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Optimal Odd-Length Binary Z-Complementary Pairs
Zilong Liu, Udaya Parampalli, Senior Member, IEEE, Yong Liang Guan, Member, IEEE

Abstract—A pair of sequences is called a Golay complementary
pair (GCP) if their aperiodic auto-correlation sums are zero for
all out-of-phase time shifts. Existing known binary GCPs only
have even-lengths in the form of 2α10β26γ (where α, β, γ are
non-negative integers). To fill the gap left by the odd-lengths,
we investigate the optimal odd-length binary pairs which display
the closest correlation property to that of GCPs. Our criteria
of “closeness” is that each pair has the maximum possible zero-
correlation zone (ZCZ) width and minimum possible out-of-zone
aperiodic auto-correlation sums. Such optimal pairs are called
optimal odd-length binary Z-complementary pairs (OB-ZCP) in
this paper. We show that each optimal OB-ZCP has maximum
ZCZ width of (N + 1)/2, and minimum out-of-zone aperiodic
sum magnitude of 2, where N denotes the sequence length (odd).
Systematic constructions of such optimal OP-ZCPs are proposed
by insertion and deletion of certain binary GCPs, which settle
the 2011 Li-Fan-Tang-Tu open problem positively. The proposed
optimal OB-ZCPs may serve as a replacement for GCPs in
many engineering applications where odd sequence lengths are
preferred. In addition, they give rise to a new family of base-two
almost difference families (ADF) which are useful in studying
partially balanced incomplete block design (BIBD).

Index Terms—Aperiodic correlation, almost difference set
(ADS), almost difference families (ADF), Golay complementary
pair (GCP), zero-correlation zone (ZCZ), Z-complementary pair
(ZCP).

I. INTRODUCTION

In 1951, Marcel J. E. Golay introduced the concept of
“complementary pair” in the design of infrared multislit spec-
trometry that isolates the desired radiation with a fixed single
wavelength from background radiation with many different
wavelengths [1]. By definition, a complementary pair consists
of a pair of sequences whose out-of-phase aperiodic autocorre-
lations sum to zero [2]. Such a sequence pair is called a Golay
complementary pair (GCP), and either constituent sequence in
a GCP is called a Golay sequence (GS). Starting with the work
of Golay, several papers studied the constraints on the possible
lengths (denoted by N ) of binary GCPs:

1) N must be even and be the sum of two integer squares
[2];
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2) N ̸= 2 · 9t for any positive integer t [3];
3) N ̸= 2 · 49t for any positive integer t [4];
4) N cannot be divisible by a prime ≡ 3 (mod 4) [5].

Note that existing known binary GCPs have even lengths
of the form 2α10β26γ only, where α, β, γ are non-negative
integers [6], [7]. In 2003, Borwein and Ferguson performed
an exhaustive computer search which verified that all binary
GCPs of lengths up to 100 satisfy N = 2α10β26γ [8]. As a
result, all possible lengths of binary GCPs for N < 100 are

2, 4, 8, 10, 16, 20, 26, 32, 40, 52, 64, 80.

Motivated by the limited admissible lengths of binary GCPs,
Fan et al proposed “Z-complementary pair (ZCP)” which
features zero aperiodic auto-correlation sums for certain out-
of-phase time-shifts around the in-phase position [9]. Such
a region is called a zero-correlation zone (ZCZ) and in this
paper, such a ZCP is called a Type-I ZCP. Our study also
extends to Type-II ZCPs, each having a ZCZ for time-shifts
around the end-shift position (i.e., τ = N ).

GCPs have found a number of engineering applications
owing to their attractive correlation properties. For instance,
optimal intersymbol interference (ISI) channel estimation [10],
[11], radar waveform design [12]−[15]. In particular, gen-
eralized GCPs, called “complementary codes”1, have been
employed for potential application in interference-free asyn-
chronous multi-carrier code-division multiple-access (MC-
CDMA) communications [21]−[23]. A drawback of comple-
mentary codes is that the set size is upper bounded by the
number of constituent sequences in each complementary code
[24]. To enlarge the set size beyond that of complementary
codes, Liu et al proposed “quasi-complementary codes” which
feature uniformly low auto- and cross- correlation sums over a
time-shift zone or all (non-trivial) time-shifts [25], [26]. They
also derived a tighter aperiodic correlation lower bound (over
the Welch bound for quasi-complementary codes [24]) in [27]
and [28]. GCPs have also been applied for peak-to-mean en-
velope power ratio (PMEPR) control in MC communications.
Popović first pointed out that every GS has a PMEPR value
of at most 2 if it is spread over the frequency domain [29].
Subsequently, Davis and Jedwab constructed polyphase GCPs
of lengths 2m from generalized Boolean functions and applied
them for low-PMEPR code-keying MC communications [30].
In this paper, GCPs constructed by the approach in [30] are
called Golay-Davis-Jedwab (GDJ) complementary pairs. To
enable high-rate code-keying MC communications, it is desir-
able to construct more low PMEPR sequences with certain
code distance. Toward this end, there have been intensive

1Complementary codes is a set of two-dimensional matrices, each having
two or more row sequences, with zero (non-trivial) aperiodic auto- and cross-
correlation sums [16]−[20].
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research activities for QAM GCP constructions [31]−[34].
In addition, “near-complementary pairs”, which have slightly
higher but acceptable PMEPRs (e.g., at most 4), are proposed
[35], [36]. It is shown that more near-complementary se-
quences (over the total number of GSs) are available and thus
a higher code rate is possible. We remark that existing near-
complementary pairs (arising specifically for PMEPR control)
don’t necessarily possess the ZCZ property and thus they may
not be applicable in asynchronous communications.

In recent years, quasi-synchronous CDMA (QS-CDMA)
which is tolerant of small signal arrival delays (resulting
from asynchronous transmission and multi-path propagation),
has been proposed [37], [38]. Specifically, a single-carrier
QS-CDMA using ZCZ sequences [39]−[41] can achieve
interference-free performance provided that all interfering-
signals (relative to the desired user signal) fall into the
ZCZ. The same can be said for an MC-QS-CDMA using
Z-complementary codes (generalized Type-I ZCPs) [9], [42].
Unlike Type-I ZCPs, Type-II ZCPs are useful in a wide-
band wireless communication system where the minimum
interfering-signal delay takes on a large value. In such a
scenario, a Type-II ZCP is more efficient in rejecting asyn-
chronous interference because its ZCZ is designed for large
time-shifts. An example of such a channel with large delays
may be in rural communication with few buildings nearby but
large mountains at a distance away [43].

The main focus of this paper is optimal odd-length binary
ZCPs (OB-ZCPs) which exhibit the closest correlation prop-
erty to that of GCPs. Since existing known binary GCPs are
available for certain even-lengths only, we aim to fill the gap
left by the odd-lengths. In fact, this work is practically relevant
as optimal OB-ZCPs contribute to more design flexibility in
engineering applications. For instance, the authors in [10]
differentiated the even- and odd- sequence lengths in their pro-
posed ISI channel estimation scheme: for even-lengths, they
suggested GCPs for optimal channel estimation2, whereas for
odd-lengths, they constructed “almost-complementary periodic
sequence pairs”, each of which is formed by a binary sequence
with low auto-correlations, and the linear-phase transformed
version of itself.

We first ask how close the (non-trivial) aperiodic auto-
correlation sums of OB-ZCPs (Type-I or Type-II) approach ze-
ro. For asynchronous communications, we require “GCP-like”
OB-ZCPs with large ZCZ widths and low out-of-zone aperi-
odic auto-correlation sums. The first condition is for a larger
interference-free window to cater for more asynchronously
arriving signals, whereas the second condition is for a higher
detection probability (during code-acquisition stage) in noisy
channels [44]. The second condition can also help suppress
asynchronous interference caused by those interfering-signals
falling outside of the ZCZ. For code-keying MC communi-
cations, intuitively, sequences from optimal “GCP-like” OB-
ZCPs will possess low PMEPRs. It is known that every Type-I
OB-ZCP has maximum ZCZ width of (N + 1)/2, where N
denotes the sequence length [9], [45]. Systematic construction
of Type-I OB-ZCP with maximum ZCZ width was left open in

2with respect to the Crámer-Rao lower bound (CRLB).

