<table>
<thead>
<tr>
<th>Title</th>
<th>Inverse association of the endogenous thrombin potential (ETP) with cardiovascular death: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Schneider, Jochen G.; Isermann, Berend; Kleber, Marcus E.; Wang, Hongjie; Boehm, Bernhard O.; Grammer, Tanja B.; Prueller, Florian; Nawroth, Peter P.; Maerz, Winfried</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/24574</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 The Authors. This is the author created version of a work that has been peer reviewed and accepted for publication by International Journal of Cardiology, the Authors. It incorporates referee's comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI:http://dx.doi.org/10.1016/j.ijcard.2014.07.026].</td>
</tr>
</tbody>
</table>
Inverse Association of the Endogenous Thrombin Potential (ETP) with Cardiovascular Death: the Ludwigshafen Risk and Cardiovascular Health (LURIC) Study.

Short title: ETP and cardiovascular death

Jochen G. Schneider, M.D.¹ ² *, Berend Isermann, M.D.³ *, Marcus E. Kleber, Ph.D.⁴ ⁵ *, Hongjie Wang, M.D.³, Bernhard O. Boehm, M.D.⁶, Tanja B. Grammer, M.D.⁴, Florian Prueller, M.D.⁷, Peter P. Nawroth, M.D.⁸, Winfried März, M.D.⁴ ⁹

* these authors contributed equally to the manuscript.

¹ Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg

² Department of Internal Medicine II, Saarland University Medical Center at Homburg/Saar, Germany

³ Department of Clinical Pathology and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany

⁴ Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany

⁵ LURIC Study nonprofit LLC, Freiburg, Germany

⁶ Immuno-Metabolism Laboratory, Nanyang University, Lee Kong Chian School of Medicine, Singapore, Singapore
7 Medical University of Graz, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Graz, Austria

8 Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg Germany

9 SynlabCenter of Laboratory Diagnostics Heidelberg, Heidelberg, Germany

Email addresses: Jochen Schneider: jg.schneider@outlook.com; Berend Isermann: berend.isermann@med.ovgu.de, Marcus Kleber: Marcus.Kleber@synlab.com; Hongjie Wang: hongjie.wang@med.ovgu.de; Bernhard Boehm: Bernhard.boehm@ntu.edu.sg, Tanja B. Grammer: Tanja.Grammer@medma.uni-heidelberg.de, Florian Prueller: florian.prueller@klinikum-graz.at, Peter P. Nawroth: peter.nawroth@med.uni-heidelberg.de, Winfried Maerz: winfried.maerz@synlab.com

Corresponding authors:

Berend Isermann, MD, Otto-von-Guericke-University Magdeburg, Department of Clinical Pathology and Pathobiochemistry, Leipziger Str. 44, D-39120 Magdeburg, Germany, Ph: +49–(0)391-67-13900, Fax:+49–(0)391-67-13902, E-mail: ikcp@med.ovgu.de; berend.isermann@med.ovgu.de
Abstract:

Background: Coagulation and prothrombotic potential have genuinely been associated with increased cardiovascular risk. However, not all studies in this regard are conclusive and some clinical trials have even shown an increased frequency of cardiovascular complications in patients receiving direct thrombin inhibitors. Previous data from human subjects after acute cardiovascular events showed an inverse association between the thrombin generation marker F1+2 and cardiovascular endpoints indicating that not the lowest, but a slightly elevated propensity for thrombin generation is associated with a lower risk of cardiovascular events. This observation has been supported by findings in animal models of atherosclerosis. Hence, we evaluated the association between the endogenous thrombin potential (ETP) and cardiovascular death (CVD) and markers of vascular dysfunction in a large prospective study with long term follow up.

Method: After excluding patients receiving anticoagulants we tested ETP in 2196 participants (median follow up ten years) for its ability to predict vascular death (CVD). In addition, the association between ETP and sVCAM-1, sICAM-1, LpPLA2, hsCRP and SAA was determined.

Results: We observed an inverse association between ETP and CVD with the lowest hazard ratio in the 4th ETP quartile. The nadirs of sICAM-1 or sVCAM-1 were observed in the 3rd, for LpPLA2 in the 4th ETP quartile. Conversely, hsCRP and SAA were highest in the 4th quartile.

