medium, an additional term is required to satisfy the no-slip boundary condition on the walls,

\[
dP = \frac{\mu}{\text{eff}} \frac{dU_s}{dy^2}
\]

where \(\mu_{\text{eff}} \) is the effective viscosity. Another important consideration is the geometric parameters of the micropillars array \((x_p, y_p, d_p)\), which affect the permeability.

Fig. 1. Device configurations: (a) An array of PDMS micropillars with a diameter of 200 \(\mu \)m in a microfluidic chamber, the double arrow indicates the actuation direction. (b) Sinusoidal actuation from the piezoelectric disk causes a vibrating fluid motion around the micropillars. (c) Cross section of the device.

Fig. 2. Droplet atomization around micropillars under a sinusoidal actuation of (a) 20 Hz and \(\pm 109 \text{V} \); (b) 40 Hz and \(\pm 142 \text{V} \). (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4897343.1] Scale bar for (a) and (b) is 200 \(\mu \)m; (c) Pinch-off process at the spindle shaped end of the elongated droplet between two micropillars: (i) 20 Hz and \(\pm 134 \text{V} \); (ii) 30 Hz and \(\pm 139 \text{V} \), scale bar is 50 \(\mu \)m.
between the micropillars, Figs. 3(a) and 3(b). In addition, the breakup event is time dependent and governed by the proper-
properties of the droplet and the entire time history of the velocity
gradient that it experienced.

\[u_{real}(y, t) = \frac{c}{b} \cos(\omega t) \left\{ \cos \left(\sqrt{\frac{b}{a}} y \right) \right.
- \left. \sin \left(\sqrt{\frac{b}{a}} y \right) / \sin \left(\sqrt{\frac{b}{a}} \right) \right\} \times \left(\cos \left(\sqrt{\frac{b}{a}} y_0 \right) + 1 \right) - 1, \]

where \(a = \mu \cos(\omega t) \), \(b = \rho \omega \sin(\omega t) \), \(c = \mu F_0 [1 + \sin(\omega t)] \), \(F_0 \) is the amplitude of the applied force, \(\mu \) is the liquid viscos-
ity, \(\omega \) is the oscillation frequency, and \(\rho \) is the liquid density. The oscillatory flow causes non-uniform extensional flow
between micropillars. Fig. 3(c) shows the flow around
micropillars for mineral oil mixed with 7–
\(\mu \)m polystyrene microspheres (35–2B, Thermo Fisher Scientific, Inc.). The images were captured with a CCD camera (iXonEM+, Andor
Technology Ltd.). Extensional flow occurs between

![Figure 3](https://example.com/figure3.png)

FIG. 3. (a) Formation of small droplets as the mother droplet oscillates
between the micropillars and causes droplet pinch-off (as circled). The flow
is actuated at 10 Hz, ±117 V, the motion direction of the mother droplet is
indicated by the arrow. Scale bar is 100 \(\mu \)m. (b) Demonstration of encapsula-
tion of 3.2 \(\mu \)m polystyrene microspheres (R0300B, Thermo Fisher Scientific,
Inc.) at 20 Hz and ±134 V. Scale bar is 50 \(\mu \)m; (c) Mineral oil with 7-\(\mu \)m
tracing particles (35-2B, Thermo Fisher Scientific Inc.) undergoes acceler-
ation (Fig. 3(c-i)) and deceleration (Fig. 3(c-ii)) during the sinusoidal
actuation.

![Figure 4](https://example.com/figure4.png)

FIG. 4. Count distribution for droplet size under actuation conditions of
(a) 5 Hz and ±83 V; (b) 10 Hz and ±117 V.

between the micropillars, Figs. 3(a) and 3(b). In addition, the
breakup event is time dependent and governed by the proper-
ties of the droplet and the entire time history of the velocity
gradient that it experienced.

The critical capillary number \(C_{c,r} \) of extensional flow is much smaller than that of shear flow. Thus, extensional flow generates smaller
droplets.