[45]. This is referred to as “the Li-Fan-Tang-Tu open problem”
in this paper. For each Type-I OB-ZCP with maximum ZCZ
width, we investigate the magnitude lower bound of each out-
of-zone aperiodic auto-correlation sum. Such an investigation
is the key step in the search of the aforementioned optimal
“GCP-like” OB-ZCPs. Similarly, we examine that of Type-II
OB-ZCPs.

This paper is organized as follows. In Section II, we define
Type-I and Type-II ZCPs, introduce almost difference families
(ADF) [46], then introduce the PMEPR control problem in
code-keying MC communications. In Section III, we show
that for a Type-I OB-ZCP with maximum ZCZ width, the
magnitude of each out-of-zone aperiodic auto-correlation sum
is lower bounded by 2. Interestingly, we show that each Type-
II OB-ZCP of length N has the same maximum ZCZ width
of (N + 1)/2. It also has the property that the magnitude of
every out-of-zone aperiodic auto-correlation sum is at least 2
when the maximum ZCZ-width is achieved. We say an OB-
ZCP (Type-I or Type-II) is optimal if it has maximum ZCZ
width of (N+1)/2 and minimum out-of-zone magnitude of 2.
Furthermore, we show that each optimal OB-ZCP corresponds
to a set of base-two almost difference families (ADF). In
Section IV, by insertion and deletion of certain binary GDJ
complementary pairs [30], we present systematic constructions
of optimal OB-ZCPs (Type-I with lengths 2m+1 and Type-II
with lengths 2m ± 1). The proposed constructions for optimal
Type-I OB-ZCPs settle the Li-Fan-Tang-Tu open problem in
[45] positively. We also generalize optimal Type-II OB-ZCPs
to Type-II odd-length polyphase ZCPs (OP-ZCPs). We show
that sequences from optimal OP-ZCPs all have PMEPR of
at most 4 and therefore, by the framework in [36, Theorem
2], such optimal OP-ZCPs can be used as seed pairs to
generate more near-complementary sequences for high-rate
code-keying MC communications. Compared to the seed pairs
in [36] which are specifically designed for PMEPR control and
may not be applicable in asynchronous communications, our
proposed seed pairs (i.e., Type-II OP-ZCPs) are superior. We
summarize this paper in Section V.

II. PRELIMINARIES

Throughout this paper, denote by Zq = {0, 1, · · · , q − 1}
the set of integers modulo q, where q is a positive integer. A
length-N vector is called a binary sequence if it is over ZN

2 .
For convenience, whenever necessary, binary sequences may
also be shown over {1,−1}N . For a = (a0, a1, · · · , aN−1)
over ZN

2 , let a(z) be the associated polynomial of z as follows,

a(z) =
N−1∑
τ=0

(−1)aτ zτ . (1)

For two binary sequences a and b over ZN
2 , define

ρa,b(τ) =


N−1−τ∑

i=0

(−1)ai+bi+τ , 0 ≤ τ ≤ N − 1;

N−1−τ∑
i=0

(−1)ai+τ+bi , − (N − 1) ≤ τ ≤ −1;

0, |τ | ≥ N.
(2)
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When a ̸= b, ρa,b(τ) is called the aperiodic cross-correlation
function (ACCF) of a and b; otherwise, it is called the
aperiodic auto-correlation function (AACF). For simplicity, the
AACF of a will be sometimes written as ρa(τ).

Denote by ⊕ the modulo 2 addition. For a, b ∈ Z2, note
that (−1)a+b = 1− 2(a⊕ b). Therefore, for 0 ≤ τ ≤ N − 1,
ρa(τ) can be rewritten as

ρa(τ) = (N − τ)− 2 ·

[
N−1−τ∑

i=0

ai ⊕ ai+τ

]
. (3)

In addition, denote by θa,b(τ) the periodic cross-correlation
function, i.e.,

θa,b(τ) = ρa,b(τ) + ρb,a(N − τ). (4)

Similarly, we write the periodic auto-correlation function of a
as θa(τ).

A. Binary Z-complementary pairs

Definition 1: [Type-I Binary Z-complementary pair] Let a
and b be over ZN

2 . (a,b) is said to be a Type-I binary Z-
complementary pair (ZCP) with ZCZ width of Z if and only
if

ρa(τ) + ρb(τ) = 0, for any 1 ≤ τ ≤ Z − 1. (5)

In this case, ρa(τ) + ρb(τ) for Z ≤ τ ≤ N − 1, is called
the out-of-zone aperiodic auto-correlation sum of a and b at
time-shift τ . When Z = N , a Type-I ZCP is reduced to a
Golay complementary pair (GCP) [2].

Definition 2: [Type-II Binary Z-complementary pair] Let c
and d be over ZN

2 . (c,d) is said to be a binary Type-II ZCP
with ZCZ width of Z if and only if

ρc(τ) + ρd(τ) = 0, for any N − Z + 1 ≤ τ ≤ N − 1. (6)

In this case, ρc(τ) + ρd(τ) for 1 ≤ τ ≤ N − Z, is called
the out-of-zone aperiodic auto-correlation sum of c and d at
time-shift τ . When Z = N , a Type-II ZCP is also reduced to
a GCP [2].

Example 1: Let

a = (1, 1, 1,−1, 1, 1,−1, 1, 1),
b = (1, 1, 1,−1,−1,−1, 1,−1, 1).

(a,b) is a length-9 Type-I binary ZCP of Z = 5 because

ρa(τ) = (9, 0,−1, 4, 1, 0, 1, 2, 1),
ρb(τ) = (9, 0, 1,−4,−1,−2, 1, 0, 1),(

ρa(τ) + ρb(τ)
)8

τ=0
= (18, 0, 0, 0, 0,−2, 2, 2, 2).

Example 2: Let

c = (−1, 1, 1, 1,−1, 1,−1, 1, 1),
d = (−1, 1, 1, 1,−1,−1, 1,−1,−1).

(c,d) is a length-9 Type-II binary ZCP of Z = 5 because

ρc(τ) = (9,−2, 1,−2, 1, 0, 3, 0,−1),
ρd(τ) = (9, 0,−3, 0, 1, 0,−3, 0, 1),(

ρc(τ) + ρd(τ)
)8

τ=0
= (18,−2,−2,−2, 2, 0, 0, 0, 0).

The following lemma is given in [45, Theorem 1].

Lemma 1: Each Type-I odd-length binary ZCP (OB-ZCP)
(a,b) has the maximum ZCZ of width (N + 1)/2, i.e.,

Z ≤ (N + 1)/2, (7)

where N denotes the sequence length.

Similarly, we have the following lemma.

Lemma 2: Each Type-II OB-ZCP (c,d) also has the max-
imum ZCZ of width (N + 1)/2, i.e.,

Z ≤ (N + 1)/2, (8)

where N denotes the sequence length.

Definition 3: An OB-ZCP (Type-I or Type-II) is said to be
Z-optimal if Z = (N + 1)/2.

Remark 1: The Li-Fan-Tang-Tu open problem in [45]: How
to construct Z-optimal Type-I OB-ZCPs systematically?

In addition, we need the following definition.

Definition 4: [Optimal OB-ZCP] An OB-ZCP (Type-I or
Type-II) is said to be optimal if it is Z-optimal and every out-
of-zone aperiodic auto-correlation sum takes on the magnitude
value of 2.

A plot of the aperiodic auto-correlation sum magnitudes for
OB-ZCPs in Example 1 and Example 2 is shown in Fig. 1. One
can see that the OB-ZCPs in Example 1 and Example 2 are
optimal. We will prove the above-mentioned magnitude lower
bound of the out-of-zone aperiodic auto-correlation sums in
Section III.