Conclusions: These results demonstrate that not the lowest ETP possible, but slightly higher levels are associated with a reduced risk of CVD and lower markers of endothelial dysfunction, suggesting a more complex role of thrombin in cardiovascular disease.
Key words:

thrombin, cardiovascular death, endogenous thrombin potential
Introduction:

Myocardial infarction (MI) is an acute outcome of the chronic atherosclerotic process in large arteries. This process, which may remain asymptomatic for decades, is a continuous chronic inflammatory process characterized by foam cell formation and the formation of atherosclerotic plaques in the vascular wall [1]. Acute events such as unstable angina, MI, or stroke subsequently result from an erosion of the endothelium or the rupture of an established atherosclerotic plaque. The latter processes acutely expose thrombogenic surfaces (e.g. negatively charged phospholipids) and tissue factor to the circulating blood [2], activating soluble blood coagulation factors, which trigger the formation of a fibrin-platelet aggregate and produce a potentially occlusive vascular thrombus. Thus, local thrombin generation during an acute cardiovascular event is potentially lethal. Consequently, anticoagulation is the standard of care in acute coronary syndromes [3].

Due to its detrimental effects in the acute phase thrombin is generally perceived as a disease promoting protease in atherogenesis. Consequently, the use of new direct thrombin inhibitors has already been discussed in this context [4]. Unexpectedly, some prospective clinical studies evaluating new direct thrombin inhibitors for venous diseases showed a tentatively or significantly increased frequency of MI associated with the use of direct thrombin inhibitors [5-9]. This effect remained significant in two recent meta-analysis comprising 7 and 11 trials, respectively, evaluating the direct thrombin inhibitor dabigatran [10, 11]. While MI was not a primary endpoint in these studies the observed increased incidence rates of MI raise the question whether thrombin has an unanticipated protective role in cardiovascular disease.
Potential beneficial effects mediated by thrombin seem to be paradox at first glance, but are in agreement with results from the comparably small Italian GUSTO study, which evaluated the thrombin activation marker F1+2 in 319 consecutive patients with acute coronary syndromes and a median follow up of 29 months [12]. In this study the risk for cardiac death or myocardial (re)infarction was lowest in patients with intermediate plasma levels of F1+2 [12]. This observation suggests that not the lowest thrombin generation possible, but slightly higher levels are associated with the lowest risk for cardiovascular events, at least after a first cardiovascular event. However, this observation, which the authors deemed “unexpected”, has not been confirmed in a larger cohort or a different marker so far. While the thrombin activation marker F1+2 is a molecular marker specific for thrombin generation in vivo, reflecting the acute situation, the endogenous thrombin potential (ETP) reflects the thrombin-forming capacity in a specific individual. Associations between these markers of thrombin generation and clinical endpoints are partly discordant [13-15], indicating that they reflect differential information with regards to thrombin generation.

The aim of the current study was to determine the association between the endogenous thrombin potential (ETP), and cardiovascular death (CVD) as endpoint in a large prospective study (3156 individuals, median follow up ten years). In addition, we included markers of endothelial dysfunction to gain insights into potential pathophysiological mechanisms.
Methods

