<table>
<thead>
<tr>
<th>Title</th>
<th>Applications of quasi-uniform codes to storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Thomas, Eldho K.; Oggier, Frédérique</td>
</tr>
<tr>
<td>Citation</td>
<td>Thomas, E. K. & Oggier, F. (2014). Applications of quasi-uniform codes to storage. 2014 International conference on signal processing and communications (SPCOM), 1-5.</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/24617</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [http://dx.doi.org/10.1109/SPCOM.2014.6983940].</td>
</tr>
</tbody>
</table>
Applications of Quasi-uniform Codes to Storage

Eldho K. Thomas and Frédérique Oggier
Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore.
Email: eldho1@e.ntu.edu.sg, frederique@ntu.edu.sg

Abstract—We consider the design of quasi-uniform codes from dihedral 2-groups. Quasi-uniform codes have the distinctive feature of allowing codeword coefficients to live in different alphabets. We obtain a bound on the minimum distance of quasi-uniform codes coming from p-groups as a function of the number of p-ary codeword components. We study possible applications of such codes to storage, where the minimum distance is important to allow object retrieval, yet binary coefficients are preferred for fast computations, for example during repairs.

I. INTRODUCTION

Traditional erasure (error correction) codes are linear codes defined over finite fields. Motivated by the emergence of new communication technologies (e.g., wireless channels, network coding, distributed storage) or mathematical curiosity, new constructions of codes are constantly appearing, catering to the needs of new communication channels, or providing generalizations of known codes.

In a very general setting, a code may be defined as follows:

Definition 1: A code C of length n is an arbitrary nonempty subset of $X_1 \times \cdots \times X_n$ where X_i is the alphabet for the ith codeword symbol, and each X_i might be different.

We are here interested in quasi-uniform codes, whose codeword coefficients indeed live in possibly different alphabets. Quasi-uniform codes are defined with respect to an underlying probability distribution which is quasi-uniform [1], as will be explained in Section II, and quasi-uniform distributions (and in turn quasi-uniform codes [2]) can be constructed from finite groups and their subgroups [3]. When quasi-uniform codes come from finite groups, the underlying group structure can be exploited to derive code properties, such as the minimum distance [8].

In Section III, we present a family of quasi-uniform codes built from the dihedral 2-groups. In this case, codeword coefficients are either binary, or living in an alphabet of size a power of 2. We compute the code parameters, in particular its minimum distance, and study how the behavior of the minimum distance with respect to the coefficient alphabets.

We give concrete code instances in Section IV, where we discuss how such codes can actually be encoded. Properties of quasi-uniform codes coming from dihedral 2-groups include: (1) binary, or power of 2 alphabets, (2) good minimum distance which is easily characterized by the subgroup structure of the group used, (3) control of how many coefficients are binary. These properties motivate us to consider their applications to storage, which is discussed in Section V, with an explanation of the storage model that we assume.

Finally, a bound on the minimum distance is given for a class of p-groups, which takes into account the number of p-ary coefficients of the codeword.

II. QUASI-UNIFORM CODES FROM GROUPS

Let \mathcal{A} denote a subset of indices from $\mathcal{N} = \{1, \ldots, n\}$.

Definition 2: [1] A probability distribution over a set of n jointly distributed discrete random variables X_1, \ldots, X_n is said to be quasi-uniform if for any $A \subseteq \mathcal{N}$, $X_A = \{X_i, i \in A\}$ is uniformly distributed over its support $\lambda(X_A) = \{x_A : P(X_A = x_A) > 0\}$:

$$P(X_A = x_A) = \left\{ \begin{array}{ll} 1/|\lambda(X_A)| & \text{if } x_A \in \lambda(X_A), \\ 0 & \text{otherwise.} \end{array} \right.$$

We can associate to every code C of length n (see Definition 1) a set of random variables [2] by treating each codeword $(X_1, \ldots, X_n) \in C$ as a random vector with probability

$$P(X_\mathcal{N} = x_\mathcal{N}) = \left\{ \begin{array}{ll} 1/|C| & \text{if } x_\mathcal{N} \in C, \\ 0 & \text{otherwise.} \end{array} \right.$$

To the ith codeword symbol then corresponds a codeword symbol random variable X_i, induced by C.

Definition 3: [2] A code C is said to be quasi-uniform if the induced codeword symbol random variables are quasi-uniform.