B. Almost Difference Families (ADF)

Almost difference families (ADF) are combinatorial objects
and have applications in partially balanced incomplete block
design (BIBD) [46]. In this subsection, we introduce definition
and some properties of ADF which are required to establish
their connection to optimal OB-ZCPs.

Define the support of a, a binary sequence over ZN
2 , as

follows,
Ca = {0 ≤ i ≤ N − 1 : ai = 1}.

Conversely, given a support, a binary sequence can be ob-
tained. In this sense, the sequence a is called the characteristic
sequence of the support set Ca. Also, denote by |Ca| the
number of elements in Ca.

For any subset A ⊆ ZN , the difference function of A is
defined as

dA(τ) = |(τ +A) ∩A|, τ ∈ ZN .

Given the support of a binary sequence a, the periodic auto-
correlation function of a can be expressed as [47]

θa(τ) = N − 4(k − dCa(τ)), (9)

where k = |Ca|.



4

2

18

( ) ( )r t r t+
a b

t1-2-3-4-5-6-7-8- 1 2 3 4 5 6 7 8

(a) For OB-ZCP in Example 1

2

18

t

( ) ( )r t r t+
c d

1-2-3-4-5-6-7-8- 1 2 3 4 5 6 7 8

(b) For OB-ZCP in Example 2

Fig. 1: AACF sum magnitudes of OB-ZCPs in Example 1 and Example 2, respectively.

Let D = {D0, D1}, where D0 and D1 are the supports
of binary length-N sequences a and b, respectively. For
simplicity, let g0 = |D0| and g1 = |D1|. D is said to be a
set of {N ; (g0, g1);λ; ν} almost difference families (ADF) if
and only if

dD(τ) = dD0(τ) + dD1(τ) (10)

takes on the value λ for ν times, and the value λ + 1 for
N − 1 − ν times, when τ ranges over {1, 2, · · · , N − 1}. In
this case, either D0 or D1 is called a base, and therefore, D is
said to be a set of base-two ADF [46]. Existing constructions
of ADF in general are based on the tool of cyclotomy [46],
[48], [49]. Although there are ADF of more than 2 bases, they
are not our research focus in this paper. Note that ADF are a
generalization of difference families (DF)3 where ν = N − 1
[51]. In [52], Doković presented a number of base-two DF
obtained from computer search. ADF may also be regarded a
generalization of “almost difference set (ADS)” which consists
of one base only and is useful in optimal binary sequence
design and cryptography [46]. For more information on ADS,
the readers are referred to [47] and [53].

A necessary condition on the existence of a set of two-base
ADF [46] is that

1∑
i=0

gi(gi − 1) = νλ+ (N − 1− ν)(λ+ 1). (11)

By (9) and (10), we have

θa(τ) + θb(τ)

=

{
2N, for τ = 0;
2N − 4 (g0 + g1 − dD(τ)) , for τ > 0.

(12)

By (12), we have the following lemma.

Lemma 3: Let D0 and D1 be the supports of binary length-
N sequences a and b, respectively, where g0 = |D0| and
g1 = |D1|. Then, D = {D0, D1} is a set of

{N ; (g0, g1);λ = g0 + g1 − (N + 1)/2; ν}

3which are also known as “supplementary difference sets (SDS)” in some
literature [50].

ADF if and only if θa(τ)+θb(τ) = ±2, where ν is an integer
in the range of [1, N − 1].

C. PMEPR Control Problem in Code-Keying Multi-carrier
Communication

Consider an MC system with N subcarriers, △f the sub-
carrier spacing and fc the carrier frequency. For a length-N
complex-valued codeword a = (a0, a1, · · · , aN−1), its MC
waveform signal in the symbol duration 0 ≤ t < 1/△f is the
real part of the following signal, i.e.,

Ta(t) =
N−1∑
k=0

ak exp
(√

−12π(fc +△fk)t
)
. (13)

In [30], it is shown that

|Ta(t)|2 = ρa(0) + 2
N−1∑
τ=1

Re
{
ρa(τ) exp

(√
−12π△fτt

)}
,

(14)
where Re{x} denotes the real part of the complex-valued data
x.

For a polyphase sequence a, the peak-to-mean power ratio
(PMEPR) of its MC waveform signal is defined as

PMEPR(a) :=
1

N
sup

0≤t<1/△f

|Ta(t)|2 . (15)

Given a codebook S (which consists of a set of codewords),
a specific codeword (say, a) is selected in every symbol
duration according to the input message (say, x), i.e., code-
keying. Therefore, the code rate of a code-keying MC system
is defined as the ratio of the information word-length to the
codeword length (which is equal to the number of subcarriers),
i.e.,

R(S) :=
log2 |S|

N
. (16)

Remark 2: The PMEPR control problem in a code-keying
MC system is to design a codebook S such that (1): all of its
codewords feature low PMEPRs; (2): it features a large size
to enable high-rate MC communications.
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Let (a,b) be a pair of polyphase sequences of length N . By
(14), the following equation is straightforward [35, Theorem
2].

|Ta(t)|2 + |Tb(t)|2 ≤ 2N + 2

N−1∑
τ=1

|ρa(τ) + ρb(τ)| . (17)

By (17), we have

PMEPR(a) ≤ 2 +
2

N

N−1∑
τ=1

|ρa(τ) + ρb(τ)|. (18)

III. OPTIMAL ODD-LENGTH BINARY Z-COMPLEMENTARY
PAIRS (OB-ZCPS)

In this section, we shall first prove that each out-of-zone
aperiodic auto-correlation sum of an OB-ZCP (Type-I or Type-
II) has a magnitude lower bound of 2 when its ZCZ is
maximized. Then, we will give a necessary condition (via
ADF) as well as several sequence properties of optimal OB-
ZCPs.

For an odd-length binary sequence pair (a,b) over ZN
2 ,

define

Sa,b(τ) ,
N−1−τ∑

i=0

(ai + bi) +

N−1∑
i=τ

(ai + bi). (19)

We need the following lemma.
Lemma 4: For 1 ≤ τ ≤ N − 1, Sa,b(τ) ≡ Sa,b(N − τ)

(mod 2).
Proof: The proof of this lemma is sufficient if we can

show that this identity holds for any 1 ≤ τ ≤ (N − 1)/2. By
definition,

Sa,b(N − τ) =
τ−1∑
i=0

(ai + bi) +
N−1∑

i=N−τ

(ai + bi).

Then by changing the limits of summations appropriately, we
can see that

Sa,b(τ) =
N−1−τ∑

i=0

(ai + bi) +
N−1∑
i=τ

(ai + bi)

=

τ−1∑
i=0

(ai + bi) +

N−1−τ∑
i=τ

(ai + bi)︸ ︷︷ ︸
+

N−1−τ∑
i=τ

(ai + bi) +
N−1∑

i=N−τ

(ai + bi)︸ ︷︷ ︸
≡

τ−1∑
i=0

(ai + bi) +
N−1∑

i=N−τ

(ai + bi) (mod 2)

= Sa,b(N − τ) (mod 2).

Thus, we complete the proof.

Remark 3: Note that the identity in Lemma 4 was used in
arriving at the upper bound of the maximum ZCZ in [45,
Theorem 1] for the specific case of τ = (N − 1)/2. The

symmetric property of Sa,b(τ) is also useful in bounding the
out-of-zone aperiodic auto-correlation sums as shown below.

In addition, by [45, (4)], we have

Sa,b(τ) ≡ N − τ ≡ τ + 1, for 1 ≤ τ ≤ Z − 1. (20)

Suppose a Z-optimal Type-I OB-ZCP (a,b), i.e., Z = (N +
1)/2. By Lemma 4 and (20), we have

ρa(N − τ) + ρb(N − τ)

2

≡ τ +

τ−1∑
i=0

[
ai ⊕ ai+N−τ + bi ⊕ bi+N−τ

]
≡ τ + Sa,b(N − τ)

≡ τ + Sa,b(τ)

≡ 1 (mod 2),

(21)

where 1 ≤ τ ≤ (N − 1)/2. For a Z-optimal Type-II OB-ZCP
(c,d), similarly we have

ρc(N − τ) + ρd(N − τ)

2
≡ 1 (mod 2), (22)

where (N + 1)/2 ≤ τ ≤ N − 1.