Study Design and Participants

We studied participants of the LUdwigshafen RIsk and Cardiovascular (LURIC) health study, a prospective cohort study of persons undergoing coronary angiography. The study protocol and baseline characteristic of patients have been previously published in detail [16]. Briefly, inclusion criteria were: German ancestry, clinical stability and the availability of a coronary angiogram. Individuals included within the study had a status post-acute MI (3%, time interval between MI and blood sampling 1 day to 4 weeks), unstable angina pectoris (26%, time interval 1 day to 4 weeks), or a history of a MI (41%, time interval at least 4 weeks). In patients with a status post-acute MI enrollment and blood sampling was conducted after the patient had been transferred to a regular ward and was clinically stable. Of those patients diagnosed as having unstable angina pectoris 62% were troponin negative (corresponding to ~16% of the total study population), while 38% were troponin positive (corresponding to non-ST-elevation MI, ~10% of the total study population). The indications for angiography in individuals in clinically stable condition (e.g. no history of MI or unstable angina pectoris, 30% of the total study population) were a history of chest pain and/or noninvasive test results suggestive of myocardial ischemia. Individuals suffering from acute illness other than acute coronary syndromes (e.g. infection, autoimmune disease, or recent accident / surgery), chronic non-cardiac diseases (e.g. chronic renal failure, severe rheumatic arthritis), or malignancy within the five past years and those unable to understand the purpose of the study were excluded. The study was approved by the ethics committee of the “Landesärztekammer Rheinland-Pfalz” (No. 1997-203). Informed written consent was obtained from all participants.
Measurements for ETP were complete in 3156 out of 3316 individuals. Patients receiving anticoagulants (e.g. heparinoids, vitamin K antagonists) were excluded in the current analyses since ETP is influenced by anticoagulant treatment\cite{17, 18}. After exclusion of patients receiving anticoagulants 2196 patients remained eligible for the current study.

Information regarding mortality (MOR) was obtained from local registries. Cardiovascular death (CVD) was defined as death from myocardial infarction, death after an intervention to treat cardiovascular disease, death from heart failure, or sudden cardiac death.

Diabetes mellitus was diagnosed if plasma glucose was ≥ 7.0 mmol/L in the fasting state or ≥ 11.1 mmol/L 2 h after an oral glucose load or if individuals were receiving antidiabetic treatment. Hypertension was diagnosed if the systolic and/or diastolic blood pressure exceeded 140 and/or 90 mm Hg or if there was a history of hypertension, evident through the use of antihypertensive drugs. Weight and height of all study participants was obtained at inclusion. Information regarding smoking habits was obtained in a standardized questionnaire \cite{16}.

Laboratory Procedures

Fasting blood samples were collected before administration of any medication. The standard laboratory methods have been described \cite{16}. The following assays were performed with reagents from Siemens Healthcare Diagnostics Inc., Germany: ETP was determined using INNOVANCE ETP on a BCS coagulation analyzer and F1+2 (Prothrombin fragment 1 + 2) was analyzed using the Enzygnost® F1+2 micro test on an automated platform (SLT Spectra TECAN, Männedorf, Switzerland). Plasma levels of sVCAM-1 and sICAM-1 were measured...
using ELISA with specific monoclonal antibodies to corresponding human proteins (R&D systems GmbH, Wiesbaden, Germany) using an automated system (Rosys Plato, Immucor, Norcross, GA, USA). LpPLA$_2$ (lipoprotein associated phospholipase A$_2$, also referred to as platelet-activating factor acetyl-hydrolase, PAFAH) was measured using a spectrophotometric activity assay (Azwell Auto PAF-AH kit, Azwell Inc., Osaka, Japan) on a Hitachi 912 autoanalyzer.

Statistical Analysis

All authors had access to the clinical data and results obtained. Characteristics of individuals within the four quartiles of ETP (Table 1) are presented as percentages for categorical variables and as means (\pmSD) or medians (25th and 75th percentiles) for continuous variables. Associations of categorical and continuous variables were analyzed by logistic regression and univariate ANOVA, respectively, with covariables as indicated. All continuous variables were checked for normality and skewed data were transformed logarithmically. To examine the relationship of ETP with mortality from cardiovascular causes (CVD) we calculated hazard ratios and 95% confidence intervals (95% CI) using the Cox proportional hazards model. The time to CVD variable was defined as the time period between enrollment and CVD or the time to the last follow-up (May 27, 2009) for the censored subjects. We analyzed the effects of ETP on markers of endothelial dysfunction (sICAM-1, sVCAM-1) in an Analysis of Covariance (ANCOVA) according to the general linear model (GLM) using those factors not under examination as covariates.