Given a code, we thus know how to associate a set of (quasi-uniform or not) random variables. Conversely, given a set of quasi-uniform random variables X_1, \ldots, X_n with probabilities $P(X_A = x_A) = 1/|\lambda(X_A)|$ for all $A \subseteq \mathcal{N}$, the corresponding quasi-uniform code C of length n is given by $C = \lambda(X_\mathcal{N}) = \{x_\mathcal{N} : P(X_\mathcal{N} = x_\mathcal{N}) > 0\}$.

Since quasi-uniform distributions may be obtained from finite groups [3], finite groups in turn give rise to quasi-uniform codes [8]. Let us shortly recall these constructions.

Let G be a finite group of order $|G|$ with n subgroups G_1, \ldots, G_n, and $G_A = \cap_{i \in A} G_i$. Given a subgroup G_i of G, the (left) coset of G_i in G is defined by $gG_i = \{gh, h \in G_i\}$. The number $[G : G_i]$ of (left) cosets of G_i in G is called the index of G_i in G and it is known from Lagrange Theorem that $[G : G_i] = |G|/|G_i|$. Let X be a random variable uniformly distributed over G, that is $P(X = g) = 1/|G|$, for any $g \in G$.

Define the new random variable $X_i = XG_i$, with support the
\[G : G_i \] cosets of \(G_1 \) in \(G \). Then \(P(X_1 = gG_1) = |G_1|/|G| \) and \(P(X_i = gG_i, i \in \mathcal{A}) = |\cap_{i \in \mathcal{A}} G_i|/|G| \). More precisely:

Theorem 1: [3] For any finite group \(G \) and any subgroups \(G_1, \ldots, G_n \) of \(G \), there exist \(n \) jointly distributed quasi-uniform discrete random variables \(X_1, \ldots, X_n \) such that for all non-empty subsets \(\mathcal{A} \) of \(N \), \(P(X_\mathcal{A} = x_\mathcal{A}) = |G_\mathcal{A}|/|G| \).

Quasi-uniform codes are now obtained from these quasi-uniform distributions by taking the support \(\lambda(X_\mathcal{N}) \). Codewords (of length \(n \)) can then be described explicitly by listing the random variable \(X \) take every possible values in the group \(G \), and by computing the corresponding cosets as follows:

<table>
<thead>
<tr>
<th>(g)</th>
<th>(G_1)</th>
<th>(\ldots)</th>
<th>(G_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_1)</td>
<td>(g_1 G_1)</td>
<td>(\ldots)</td>
<td>(g_1 G_n)</td>
</tr>
<tr>
<td>(g_2)</td>
<td>(g_2 G_1)</td>
<td>(\ldots)</td>
<td>(g_2 G_n)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\ddots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(g_{</td>
<td>G</td>
<td>})</td>
<td>(g_{</td>
</tr>
</tbody>
</table>

Each row corresponds to one codeword of length \(n \). However, as shown in [8], care should be taken to have \(|G_\mathcal{N}| = 1 \) to ensure that \(|C| = |G| \), otherwise \(|C| = |G|/|G_\mathcal{N}| \) and the above table yields several copies of the same code.

If \(G_i \) is normal, the set of cosets \(G/G_i := \{ gG_1, g \in G \} \) is a group, called quotient group. Thus if \(G \) is an abelian group, with subgroups \(G_1, \ldots, G_n \), we obtain a quasi-uniform code \(C \) which has itself a group structure (with respect to the group structures componentwise). If \(G \) is abelian, we furthermore have a labeling of the codewords coefficients which may take values in different abelian groups.

We can easily express the minimum distance of the code in terms of the subgroups \(G_1, \ldots, G_n \).

Lemma 1: [8] The minimum distance \(\min_{c \in C} wt(c) \) of a quasi-uniform code \(C \) generated by (a possibly nonabelian group \(G \) and its normal subgroups \(G_i, i = 1, \ldots, n \) is

\[
n - \max_{\mathcal{A} \in \mathcal{N}, G_\mathcal{A} \neq \{0\}} |\mathcal{A}|
\]

where the weight \(wt(c) \) is understood as the number of components which are not an identity element in the respective group where each coefficient takes values.