With (21) and (22), we give the following two theorems.

Theorem 1: The magnitude of each out-of-zone aperiodic
auto-correlation sum (OZ-AAS) for a Z-optimal Type-I OB-
ZCP (a,b) is lower bounded by 2, i.e.,∣∣∣ρa(τ) + ρb(τ)

∣∣∣≥ 2, for any (N + 1)/2 ≤ τ ≤ N − 1.

If
∣∣∣ρa(τ) + ρb(τ)

∣∣∣= 2 holds for all (N + 1)/2 ≤ τ ≤ N − 1,
(a,b) is said to be an optimal Type-I OB-ZCP.

Some examples of optimal Type-I OB-ZCPs (obtained by
computer search) of lengths up to 25 are shown in Table I.

Theorem 2: The magnitude of each out-of-zone aperiodic
auto-correlation sum (OZ-AAS) for a Z-optimal Type-II OB-
ZCP (c,d) is lower bounded by 2, i.e.,∣∣∣ρc(τ) + ρd(τ)

∣∣∣≥ 2, for any 1 ≤ τ ≤ (N − 1)/2.

If
∣∣∣ρc(τ)+ρd(τ)

∣∣∣= 2 holds for all 1 ≤ τ ≤ (N−1)/2, (c,d)
is said to be an optimal Type-II OB-ZCP.

Theorem 3: Suppose that D = {D0, D1} consists of the
supports of an optimal OB-ZCP (Type-I or Type-II), where
g0 = |D0| and g1 = |D1|. Then, D should be a set of

{N ; (g0, g1);λ = g0 + g1 − (N + 1)/2; ν} ,

ADF, where ν is an integer in the range of [1, N − 1]. In
particular, D reduces to a set of

{N ; (g0, g1);λ = g0 + g1 − (N + 1)/2;N − 1}

DF if one of following conditions is satisfied:
1) For an optimal Type-I OB-ZCP (a,b),

ρa(τ)+ ρb(τ) = −2, for all (N +1)/2 ≤ τ ≤ N − 1.
(23)
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TABLE I: Optimal Type-I OB-ZCPs of lengths up to 25

N

(
(−1)a

(−1)b

) (
ρa(τ) + ρb(τ)

)N−1

τ=(N+1)/2

3
(
+++
+−+

)
(2)

5
(
++++−
+−++−

)
(2,−2)

7
(
++−+−++
+−−++++

)
(−2, 2, 2)

9
(−+−+++++−
−−+++−++−

)
(−2,−2,−2, 2)

11
(
++−−−++−++−
+−+−++++++−

)
(−2, 2, 2, 2,−2)

13
(−+−−−−++−−−+−
−−+−−+++++−+−

)
(−2,−2, 2, 2,−2, 2)

15
(
+−++−++++++−−−+
++−+−+++−−−+−−+

)
(2,−2,−2, 2,−2,−2, 2)

17
(
++−++−−−+−+−−++++
+−+−−−+++−++−++++

)
(−2,−2,−2,−2, 2, 2, 2, 2)

19
(
++−++−++++−+−+−−−++
+−+−−++−++++++−−−++

)
(2, 2, 2, 2,−2,−2,−2, 2, 2)

21
(−+−−+−++++++++−−−+++−
−−+−+++−−++−+++−+−++−

)
(−2, 2,−2, 2,−2,−2, 2,−2,−2, 2)

23
(
+−+++−−−++++−++−+++−+−+
++−−++−++++++−−−−+−−+−+

)
(2, 2, 2,−2, 2,−2, 2,−2, 2,−2, 2)

25
(
+++−+−−++−+−+−+−−+++−++++
+−−+−−−−+−−++−++++−−−++++

)
(−2, 2,−2,−2, 2,−2,−2,−2, 2, 2, 2, 2)

2) For an optimal Type-II OB-ZCP (c,d),

ρc(τ)+ρd(τ) = −2, for all 1 ≤ τ ≤ (N−1)/2. (24)

Proof: We just show the proof for optimal Type-I OB-
ZCP case. Starting from an optimal OB-ZCP (a,b), we have∣∣∣ρa(τ) + ρb(τ)

∣∣∣= {
0, for 0 ≤ τ ≤ (N − 1)/2;
2, for (N + 1)/2 ≤ τ ≤ N − 1.

Thus, for any 1 ≤ τ ≤ N − 1,∣∣∣θa(τ) + θb(τ)
∣∣∣

=
∣∣∣ρa(τ) + ρb(τ)︸ ︷︷ ︸+ ρa(N − τ) + ρb(N − τ)︸ ︷︷ ︸∣∣∣

= 2.

(25)

Recalling Lemma 3 completes the proof.

Example 3: The optimal Type-I OB-ZCP in Example 1 cor-
responds to a {9; (2, 4); 1; 2} base-two ADF D1 = {Da, Db}
where

Da = {3, 6}, Db = {3, 4, 5, 7}.

Also, the optimal Type-II OB-ZCP in Example 2 corresponds
to a {9; (3, 5); 3; 6} base-two ADF D2 = {Dc, Dd} where

Dc = {0, 4, 6}, Dd = {0, 4, 5, 7, 8}.

In what follows, we give three additional properties of
optimal OB-ZCPs, in order to show their close connections
to binary GCPs. These properties, together with the necessary
condition in Theorem 3, may be useful for the search of
optimal OB-ZCPs of large lengths. As before, whenever a
proof is needed, we show the proof of optimal Type-I OB-
ZCPs only.

Property 1: Each sequence in an optimal OB-ZCP (Type-I
or Type-II) has a PMEPR of at most 4.

Proof: Recalling (18) completes the proof.

Remark 4: In contrast, each sequence in a GCP has a
PMEPR of at most 2 [29], [30].

Property 2: For an optimal Type-I OB-ZCP (a,b),{
a0 + aN−1 + b0 + bN−1 ≡ 0 (mod 2),

ar + aN−1−r + br + bN−1−r ≡ 1 (mod 2),
(26)

where 1 ≤ r ≤ (N − 3)/2. For an optimal Type-II OB-ZCP
(c,d),

cr + cN−1−r + dr + dN−1−r ≡ 1 (mod 2), (27)

where 0 ≤ r ≤ (N − 3)/2.

Proof: To prove (26), we need an induction as follows.
Since

ρa(N − 1) + ρb(N − 1)

=2− 2
[
a0 ⊕ aN−1 + b0 ⊕ bN−1

]
=± 2,

Thus,
a0 + aN−1 + b0 + bN−1 ≡ 0 (mod 2). (28)

Also,

ρa(N − 2) + ρb(N − 2)

=4− 2
[
a0 ⊕ aN−2 + a1 ⊕ aN−1 + b0 ⊕ bN−2 + b1 ⊕ bN−1

]
=± 2,

(29)

therefore,

a0 + aN−1 + b0 + bN−1︸ ︷︷ ︸
≡0 (mod 2) by (28)

+ a1 + aN−2 + b1 + bN−2︸ ︷︷ ︸ ≡ 1 (mod 2),
(30)
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leading to

a1 + aN−2 + b1 + bN−2 ≡ 1 (mod 2). (31)

Carrying on this induction until ρa
(
N+1
2

)
+ ρb

(
N+1
2

)
, it

is easy to see that

ar + aN−1−r + br + bN−1−r ≡ 1 (mod 2) (32)

holds for any 1 ≤ r ≤ (N − 3)/2. Thus, we complete the
proof of (26).