Multivariable adjustment was carried out for age, gender, DM, BMI, hsCRP, vessel score, history of smoking, hypertension, or myocardial infarction, use of platelet inhibition (ASS or Clopidogrel), ACE-inhibitors, beta blockage, statins, kidney function as well as LDL, HDL,
triglycerides. The SPSS 19.0 statistical package (SPSS Inc.) was used for all analyses. All tests were two-sided. Analyses were corrected for multiple hypotheses testing by applying the Bonferroni equation to adjust the P values. Adjusted P-values are reported. $P<0.05$ was considered significant.
Interim levels of ETP are associated with a lower risk of future CVD

Clinical and biochemical characteristics of study participants following stratification ETP-quartiles are shown in Table 1. During the follow up period (median follow up: ten years) 345 CVD were recorded in the current cohort (2196 study participants). Various baseline characteristic of the four groups differed significantly (Tab. 1). The average age, the frequency of diabetes mellitus, and systolic blood pressure decreased significantly across the ETP quartiles, being lowest within the 4th ETP quartile (Tab. 1). However, other established or potential risk factors for cardiovascular disease, such as the BMI, total cholesterol, LDL cholesterol, or triglycerides were increased within the 4th ETP quartile (Tab. 1). Thus, individuals in the 4th ETP quartile did not generally display a favorable risk profile with regards to CVD. No difference between the ETP quartiles was observed with regards to the history of previous myocardial infarction, peripheral vascular disease, stroke or TIA (Tab. 1). Likewise, the ETP quartiles did not differ in regard to the vessel score as determined by angiography at the time of enrollment (Tab. 1). Use of ACE-inhibitors differed significantly between the ETP-quartiles, but did not follow a constant trend across the ETP-quartiles. Medication with beta-blockers, statins, or platelet aggregation inhibitors did not differ between groups.

When evaluating the association between CVD and ETP we found the highest hazard ratio (HR) for CVD in the 1st ETP quartile and significantly lower HRs for CVD in the 2nd, 3rd, and 4th ETP quartiles when an uncorrected model approach (data not shown). After adjusting for potential confounders as indicated, the HR for CVD remained highest in the 1st ETP quartile. The HR for CVD was significant lower in the 2nd, 3rd, and 4th ETP quartiles, being the lowest in the 4th quartile (HR 0.613, 95% CI 0.447-0.839, P=0.002). Consistently, a survival analysis
revealed the lowest survival rate among the individuals in the first ETP quartile, while survival was highest among individuals in the 4th ETP quartile (Fig. 1). When performing analyses with data obtained after a median follow up of five years almost identical results were obtained (data not shown). Taken together, among patients with pre-existing or suspected coronary disease the risk for CVD is inversely associated with the propensity to activate thrombin, as reflected by the ETP.

Inverse association of the ETP with markers of endothelial dysfunction

Thrombin is commonly perceived as a pro-inflammatory and endothelial cell damaging protease. To determine whether ETP levels are positively or negatively associated with markers of endothelial cell activation (sVCAM-1, sICAM-1) or of vascular inflammation (LpPLA\textsubscript{2}, lipoprotein-associated phospholipase A\textsubscript{2}, also known as platelet-activating factor acetylhydrolase, (PAFAH)) \[19\], we next evaluated the relation between ETP and these markers of vascular disease.

After correction for the confounding factors as indicated, we observed an inverse association between ETP and LpPLA\textsubscript{2} (PAFAH) with the lowest LpPLA\textsubscript{2} (PAFAH) levels in the 4th ETP quartile (466.8 U/L, range 459.1-475.5, \(P<0.001\) for the overall trend, Fig. 2A). This distribution of the vascular inflammation marker LpPLA\textsubscript{2} across ETP quartiles resembles the inverse association between ETP and CVD. The plasma levels of the endothelial cell activation markers sICAM-1 and sVCAM-1 showed a significant reduction of plasma levels in the 2nd and 3rd ETP quartile for both markers and in addition in the 4th ETP quartile for sVCAM-1. The nadir of plasma levels for both soluble adhesion molecules was observed in the 3rd quartile, and levels of sICAM were significantly increased in the 4th ETP quartile as compared to the 3rd quartile (sICAM-1: 238.9 mg/l, range: 229.5-248.3; sVCAM-1: 719.7 mg/l, range 693.5-746.0,
P<0.001 for the overall trend, Fig. 2B,C). A non-significant trend for increased sVCAM levels was likewise observed in the 4th ETP quartile, indicating levels of ETP higher than those observed in the present cohort will eventually be associated with increased markers of endothelial cell dysfunction.