III. QUASI-UNIFORM CODES FROM DIHEDRAL GROUPS

Consider the dihedral group \(D_{2k+1} = \langle r, s : r^{2k} = s^2 = 1, rs = sr^{-1} \rangle \) of order \(2k+1 \). A quasi-uniform code \(C \) of length \(n \) built from \(D_{2k+1} \) consists of codewords of length \(n \), where the \(i \)th coefficient takes values in the set of cosets of the subgroup \(G_i, i = 1, \ldots, n \). Since not every subgroup of \(D_{2k+1} \) is normal, not every coefficient alphabet will end up having a group structure. However, since we are interested in the subgroup structure, and not in the non-abelian binary operation of this dihedral group, we may alternatively consider its abelian representation [7], that is an abelian group \(A \) with subgroups \(A_1, \ldots, A_n \) such that \(|G_i|/|A_i| = |A_i|/|A_i| \) for every choice of \(A \) in \(\mathcal{N} \). The abelian group representation of \(D_{2k+1} \) [7] is explicitly given by

\[
\psi : D_{2k+1} \rightarrow A = (\mathbb{Z}_2)^{k+1}
\]

\[
r^a s^b \mapsto \sum_{i=0}^{k-1} a_i e_i + j e_k
\]

where \(a_i \)'s are obtained from the binary representation of \(a = \sum_{i=0}^{k-1} a_i 2^i \) and \((e_0, \ldots, e_k) \) is the standard basis of \((\mathbb{Z}_2)^{k+1} \). The code \(\psi(C) \) thus has an abelian group structure, but the length \(n \) and minimum distance (where the weight is understood as the number of coefficients not equal to \(G_i \)) of both codes are the same, since \(\psi \) preserves the group structure.

Code Length. To determine the largest value of \(n \), we only need to count the number of non-trivial subgroups of \(D_{2k+1} \) (or \(\psi(D_{2k+1}) \), whichever one finds most convenient). Subgroups of \(D_{2k+1} \) are of the form \(\langle r^i, s^j \rangle \) where \(1 \leq i \leq k \), \(0 \leq j \leq 2 \) and \(\langle r^{i-1} \rangle, 1 \leq i \leq k \) [7]. Note that \(|\langle r^i, s^j \rangle| = |\langle r^{i-1} \rangle| = 2^{k-i+1} \), hence \(|\langle r^i, s^j \rangle| = |\langle r^{i-1} \rangle| = 2^i \) which implies that there are \(2^i + 1 \) subgroups of index \(2^i \). The total number of proper subgroups is then

\[
\sum_{i=1}^{k} 2^i + k = 2^{k-1} + k = 2^{k+1} + k - 2.
\]

The center of \(D_{2k+1} \) is \(\langle r^{2^{k-1}} \rangle \), which is the intersection of all subgroups except subgroups of order two (or of index \(2^k \)), thus at least one subgroup of order 2 should be taken to be build a code, to ensure that \(G_{\mathcal{N}} = 1 \).

Minimum Distance. Consider the quasi-uniform code \(C \) of maximum length formed by all non-trivial subgroups of \(G = D_{2k+1} \). Its minimum distance is by Lemma 1

\[
d = n - \max_{\mathcal{A} \neq \{0\}} |\mathcal{A}|.
\]

Since there are \(2^k \) subgroups of order 2, and that they are the only ones which do not intersect the center, the number of subgroups intersecting the center is \((2^{k+1} + k - 2) - 2^k = 2^k + k - 2 \). The minimum distance \(d \) is then

\[
d = (2^{k+1} + k - 2) - (2^k + k - 2) = 2^k.
\]

To summarize, the code parameters of \(C \) are

\[
(n, |C|, d) = (2^{k+1} + k - 2, 2^{k+1}, 2^k),
\]

with alphabet \((\mathbb{Z}_2)^{k} \) for \(2^k + 1 \) codeword coefficients.

Remark 1: Quasi-dihedral 2-groups and generalized quaternion groups of order \(2^{k+1} \) also generate abelian representable codes coming from \(A = (\mathbb{Z}_2)^{k+1} \) and its subgroups [7]. These two families of 2-groups thus do not provide new code constructions.

IV. QUASI-UNIFORM CODES FROM \(D_8 \)

Consider the dihedral group \(D_8 = \langle r, s : r^4 = s^2 = 1, rs = sr^{-1} \rangle \), whose subgroup lattice diagram is shown in Figure 1. Then the map \(\psi : D_8 \rightarrow \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \) from (1) explicitly gives the abelian representation of \(D_8 \) (to simplify the notation, we write \(abc \) for \((a, b, c) \in \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \)):

\[
1 \mapsto 000, \quad r \mapsto 100, \quad r^2 \mapsto 010, \quad r^3 \mapsto 110,
\]
Suppose we have n nodes across which data is stored using an erasure code C of length n. Then every coefficient of a codeword of C is stored at every node. In case of node failure(s), we should be able to retrieve the stored data. Whether this is possible depends on the number of failures and on the minimum distance of the code. We thus start by comparing the minimum distance of the proposed codes to known codes.