Remark 5: In contrast to (26) and (27), a binary GCP (a,b)
should satisfy the following condition

ar + aN−1−r + br + bN−1−r ≡ 1 (mod 2), (33)

where 0 ≤ r ≤ N/2− 1 and N is even.

Property 3: For an optimal Type-I OB-ZCP (a,b), denote
by g0 and g1 the numbers of ones in a and b, respectively.
Then we have

N+
N−1∑

τ=(N+1)/2

[
ρa(τ) + ρb(τ)

]
︸ ︷︷ ︸

= (g0−g1)
2+(N−g0−g1)

2.

(34)
For an optimal Type-II OB-ZCP (c,d) (similarly, define g0
and g1 for c and d, respectively),

N +

(N−1)/2∑
τ=1

[
ρc(τ) + ρd(τ)

]
︸ ︷︷ ︸ = (g0 − g1)

2 +(N − g0 − g1)
2.

(35)

Proof: Recall the associated polynomial defined in Sec-
tion II. Then, for z ̸= 0, we obtain

a(z)a(z−1) + b(z)b(z−1)

=
N−1∑
τ=0

[
(ρa(τ) + ρb(τ)) ·

(
zτ + z−τ

) ]
=2N +

N−1∑
τ=(N+1)/2

[
(ρa(τ) + ρb(τ)) ·

(
zτ + z−τ

) ]
.

(36)

Now setting z = 1 in (36), and recalling the ZCZ property of
the optimal Type-I OB-ZCP, we have∣∣∣a(1)∣∣∣2+∣∣∣b(1)∣∣∣2

=(N − 2g0)
2 + (N − 2g1)

2

=ρa(0) + ρb(0) + 2
N−1∑

τ=(N+1)/2

[
ρa(τ) + ρb(τ)

]

=2N + 2
N−1∑

τ=(N+1)/2

[
ρa(τ) + ρb(τ)

]
.

(37)

By (37), the proof of (34) follows.

Remark 6: The length of a binary GCP should satisfy the
following condition [2].

N = (g0 − g1)
2 + (N − g0 − g1)

2. (38)

Note that, disregarding the condition on N , (34) and (35) are
also applicable to binary GCPs whose out-of-phase aperiodic
autocorrelation sums are zero.

IV. PROPOSED CONSTRUCTIONS FOR OPTIMAL OB-ZCPS

In this section, we present constructions of optimal OB-
ZCPs based on insertion and deletion of certain GDJ com-
plementary pairs [30]. To this end, we first introduce the
construction of GDJ complementary pairs below.

A. Golay-Davis-Jedwab (GDJ) Complementary pairs
For x = (x1, x2, · · · , xm) ∈ Zm

2 , a q-ary generalized
Boolean function f(x) [or f(x1, x2, · · · , xm)] is defined as
a mapping f : Zm

2 → Zq . Let (i1, i2, · · · , im) be the binary
representation of the integer i =

∑m
k=1 ik2

k−1, with im
denoting the most significant bit (MSB). Given f(x), let
fi = f(i1, i2, · · · , im), and define the associated sequence
f as
f : = (f0, f1, · · · , f2m−1)

= (f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)) .

Example 4: Let m = 3 and q = 2. The associated
sequences for generalized Boolean functions of 1, x1, x3, x1x3

are
1 = (1, 1, 1, 1, 1, 1, 1, 1),
x1 = (0, 1, 0, 1, 0, 1, 0, 1),
x3 = (0, 0, 0, 0, 1, 1, 1, 1),

x1x3 + 1 = (1, 1, 1, 1, 1, 0, 1, 0),

respectively.

We present the construction of GDJ complementary pairs
in the following lemma.

Lemma 5: (Golay-Davis-Jedwab complementary pair [30])
Let

f(x) =
q

2

m−1∑
k=1

xπ(k)xπ(k+1) +
m∑

k=1

ckxk, (39)

where q is even, π is a permutation of the set {1, 2, · · · ,m},
and ck ∈ Zq . Then (g,h)

g = f + c · 1

h = f +
q

2
xπ(1) + c′ · 1

(40)

form a GCP of length 2m, where c, c′ ∈ Zq .

Next, we present an interesting property of GDJ comple-
mentary pairs. Such a property is useful in the proof of our
proposed optimal OB-ZCPs.

Lemma 6: Let q = 2 and consider a length-2m binary GDJ
complementary pair (g,h) described in Lemma 5. Denote by
g0 and g1 the first- and the second- halves of g, respectively.
Similarly, we define h0 and h1 for h.

g0 = (g0, g1, · · · , g2m−1−1),

g1 = (g2m−1 , g2m−1+1, · · · , g2m−1),

h0 = (h0, h1, · · · , h2m−1−1),

h1 = (h2m−1 , h2m−1+1, · · · , h2m−1).
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Then, every sum of out-of-phase aperiodic auto-correlations
of g0,g1,h0,h1 equals to zero, i.e.,

ρg0(τ) + ρg1(τ) + ρh0(τ) + ρh1(τ) = 0, for τ ̸= 0. (41)

In addition, every sum of aperiodic cross-correlations between
(g0,h0) and (g1,h1) is zero, i.e.,

ρgu,g1−u(τ) + ρhu,h1−u(τ) = 0, for u ∈ {0, 1}. (42)

Proof: See Appendix A.

B. Proposed Constructions

We need the following two definitions.
Definition 5: [Insertion Function] For a vector w =

(w0, w1, · · · , wN−1), an element d (to be inserted), and an
integer r ∈ {0, 1, · · · , N} (the insertion position), define
I(w, d, r) as an insertion function as follows.

I(w, d, r)

=

 (d,w0, w1, · · · , wN−1), if r = 0;
(w0, w1, · · · , wN−1, d), if r = N ;

(w0, w1, · · · , wr−1, d, wr, · · · , wN−1), otherwise.
(43)

Definition 6: [Deletion Function] For a vector w =
(w0, w1, · · · , wN−1) and an integer r ∈ {0, 1, · · · , N − 1}
(the deletion position), define V(w, r) as a deletion function
as follows.

V(w, r)

=

 (w1, w2, · · · , wN−1), if r = 0;
(w0, w1, · · · , wN−2), if r = N − 1;

(w0, w1, · · · , wr−1, wr+1, · · · , wN−1), otherwise.
(44)

Based on the above definitions, we present below the
following lemma on aperiodic auto-correlation functions of
the insertion- and deletion- functions. We omit its proof as it
is straightforward.

Lemma 7: For a binary vector w of length N = 2m,
denote by w0 and w1 the first- and the second- halves of
w, respectively, i.e.,

w0 = (w0, w1, · · · , w2m−1−1),
w1 = (w2m−1 , w2m−1+1, · · · , w2m−1).

The aperiodic auto-correlation function of I(w, d, r) (where
d ∈ Z2) is shown in (45). In addition, the aperiodic auto-
correlation function of V(w, r) is shown in (46).

Now, we are ready to present our proposed constructions
for optimal Type-I OB-ZCPs.

Theorem 4: Let (g,h) be a length-2m binary GDJ pair
described in Lemma 5. Then, an optimal Type-I OB-ZCP
(a,b) of length 2m + 1 is obtained by insertion of (g,h)
in one of the cases in Table II.

Proof: See Appendix B.

Next, we present below our proposed constructions for
optimal Type-II OB-ZCPs.

Theorem 5: Let (g,h) be a length-2m binary GDJ pair
described in Lemma 5. Then, an optimal Type-II OB-ZCP
(c,d) of length 2m + 1 or 2m − 1 is obtained by insertion
or deletion of (g,h) in one of the cases in Table III.

Proof: See Appendix C.

To illustrate the proposed constructions in Theorem 4 and
Theorem 5, we show an example below.

Example 5: Let m = 4, π = (1, 3, 2, 4), and
(c1, c2, c3, c4, c, c

′) = (0, 0, 0, 1, 0, 0). By Lemma 5, we obtain
a length-16 binary GCP (g,h) below

g = (+,+,+,+,+,−,−,+,−,−,+,+,−,+,−,+),
h = (+,−,+,−,+,+,−,−,−1,+,+,−,−,−,−,−).