The association between CVD and systemic inflammation is well established [20, 21]. Therefore, we also assessed the associations between high sensitivity c-reactive protein (hsCRP) and serum amyloid a (SAA) with ETP. Both, hsCRP and SAA were lowest in the first ETP quartile (hsCRP: 4.46 mg/L, range 3.31-5.60; SAA: 10.4 mg/L, range 3.03-17.2) and markedly increased in higher quartiles, being significantly elevated in the 4th quartile (hCRP: 10.4 mg/L, range 9.26-11.6; SAA: 35.1 mg/L, range 27.8-42.5, P<0.001 for the overall trend, (Fig 3 A,B).

Together, within this study, markers of endothelial cell activation and vascular inflammation showed an inverse and markers of systemic inflammation a positive association with ETP as the incidence of CVD over a 10 year follow-up period.
Discussion

The role of coagulation activation in cardiovascular disease is being considered as detrimental in general. Trends towards a certain hypercoagulability have been reported for subjects with diabetes, hypertension or suffering from acute coronary events [22, 23]. However, recent reports demonstrated that thrombin may not only be disease promoting, since it can exert endothelial protective effects at low concentrations [24].

In the present study we have observed an inverse association of an indicator of thrombin generation, ETP, and cardiovascular death in a large study population (N = 2196) over a longer follow up (10 years). While this seems to be conflicting in the context, there is also other data that suggesting that elevated thrombin activation are associated with a reduced risk for CVD. In the Italian GUSTO study an U-shaped association between the thrombin activation marker F1+2 and cardiovascular death or myocardial (re)infarction was observed [12]. When using the same marker as analyzed in the GUSTO study (F1+2) we likewise observed a U-shaped association in relation to cardiovascular death in the current study (data not shown). The consistent results obtained from the GUSTO and the current study imply that the inverse or U-shaped association between cardiovascular endpoints and thrombin activation markers may be an genuine phenomenon. The data suggest that slightly higher levels of thrombin activation, rather than the lowest possible, may be associated with a reduced risk for cardiovascular complications and death.

The associative nature of the current study precludes any causal inference. Nonetheless, results from preclinical studies do support the notion of the so called “thrombin paradoxon”. The term “thrombin paradoxon” was initially coined to describe the two-faced properties of thrombin in regard to coagulation [25]. Thrombin has well established pro-coagulant
functions, stemming from its ability to activate platelets, fibrinogen, and various coagulation factors. Conversely, when bound to thrombomodulin, thrombin is a potent activator of protein C (PC), an important anti-coagulant [26]. In addition to being an anti-coagulant activated PC (aPC) procures mechanistically distinct cytoprotective functions [27], which may ameliorate the atherosclerotic process [28].

Recent studies propose that thrombin dependent signaling itself may convey protective effects. In that context, atherosclerosis prone mice with genetically superimposed hypercoagulability and impaired PC activation were shown to have increased plaque stability [29]. In addition, low dose thrombin can mediate anti-inflammatory and endothelial protective effects \textit{in vitro} by reduction of adhesion molecules expression (ICAM-1, VCAM-1, E-selectin) and transendothelial migration of leucocytes in cytokine stimulated endothelial cells [30]. Other experimental studies provide further evidence for possible protective effects of thrombin in the context of cardiovascular disease [31-34].

A limitation of the current study is that blood sampling was only performed once in each patient. Although we have not found an association between ETP and this marker of acute events in our study (data not shown), ETP has been found to be elevated in the circumstance of acute coronary events [35], thus the distinction between acute versus chronic events may be very important in the context of coagulation [36].

In the GUSTO study, which enrolled a lower number of patients (N = 319), multiple blood samples were obtained during a follow up of 12 months. The U-shaped association between F1+2 and the primary endpoint (cardiovascular death or myocardial (re)infarction) remained stable during follow up in the GUSTO study, indicating that the association of thrombin activation markers and cardiovascular endpoints is not an artifact caused by an acute
coronary syndrome. Along this line, the inverse association between ETP and cardiovascular death in the current study remained stable when excluding patients with an elevated hsTNT (larger 14 pg/ml, data not shown), supporting the notion that the inverse association is not an artifact related to an acute coronary event.