In contrast to the double tails of a deformed droplet as
formed due to shear flow near the side walls in a microchannel according to the experiments conducted by Mulligan and
Rothstein, a single tail is formed in the middle of the dro-
plet between two micropillars in our configuration under the
extensional flow, Figs. 3(a) and 3(b). According to the simi-
ilarity solution for a pressure-driven oscillatory flow in a
channel, the real part of the velocity is

\[u_{real}(y, t) = \frac{c}{b} \cos(\omega t) \left\{ \cos \left(\sqrt{\frac{b}{a}} y \right) \right.
- \left. \sin \left(\sqrt{\frac{b}{a}} y \right) / \sin \left(\sqrt{\frac{b}{a}} \right) \right\} \times \left(\cos \left(\sqrt{\frac{b}{a}} y_0 \right) + 1 \right) - 1, \]

where \(a = \mu \cos(\omega t) \), \(b = \rho \omega \sin(\omega t) \), \(c = \mu F_0 [1 + \sin(\omega t)] \), \(F_0 \) is the amplitude of the applied force, \(\mu \) is the liquid viscos-
ity, \(\omega \) is the oscillation frequency, and \(\rho \) is the liquid density. The oscillatory flow causes non-uniform extensional flow
between micropillars. Fig. 3(c) shows the flow around
micropillars for mineral oil mixed with 7–
\(\mu \)m polystyrene microspheres (35–2B, Thermo Fisher Scientific, Inc.). The images were captured with a CCD camera (iXonEM+, Andor
Technology Ltd.). Extensional flow occurs between

![Figure 3](https://example.com/figure3.png)

FIG. 3. (a) Formation of small droplets as the mother droplet oscillates
between the micropillars and causes droplet pinch-off (as circled). The flow
is actuated at 10 Hz, ±117 V, the motion direction of the mother droplet is
indicated by the arrow. Scale bar is 100 \(\mu \)m. (b) Demonstration of encapsula-
tion of 3.2 \(\mu \)m polystyrene microspheres (R0300B, Thermo Fisher Scientific,
Inc.) at 20 Hz and ±134 V. Scale bar is 50 \(\mu \)m; (c) Mineral oil with 7-\(\mu \)m
tracing particles (35-2B, Thermo Fisher Scientific Inc.) undergoes acceler-
ation (Fig. 3(c-i)) and deceleration (Fig. 3(c-ii)) during the sinusoidal
actuation.

![Figure 4](https://example.com/figure4.png)

FIG. 4. Count distribution for droplet size under actuation conditions of
(a) 5 Hz and ±83 V; (b) 10 Hz and ±117 V.
micropillars in both horizontal and diagonal directions. Flows through a single and micropillars array involve complex behaviors like vortex shedding, lateral flow oscillation, and versatile flow trajectories (zigzag, laterally displaced, and dispersive) are currently under active investigation. The potential application of our method for small particles encapsulation is demonstrated in Fig. 3(b). Small particles with a nominal diameter of 3.2 μm (R0300B, Thermo Fisher Scientific, Inc.) reside near the droplet surface are encapsulated in the pinched-off droplets.

The size distribution of the droplets was obtained using the ImageJ software. A total of around 500 droplets were analyzed for the different actuation frequencies. The equivalent diameter of each droplet was obtained based on the area values obtained from analysis. Figure 4 shows the size distributions for the actuation frequencies of 5 Hz and 10 Hz. The actuation was turned on for duration of 1–2 min before droplet images were captured for size analysis. The histogram of 5 Hz actuation shows a broader spectrum than that of the 10 Hz. The standard deviations of the size distribution were measured as 3.7 μm and 2.7 μm at 5 Hz and 10 Hz, respectively. The peak sizes for the two cases are relatively close to each other; e.g., 9 μm for 5 Hz and 8 μm for 10 Hz. As the geometric parameters (x_p, y_p, and d_p) of the micropillars affect the resultant oscillatory flow and its extension rate, the droplet size could be controlled by tuning the parameters of the micropillar to enhance the extension rate for even smaller sizes.

In conclusion, we demonstrate a method for low-frequency acoustic atomization with oscillatory flow around micropillars in a microfluidic device. Extensional flow between micropillars causes the droplet to deform with a spindle shaped end and thus facilitating the formation of small droplets. The process resembles the surfactant-mediated tip-streaming phenomenon. Fluids with a low viscosity ratio also facilitate the formation of the spindle shaped end during the formation process. Droplet size decreases with increasing actuation frequency. The method proposed here is suitable for in-situ production of small droplets in a micro-fluidic environment.

The authors would like to acknowledge Professor Haiqing Gong for use of his microscope and high speed camera. The authors gratefully acknowledge research support from the Singapore Ministry of Education Academic Research Fund Tier 2 Research Grant No. MOE2011-T2-1-036.