Let d1 = d2 = 0. Note that π(m) = m and d1 + d2 ≡ m +

1+
m∑

k=1

ck+ c′− c (mod 2). Applying the Case 3 construction

in Theorem 4, we obtain a length-17 optimal Type-I OB-ZCP
(a,b)

a =
(
(−1)d1 , g

)
, b =

(
h, (−1)d2

)
,

with (
ρa(τ) + ρb(τ)

)16

τ=0

=(34, 0, 0, 0, 0, 0, 0, 0, 0,−2, 2, 2, 2,−2, 2,−2,−2).

Also, applying the Case 3 construction in Theorem 5, we
obtain a length-17 optimal Type-II OB-ZCP (c,d)

c =
(
(−1)d1 , g

)
, d =

(
h, (−1)1+d2

)
,

because (
ρc(τ) + ρd(τ)

)16

τ=0

=(34, 2, 2,−2, 2, 2, 2, 2,−2, 0, 0, 0, 0, 0, 0, 0, 0).

C. Further Remarks on PMEPR Control in Code-Keying
Multi-carrier Communications

As pointed out in Property 1, each sequence in an optimal
OB-ZCP possesses a PMEPR of at most 4. In this subsection,
we make some further comments on PMEPR control in code-
keying MC communications by the proposed optimal OB-
ZCPs.

First, we note that the idea of insertion and deletion of GDJ
complementary pair has also appeared in [36]. Specifically, in
[36, Theorem 2], a framework has been proposed to generate
polyphase near-complementary pairs based on two types of
seed pairs, i.e., the “extended Golay complementary pairs”
(by the end-position insertion) and “shortened Golay comple-
mentary pairs” (by the end-position deletion). It is shown that
their near-complementary sequences also have PMEPR of at
most 4. However, they don’t necessarily possess large ZCZ
widths and hence they may not be applicable in asynchronous
communications.
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ρI(w,d,r)(τ)

=


ρw(τ) + (−1)d+wτ−1 , If r = 0;
ρw(τ) + (−1)d+w2m−τ , If r = 2m;
ρw0(τ) + ρw1(τ) + ρw1,w0(2

m−1 − τ + 1)
+ (−1)d [(−1)w2m−1−τ + (−1)w2m−1+τ−1 ] , If r = 2m−1 and 1 ≤ τ ≤ 2m−1.

(45)

ρV(w,r)(τ)

=



ρw(τ) + (−1)w0+wτ+1, If r = 0;
ρw(τ) + (−1)w2m−1+w2m−τ−1+1, If r = 2m − 1;
ρw0

(τ) + ρw1
(τ) + ρw1,w0

(2m−1 − τ − 1)
+ (−1)w2m−1−1+1 [(−1)w2m−1+τ + (−1)w2m−1−τ−1 ] ,

If r = 2m−1 − 1 and 1 ≤ τ ≤ 2m−1 − 1;
ρw0(τ) + ρw1(τ) + ρw1,w0(2

m−1 − τ − 1)
+ (−1)w2m−1+1 [(−1)w2m−1+τ + (−1)w2m−1−τ−1 ] ,

If r = 2m−1 and 1 ≤ τ ≤ 2m−1 − 1.

(46)

TABLE II: Four Cases of Optimal Type-I OB-ZCP of Length 2m + 1

Case No. a b Constraints Length

1 I(g, d1, 0) I(h, d2, 0)
π(1) = m, d1, d2 ∈ Z2,

d1 + d2 ≡ c′ − c+ 1 (mod 2).

2m + 1

2 I(g, d1, 2m) I(h, d2, 2m)
π(1) = m, d1, d2 ∈ Z2,

d1 + d2 ≡ c′ − c (mod 2).

3 I(g, d1, 0) I(h, d2, 2m)
π(m) = m, d1, d2 ∈ Z2,

d1 + d2 ≡ m+ 1 +
∑m

k=1 ck + c′ − c (mod 2).

4 I(g, d1, 2m) I(h, d2, 0)
π(m) = m, d1, d2 ∈ Z2,

d1 + d2 ≡ m+
∑m

k=1 ck + c′ − c (mod 2).

TABLE III: Eight Cases of Optimal Type-II OB-ZCP of Length 2m + 1 or 2m − 1

Case No. c d Constraints Length

1 I(g, d1, 0) I(h, d2, 0)
π(1) = m, d1, d2 ∈ Z2,

d1 + d2 ≡ c′ − c (mod 2).

2m + 1

2 I(g, d1, 2m) I(h, d2, 2m)
π(1) = m, d1, d2 ∈ Z2,

d1 + d2 ≡ c′ − c+ 1 (mod 2).

3 I(g, d1, 0) I(h, d2, 2m)
π(m) = m, d1, d2 ∈ Z2,

d1 + d2 ≡ m+
∑m

k=1 ck + c′ − c (mod 2).

4 I(g, d1, 2m) I(h, d2, 0)
π(m) = m, d1, d2 ∈ Z2,

d1 + d2 ≡ m+ 1 +
∑m

k=1 ck + c′ − c (mod 2).
5 I(g, d1, 2m−1) I(h, d2, 2m−1) d1, d2 ∈ Z2.
6 V(g, d(2m − 1)) V(h, d(2m − 1)) d ∈ {0, 1}, π(1) = m.

2m − 17 V(g, d(2m − 1)) V(h, (1− d)(2m − 1)) d ∈ {0, 1}, π(m) = m.
8 V(g, 2m−1 − d1) V(h, 2m−1 − d2) d1, d2 ∈ {0, 1}.

We also point out that the insertion and deletion in this paper
apply not only to the start and the end positions, but also to the
middle positions (see Case 5 and Case 8 in Theorem 5) of GDJ
complementary pairs. Because of this, more seed sequences
with PMEPRs of at most 4 have been constructed. To show
this, we extend the Cases 5 and 8 constructions in Theorem 5 to
Type-II odd-length polyphase ZCPs in the following theorem.

Theorem 6: Let (g,h) be a length-2m q-ary GDJ pair as
described in Lemma 5. Construct odd-length q-ary (c,d) in
one of the following cases.

1) For N = 2m + 1,

c = I(g, d1, 2m−1), d = I(h, d2, 2m−1),

where d1, d2 ∈ {a, a+ q/2} and a ∈ Zq .

2) For N = 2m − 1,

c = V(g, 2m−1 − d1), d = V(h, 2m−1 − d2),

where d1, d2 ∈ {0, 1}.
(c,d) is a Type-II polyphase ZCP which has ZCZ width of
(N+1)/2 and magnitude of 2 for every out-of-zone aperiodic
auto-correlation sum. By (18), each polyphase sequence in
(c,d) also has a PMEPR of at most 4.

Proof: The proof is straightforward and thus is omitted.

V. CONCLUSIONS AND OPEN PROBLEMS

This paper presents a study on optimal odd-length binary
Z-complementary pairs (OB-ZCPs). Motivated by the fact that
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all binary Golay complementary pairs (GCPs) are known to
have even-lengths of the form 2α10β26γ only, our work targets
at finding optimal odd-length binary pairs which display
closest correlation property to that of GCPs. Such “GCP-like”
sequence pairs should meet the following two conditions: (1),
each pair has maximum possible zero-correlation zone (ZCZ)
width; (2), each has minimum possible magnitude for every
out-of-zone aperiodic auto-correlation sum. They may be used
as an alternative of GCPs in many engineering applications
(e.g., channel estimations) when odd sequence lengths are
preferred. Depending on their ZCZs are defined around the
in-phase position or the end-shift position, we have studied
Type-I OB-ZCPs and Type-II OB-ZCPs, respectively.