However, we cannot exclude the existence of other – and potentially unrecognized – confounders contributing to the observed “thrombin paradoxon”. In order to determine whether the current observation can be generalized, other cohorts and populations will be required to study in that specific conditions/pertubations will allow further insight into the coagulation system [37].

While the inverse association between markers of blood coagulation activation and cardiovascular endpoints appears to be unrelated to an acute coronary event, it cannot be generalized. In both studies (GUSTO and LURIC) patients were selected on the basis of an index event (proven or suspected acute coronary syndrome, respectively). Hence, an “index event bias” cannot be excluded [38]. Recruitment of individuals into a study based on an index event, such as proven or suspected acute coronary syndrome, may skew the risk profile of enrolled individuals in comparison to the general population.

In the current study individuals within the 4th ETP quartile had a lower age, a lower frequency of diabetes mellitus, and a reduced systolic blood pressure in comparison to individuals from the 1st ETP quartile. However, the baseline characteristics of individuals within the 4th ETP quartile were not consistently favorable. In particular, the lipid profile was disadvantageous among individuals of the 4th ETP quartile (increased total and LDL cholesterol and increased triglycerides). Hence, a selection bias or “index event” effect seems less likely.
The current and previous results [12] contribute data to the ongoing discussion regarding the efficacy and safety of novel anticoagulants (NOACs) [39]. Some [5, 6, 8], but not all [40, 41] studies evaluating direct thrombin inhibitors revealed a significantly or tentatively increased frequency of cardiovascular events. Consequently, current data is inconclusive on the topic [42]. However, two recent current meta-analyses confirmed that the direct thrombin inhibitor dabigatran is associated with an increased risk of MI or acute coronary syndrome [10, 11]. In contrast, factor Xa inhibitors were consistently associated with a significantly or tentatively reduced frequency of cardiovascular events [8, 43-46].

It is tempting to speculate that a difference in cardiovascular endpoints might indicate an unfavorable cardiovascular side effect profile of the direct thrombin inhibitors [47]. In that case the observed effect could be a dose-dependent phenomenon and the difference in relation to cardiovascular endpoints may not be specific for a substance, but rather for the respective dosages employed. A dose-dependent effect of direct thrombin inhibitors is likewise suggested by studies evaluating the direct thrombin inhibitor hirudin in patients with acute MI. In these studies hirudin did not only fail to show a benefit, but even tended to have a worse outcome at higher doses, prompting authors to suggest that “too much thrombin inhibition may be harmful”[3]. Regarding NOACs the jury is still out on the case [42, 47] and more clinical data are needed. It may therefore be instructive to determine the effect of different dosages of NOACs on cardiovascular endpoints or to define patient populations that have specific and increased benefit from such substances. Answering such questions may increase the beneficial use of NOACs.
Conclusion: We have provided evidence that not the lowest ETP possible, but slightly higher levels of ETP were associated with a reduced risk of CVD and lower markers of endothelial dysfunction in a well-defined cohort of patients, suggesting a more complex role of thrombin in cardiovascular disease.

Abbreviations:

- aPC: activated protein C
- BMI: body mass index
- CI: confident intervals
- CVD: cardiovascular death
- DM: diabetes mellitus
- ETP: endogenous thrombin potential
- F1+2: prothrombin fragment 1+2
- HR: hazard ratio
- hsCRP: high sensitivity C-reactive protein
- hsTNT: high sensitivity troponin T
- LURIC: Ludwigshafen Risk and Cardiovascular health study
LpPLA₂ lipoprotein-associated phospholipase A₂, also known as platelet-activating factor acetylhydrolase (PAFAH)

MI myocardial infarction

MOR all cause mortality

PAR protease activated receptor

PC protein C

SAA serum amyloid A

sICAM-1 soluble ICAM-1

sVCAM-1 soluble VCAM-1

t-PA tissue plasminogen activator

Competing interests:

Disclosure of Conflicts: None.