We have made the following main contributions in this
paper:

1) For a length-N OB-ZCP (Type-I or Type-II), we have
shown that when the maximum ZCZ width, i.e., (N +
1)/2, is achieved, each out-of-zone aperiodic auto-
correlation sum has the magnitude lower bound of 2.
An OB-ZCP with maximum ZCZ width and minimum
out-of-zone magnitude is said to be optimal.

2) By insertion and deletion of certain binary Golay-Davis-
Jedwab (GDJ) complementary pairs, we have by Theo-
rem 4 and Theorem 5 constructed optimal Type-I OB-
ZCPs of lengths 2m + 1 and optimal Type-II OB-ZCPs
of lengths 2m ± 1, respectively, where m is a positive
integer. Our proposed constructions of optimal Type-I
OB-ZCPs have settled the Li-Fan-Tang-Tu open problem
in [45] on systematic construction of Type-I OB-ZCP
(not necessarily be optimal) with maximum ZCZ width
of (N + 1)/2.

3) We have shown in Theorem 3 that to construct an
optimal OB-ZCP (Type-I or Type-II ), it is necessary
that its supports form a set of base-two almost difference
families (ADF). Moreover, our proposed constructions
in Theorem 4 and Theorem 5 provide infinite sets of
base-two ADF which are useful in partially balanced
incomplete block design (BIBD) [46].

We have also performed a search for optimal Type-I OB-
ZCPs of lengths 2m − 1 using deletion of all possible binary
GDJ complementary pairs. However, it seems that only length-
3 optimal Type-I OB-ZCPs can be obtained. For instance, for
a binary length-4 GDJ complementary pair (g,h) below, a
length-3 optimal Type-I OB-ZCP (a,b) is formed by deleting
the last elements4 of g and h, respectively.

g = (1, 1, 1,−1), a = (1, 1, 1),

h = (1,−1, 1, 1), b = (1,−1, 1).

We close this paper by proposing the following open
question: are there any systematic constructions of optimal
OB-ZCPs (Type-I and Type-II) in lengths other than the ones
discussed in this paper? In particular, a generic construction of
optimal Type-I OB-ZCPs of lengths 2m−1 may be interesting.

4or the first elements.

APPENDIX A
PROOF OF Lemma 6

First, we prove (41). For 0 ≤ i < j = i+τ ≤ 2m−1−1, let
the binary representations of i and j be

(
i1, i2, · · · , im−1, 0

)
and

(
j1, j2, · · · , jm−1, 0

)
, respectively. As a result, the bi-

nary representations of (i + 2m−1) and (j + 2m−1) are(
i1, i2, · · · , im−1, 1

)
and

(
j1, j2, · · · , jm−1, 1

)
, respectively.

For τ > 0, we have

ρg0(τ) + ρg1(τ) + ρh0(τ) + ρh1(τ)

=
2m−1−τ−1∑

i=0

[
(−1)gi+gj + (−1)gi+2m−1+gj+2m−1

+ (−1)hi+hj + (−1)hi+2m−1+hj+2m−1

]
.

(47)

Let π(p) = m. We proceed with the discussions in the
following cases.

Case 1: If 1 < p < m, we have{
hi = gi + iπ(1) + c′ − c,
hj = gj + jπ(1) + c′ − c,{
gi+2m−1 = gi + iπ(p−1) + iπ(p+1) + cπ(p),
gj+2m−1 = gj + jπ(p−1) + jπ(p+1) + cπ(p),

(48)

and
hi+2m−1 = gi + iπ(1) + iπ(p−1) + iπ(p+1) + cπ(p) + c′ − c,

hj+2m−1 = gj + iπ(1) + jπ(p−1) + jπ(p+1) + cπ(p) + c′ − c.
(49)

Substituting (48) and (49) into (47), we have

ρg0(τ) + ρg1(τ) + ρh0(τ) + ρh1(τ) = 4
∑

(i,j)∈S1

(−1)gi+gj ,

(50)
where S1 is given in (51).

Given permutation π, let the binary permutations of i and
j be

(
iπ(1), iπ(2), · · · , iπ(m)

)
and

(
jπ(1), jπ(2), · · · , jπ(m)

)
,

respectively. Suppose that v is the smallest index for which
iπ(v) ̸= jπ(v), i.e.,(

jπ(1), · · · , jπ(v−1), jπ(v), jπ(v+1), · · · , jπ(m)

)
=

(
iπ(1), · · · , iπ(v−1), 1− iπ(v), jπ(v+1), · · · , jπ(m)

)
.

(52)

Obviously, v ≥ 2 and v ̸= p. It is noted that v ̸= p + 1.
Otherwise, iπ(p−1)+ iπ(p+1)+ jπ(p−1)+ jπ(p+1) = 1 (mod 2)
which contradicts with (51). Now, define another pair of
integers i′ and j′ with the following binary permutations,
respectively.

i′π(k) =

{
1− iπ(k), for k = v − 1;
iπ(k), otherwise,

j′π(k) =

{
1− jπ(k), for k = v − 1;
jπ(k), otherwise.

Since v − 1 ̸= p, we have{
i′m = i′π(p) = im = 0,

j′m = j′π(p) = jm = 0.

It follows that (i′, j′) ∈ S1. Following a similar argument in
[30, Theorem 3], we have

(−1)gi+gj + (−1)gi′+gj′ = 0, for (i, j) ∈ S1. (53)
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S1 =

(i, j)

∣∣∣∣∣∣
0 ≤ i < j = i+ τ ≤ 2m−1 − 1, 1 < p < m,

iπ(1) + jπ(1) = 0 (mod 2),
iπ(p−1) + iπ(p+1) + jπ(p−1) + jπ(p+1) = 0 (mod 2)

 . (51)

By (50) and (53), we have

ρg0(τ) + ρg1(τ) + ρh0(τ) + ρh1(τ) = 0, for τ ̸= 0.

Case 2: If p = m, we have

ρg0(τ) + ρg1(τ) + ρh0(τ) + ρh1(τ) = 4
∑

(i,j)∈S2

(−1)gi+gj ,

(54)
where S2 is shown below.

S2 =

(i, j)

∣∣∣∣∣∣
0 ≤ i < j = i+ τ ≤ 2m−1 − 1, p = m,

iπ(1) + jπ(1) = 0 (mod 2),
iπ(m−1) + jπ(m−1) = 0 (mod 2)

 .

(55)
Similar to the proof for Case 1, we have

ρg0(τ) + ρg1(τ) + ρh0(τ) + ρh1(τ) = 0, for τ ̸= 0.

Case 2: If p = 1, we have

ρg0(τ) + ρg1(τ) + ρh0(τ) + ρh1(τ) = 4
∑

(i,j)∈S3

(−1)gi+gj ,

(56)
where

S3 =

{
(i, j)

∣∣∣∣ 0 ≤ i < j = i+ τ ≤ 2m−1 − 1, p = 1,
iπ(2) + jπ(2) = 0 (mod 2)

}
.

(57)
Similar to the proof for Case 1, we have

ρg0(τ) + ρg1(τ) + ρh0(τ) + ρh1(τ) = 0, for τ ̸= 0.

Next, we prove (42). By (41) and (58), the proof for (42)
follows.

APPENDIX B
PROOF OF Theorem 4

We prove Case 1 and Case 3 in what follows. The proof for
Case 2 and Case 4 can be obtained easily by similar arguments
for Case 1 and Case 3, respectively.

Proof for Case 1: By (45), for τ > 0, we have

ρa(τ) + ρb(τ)

= ρg(τ) + ρh(τ)︸ ︷︷ ︸
=0

+(−1)d1+gτ−1 + (−1)d2+hτ−1

=(−1)gτ−1

[
(−1)d1 + (−1)d2+(τ−1)π(1)+c′−c

]
=(−1)d1+gτ−1

[
1 + (−1)1+(τ−1)m

]
,

(59)

where (τ − 1)m denotes the mth the bit of the binary
representation of τ − 1. Note that the last step of (59) is
obtained by substituting the constraints of Case 1. With

(τ − 1)m =

{
0, for 1 ≤ τ ≤ 2m−1

1, for 2m−1 + 1 ≤ τ ≤ 2m − 1.
(60)

we assert that the (a,b) in Case 1 is an optimal Type-I OB-
ZCP of length 2m + 1.

Proof for Case 3: By (45), for τ > 0, we have

ρa(τ) + ρb(τ)

= ρg(τ) + ρh(τ)︸ ︷︷ ︸
=0

+(−1)d1+gτ−1 + (−1)d2+h2m−τ

=(−1)d1+gτ−1 + (−1)d2+g2m−τ+(2m−τ)π(1)+c′−c,

(61)

where (2m − τ)π(1) denotes the π(1)th bit of the binary
representation of 2m−τ . Note that 2m−1 = (τ−1)+(2m−τ).
Suppose that (x1, x2, · · · , xm) is the binary representation
of τ − 1, then the binary representation of 2m − τ will be
(1− x1, 1− x2, · · · , 1− xm). Therefore, we have

g2m−τ ≡ gτ−1+m+1+(τ−1)π(1)+(τ−1)π(m)+
m∑

k=1

ck (mod 2).

(62)
By (62) and the constraints of Case 3, (61) can be simplified
to

ρa(τ) + ρb(τ) = (−1)d1+gτ−1

[
1 + (−1)1+(τ−1)m

]
. (63)

With (60), we assert that the (a,b) in Case 3 is an optimal
Type-I OB-ZCP of length 2m + 1.

APPENDIX C
PROOF OF Theorem 5

The proof for Case 1-4 in Theorem 5 can be obtained easily
by the similar arguments for that of Case 1-4 in Theorem 4,
respectively. We present the proof for Case 1 and Case 5-8 as
follows.

Proof for Case 1: By (45), for τ > 0, we have

ρc(τ) + ρd(τ) = (−1)d1+gτ−1

[
1 + (−1)(τ−1)m

]
. (64)

With (60), we assert that the (c,d) in Case 1 is an optimal
Type-II OB-ZCP of length 2m + 1.

Proof for Case 5: By (45), for 1 ≤ τ ≤ 2m−1, we have

ρc(τ) + ρd(τ)

= ρg0(τ) + ρh0(τ) + ρg1(τ) + ρh1(τ)︸ ︷︷ ︸
=0

+ ρg1,g0(2
m−1 − τ + 1) + ρh1,h0(2

m−1 − τ + 1)︸ ︷︷ ︸
=0

+ (−1)d1 [(−1)g2m−1−τ + (−1)g2m−1+τ−1 ]

+ (−1)d2

[
(−1)h2m−1−τ + (−1)h2m−1+τ−1

]
=(−1)d1 [(−1)g2m−1−τ + (−1)g2m−1+τ−1 ]

+ (−1)d2

[
(−1)h2m−1−τ + (−1)h2m−1+τ−1

]

(65)
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ρg(τ) + ρh(τ) =

 ρg0(τ) + ρg1(τ) + ρh0(τ) + ρh1(τ),
+ ρg1,g0(2

m−1 − τ) + ρh1,h0(2
m−1 − τ), for 1 ≤ τ ≤ 2m−1 − 1;

ρg0,g1(τ − 2m−1) + ρh0,h1(τ − 2m−1), for 2m−1 ≤ τ ≤ 2m − 1.
(58)

where the last step of (65) is obtained by the property in
Lemma 6. For any permutation π, since

g2m−1−τ + h2m−1−τ + g2m−1+τ−1 + h2m−1+τ−1

≡ (2m−1 − τ)π(1) + (2m−1 + τ − 1)π(1)

≡ 1 (mod 2),

(66)

thus

(−1)g2m−1−τ + (−1)g2m−1+τ−1 = 0,

(−1)h2m−1−τ + (−1)h2m−1+τ−1 = ±2,
(67)

or

(−1)g2m−1−τ + (−1)g2m−1+τ−1 = ±2,

(−1)h2m−1−τ + (−1)h2m−1+τ−1 = 0.
(68)

Therefore, for 1 ≤ τ ≤ 2m−1, we have ρc(τ) + ρd(τ) = ±2.
On the other hand, for 2m−1 + 1 ≤ τ ≤ 2m,

ρc(τ)+ρd(τ) = ρg0,g1(τ−2m−1−1)+ρh0,h1(τ−2m−1−1) = 0.

Hence, we assert that (c,d) in Case 5 is an optimal Type-II
OB-ZCP of length 2m + 1.

Proof for Case 6: By (46), for d = 0 and τ > 0, we have

ρc(τ) + ρd(τ)

=(−1)g0+gτ+1 + (−1)h0+hτ+1

=(−1)g0+gτ+1 [1 + (−1)τπ(1) ]

(69)

With π(1) = m and

τm =

{
0, for 1 ≤ τ ≤ 2m−1 − 1,
1, for 2m−1 ≤ τ ≤ 2m − 1

(70)

we assert that the (c,d) in Case 6 for d = 0 is an optimal
Type-II OB-ZCP of length 2m − 1. In a similar argument, we
can prove Case 6 for d = 1.

Proof for Case 7: By (46), for d = 0 and τ > 0, we have

ρc(τ) + ρd(τ) = (−1)g0+gτ+1 + (−1)h2m−1+h2m−τ−1+1.
(71)

Suppose that (x1, x2, · · · , xm) is the binary representation of
τ , then the binary representation of 2m − τ − 1 will be (1−
x1, 1− x2, · · · , 1− xm). Similar to (62), we have

g2m−τ−1 ≡ gτ+m+1+τπ(1)+τπ(m)+
m∑

k=1

ck (mod 2). (72)

With π(m) = m and (72), we have

ρc(τ) + ρd(τ) = (−1)g0+gτ+1 [1 + (−1)τm ] . (73)

Recalling (70) completes the proof of Case 7 for d = 0. In a
similar argument, we can prove Case 7 for d = 1.

Proof for Case 8: By (46), for 1 ≤ τ ≤ 2m−1− 1, we have

ρc(τ) + ρd(τ)

= ρg0(τ) + ρh0(τ)ρg1(τ) + ρh1(τ)︸ ︷︷ ︸
=0

+ ρg1,g0
(2m−1 − τ − 1) + ρh1,h0

(2m−1 − τ − 1)︸ ︷︷ ︸
=0

+ (−1)g2m−1−d1
+1 [(−1)g2m−1+τ + (−1)g2m−1−τ−1 ]

+ (−1)h2m−1−d2
+1

[
(−1)h2m−1+τ + (−1)h2m−1−τ−1

]
=(−1)g2m−1−d1

+1 [(−1)g2m−1+τ + (−1)g2m−1−τ−1 ]

+ (−1)h2m−1−d2
+1

[
(−1)h2m−1+τ + (−1)h2m−1−τ−1

]
,

(74)

where the last step of (74) is obtained by the property in
Lemma 6. Similar to (66), for any permutation π, we have

g2m−1+τ + h2m−1+τ + g2m−1−τ−1 + h2m−1−τ−1

≡ (2m−1 + τ)π(1) + (2m−1 − τ − 1)π(1)

≡ 1 (mod 2).

(75)

Thus,

(−1)g2m−1+τ + (−1)g2m−1−τ−1 = 0,

(−1)h2m−1+τ + (−1)h2m−1−τ−1 = ±2,
(76)

or
(−1)g2m−1+τ + (−1)g2m−1−τ−1 = ±2,

(−1)h2m−1+τ + (−1)h2m−1−τ−1 = 0.
(77)

Therefore, for 1 ≤ τ ≤ 2m−1 − 1, we have ρc(τ) + ρd(τ) =
±2. On the other hand, for 2m−1 ≤ τ ≤ 2m − 2,

ρc(τ) + ρd(τ) = ρg0,g1
(τ − 2m−1) + ρh0,h1

(τ − 2m−1) = 0.

Hence, we assert that the (c,d) in Case 8 is an optimal Type-II
OB-ZCP of length 2m − 1.
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