Author’s contributions:
The authorship contribution is as follows: B.I., J.S. and M.E.K. performed data analyses and wrote the manuscript, B.O.B. and F.P. designed and conducted the study, T.B.G helped with data interpretation and writing, H.W. performed data analyses, P.P.N. helped writing the manuscript and discussed the data, W.M. designed and conducted the study and wrote the manuscript.

Acknowledgements /Sources of Funding:

LURIC received funding through the 6th Framework Program [integrated project Bloodomics, grant LSHM-CT-2004-503485] and the 7th Framework Program (integrated project Athero Remo, Grant Agreement number 201668] of the European Union. Further funding was obtained from the “Deutsche Forschungsgemeinschaft” to BI [IS 67/5-2] and to JGS [SCHN 682/3-1], a Marie Curie CIG grant [CIG 303682] and a grant from Fonds Nationale de la Recherche [FNR-Core-VascIn] to JGS, and a grant from the Dietmar Hopp Stiftung to BI and PPN. Siemens Health Care Diagnostic, Eschborn, Germany, provided reagents free of charge, but did not assume any other role in the design, evaluation or interpretation of the study.
References:

30. Bae JS, Rezaie AR: **Thrombin and activated protein C inhibit the expression of secretory group IIA phospholipase A(2) in the TNF-alpha-activated endothelial cells by EPCR and PAR-1 dependent mechanisms.** *Thrombosis research* 2010, **125**(1):e9-e15.

<table>
<thead>
<tr>
<th></th>
<th>1st quartile</th>
<th>2nd quartile</th>
<th>3rd quartile</th>
<th>4th quartile</th>
<th>(p^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>551</td>
<td>545</td>
<td>552</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td>ETP (nmol*min)</td>
<td>78.6 (77.5-79.5)</td>
<td>99.0 (98.0-99.9)</td>
<td>107.0 (106.0-107.9)</td>
<td>120.8 (119.8-121.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age, years</td>
<td>64.7 ± 10.6</td>
<td>62.1 ± 10.6</td>
<td>61.0 ± 10.6</td>
<td>61.0 ± 10.1</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Male gender</td>
<td>392 (71.2)</td>
<td>383 (70.3)</td>
<td>368 (66.7)</td>
<td>347 (63.3)</td>
<td>0.019</td>
</tr>
<tr>
<td>BMI, kg/m(^2)</td>
<td>27.0 ± 4.1</td>
<td>26.9 ± 3.6</td>
<td>27.4 ± 4.1</td>
<td>28.3 ± 4.0</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.870</td>
</tr>
<tr>
<td>One</td>
<td>174</td>
<td>181</td>
<td>167</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Two or more</td>
<td>32</td>
<td>31</td>
<td>27</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>CAD (vessel score)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.160</td>
</tr>
<tr>
<td>0</td>
<td>160</td>
<td>179</td>
<td>204</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>113</td>
<td>92</td>
<td>103</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>107</td>
<td>96</td>
<td>100</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>171</td>
<td>178</td>
<td>145</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Mean 1</td>
<td>Mean 2</td>
<td>Mean 3</td>
<td>Mean 4</td>
<td>p-value</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>57</td>
<td>45</td>
<td>44</td>
<td>43</td>
<td>0.385</td>
</tr>
<tr>
<td>Stroke/TIA</td>
<td>51</td>
<td>41</td>
<td>30</td>
<td>41</td>
<td>0.122</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>119</td>
<td>87</td>
<td>68</td>
<td>72</td>
<td><0.001</td>
</tr>
<tr>
<td>HbA1c, %</td>
<td>6.3 ± 1.2</td>
<td>6.2 ± 1.17</td>
<td>6.2 ± 1.10</td>
<td>6.3 ± 1.20</td>
<td>0.333</td>
</tr>
<tr>
<td>Fasting glucose, mg/dl</td>
<td>116 ± 37</td>
<td>112 ± 32</td>
<td>111 ± 34</td>
<td>112 ± 35</td>
<td>0.139</td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg</td>
<td>145 ± 25</td>
<td>143 ± 23</td>
<td>141 ± 23</td>
<td>142 ± 24</td>
<td>0.031</td>
</tr>
<tr>
<td>Diastolic blood pressure, mmHg</td>
<td>82 ± 12</td>
<td>82 ± 11</td>
<td>82 ± 11</td>
<td>82 ± 11</td>
<td>0.921</td>
</tr>
<tr>
<td>Total cholesterol, mg/dl</td>
<td>185 ± 34</td>
<td>192 ± 37</td>
<td>198 ± 38</td>
<td>210 ± 42</td>
<td><0.001</td>
</tr>
<tr>
<td>LDL cholesterol, mg/dl</td>
<td>110 ± 99</td>
<td>116 ± 33</td>
<td>119 ± 21</td>
<td>129 ± 38</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL cholesterol, mg/dl</td>
<td>40 ± 10</td>
<td>41 ± 11</td>
<td>41 ± 11</td>
<td>40 ± 11</td>
<td>0.268</td>
</tr>
<tr>
<td>Triglycerides, mg/dl</td>
<td>162 (154-169)</td>
<td>164.2 (156-171)</td>
<td>162.2 (154-170)</td>
<td>182.7 (175-190)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Smoking, packyears</td>
<td>18.3 (16.2-20.4)</td>
<td>18.7 (16.7-20.8)</td>
<td>17.1 (15.0-19.1)</td>
<td>18.38 (16.3-20.4)</td>
<td>0.693</td>
</tr>
<tr>
<td>Therapy</td>
<td>N</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Therapy with beta-blocker, N</td>
<td>332</td>
<td>350</td>
<td>326</td>
<td>337</td>
<td>0.336</td>
</tr>
<tr>
<td>Therapy with statin, N</td>
<td>234</td>
<td>243</td>
<td>241</td>
<td>245</td>
<td>0.875</td>
</tr>
<tr>
<td>Therapy with ACE-inhibitor, N</td>
<td>292</td>
<td>250</td>
<td>243</td>
<td>269</td>
<td>0.024</td>
</tr>
<tr>
<td>Therapy with ASS, N</td>
<td>389</td>
<td>416</td>
<td>403</td>
<td>412</td>
<td>0.158</td>
</tr>
</tbody>
</table>

Table 1: Baseline characteristics of individuals following stratification into ETP-quartiles.
Figure legends:

Figure 1: Event-free survival of individuals stratified according to ETP-quartiles.

Event-free survival is significantly reduced in the 1st ETP-quartile compared to the 2nd, 3rd, or 4th quartile. The P-value for the overall trend is 0.011. Data are adjusted for age, gender, diabetes mellitus, body mass index, smoking, hypertension, LDL, HDL, triglycerides, hsCRP, vessel score, history of myocardial infarction, and use of statins or ACE-inhibitor.

Figure 2: Association of ETP with markers of endothelial dysfunction and inflammatory cell activation

Estimated marginal means (± 95% CI) of sICAM-1 (A), sVCAM-1 (B), or LpPLA2 (C) in study participants stratified according to ETP quartiles. Data are adjusted for age, gender, diabetes mellitus, body mass index, smoking, hypertension, LDL, HDL, and triglycerides and study participants receiving anticoagulant treatment were excluded; *P<0.05; **P<0.01.

Figure 3: Association of ETP with markers of systemic inflammation

Estimated marginal means (± 95% CI) of hsCRP (A) and SAA (B) in study participants stratified according to ETP quartiles. Data are adjusted for age, gender, diabetes mellitus, body mass index, smoking, hypertension, LDL, HDL, and triglycerides and study participants receiving anticoagulant treatment were excluded; **P<0.01
Figure 1:

A Kaplan-Meier survival curve showing event-free survival over observation time.

- 1st
- 2nd
- 3rd
- 4th

P-values:
- P = 0.049
- P = 0.007
- P = 0.004

Observation time (years)
Event-free Survival (%)
Figure 2:

A. PAFH (UI/L) according to ETP quartile.

B. sCAM-1 (mg/L) according to ETP quartile.

C. sCAM-1 (mg/L) according to ETP quartile.
Figure 3:

A

B