A. Code Comparisons

We compare in Table II the codes obtained from dihedral groups with binary codes, more precisely, if a dihedral code has length n and cardinality 2^{k+1}, we compare it with a binary $(n, k + 1, d)$ code, where $k + 1$ is the dimension of the code.

- When $k = 2$, the code from D_8 has the same minimum distance as a binary code. When this code is punctured at the components corresponding to G_1, G_2, G_3 respectively, the minimum distance stays $d = 4$, but so is the minimum distance of the binary code when punctured.
- When $k = 3$, the code from D_{16} also has the same minimum as a binary code. However the behavior improves after puncturing at least three of the components corresponding to subgroups of order 8.

Since the finite field \mathbb{F}_4 can be seen as a vector space over \mathbb{F}_2 by fixing a \mathbb{F}_2-basis (we write \mathbb{F}_2 to emphasize the field structure, and \mathbb{Z}_2 to emphasize the additive group one), we could see the coefficients of the code in \mathbb{F}_4. We also put parameters of codes over \mathbb{F}_4 in Table II, however a code over \mathbb{F}_4 contains 4^{k+1}, so for a fair comparison, we should really compute the minimum distance of the proposed codes as codes over \mathbb{F}_4 (which we skip here, since we are interested in the minimum distance as predicted by the subgroup structure).

B. A Storage Example

We illustrate how the codeword (3) can be used over $n = 8$ nodes. Suppose a data object (u_1, u_2, u_3) needs to be stored. Consider the following storage allocation:

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 01 & 01 & 01 & 0 & 0 & 0 \\
01 & 0 & 01 & 11 & 1 & 0 & 1
\end{bmatrix}
\]

for $u_1, u_2, u_3 \in \mathbb{Z}_2$.
Lemma 3: Let $\phi(G)$ be the Frattini subgroup of a finite p-group G. Then $G/\phi(G)$ is elementary abelian.

Proof: If M is maximal in G, then G/M is of order p by Lemma 2, and G/M is abelian. The commutator subgroup G' is then a subgroup of M for all maximal subgroups $M \leq G$ and then $G' \leq \phi(G)$ implies that $G/\phi(G)$ is abelian [4].

Since $[G/M] = p$, $(gM)^p = M$ for all $g \in G$, that is, $g^p M = M$ for all $g \in G$ and for all maximal subgroups M. Hence $q^p \in G/\phi(G)$ and $q^p \phi(G) = \phi(G)$. Therefore, if $g\phi(G) \in G/\phi(G)$, its order $|g\phi(G)|$ is p for all $g \in G$, and $G/\phi(G)$ is an abelian group where each non-trivial element has order p.

The next lemma counts the subgroups of order p of an elementary abelian p-group.

Lemma 4: Let G be an elementary abelian p-group of order p^m. Then there are $\frac{p^m-1}{p-1}$ subgroups of order p.

Proof: An elementary abelian group is of the form $(\mathbb{Z}_p)^m$, by the classification of finitely generated abelian groups [4]. Let G_i be a subgroup of order p. Since p is a prime, G_i is cyclic, spanned by a single element in G.

Now each element in G has m components and each component takes p values and therefore the total number of subgroups spanned by elements of the form $(\langle 0, \ldots, i, 0, \ldots, 0 \rangle)$ is m.

Similarly, the total number of subgroups spanned by elements of the form $(\langle 0, \ldots, i, 0, \ldots, 0 \rangle)$ is $\frac{m}{p-1}$ since i varies from 0 to $p-1$. (Also note that $\langle (0, \ldots, 0, i, 0, \ldots, 0) \rangle = \langle (0, \ldots, 0, i, 0, \ldots, 0, j, 0, \ldots, 0) \rangle$)

Using similar type of arguments the total number of subgroups of order p is $n = m + (\binom{m}{2}) (p-1) + (\binom{m}{3})(p-1)^2 + \ldots + \left(\binom{m}{p} \right) (p-1)^{m-2} + \left(\binom{m}{m} \right) (p-1)^{m-1}$. After simplification, $n = \frac{1}{p-1} \left(\sum_{i=0}^{m} \left(\binom{m}{i} \right) (p-1)^{i-1} \right) = \frac{1}{p-1} \left((1 + (p-1))^{m-1} - 1 \right)$.

From Lemma 3 and Lemma 4, it is clear that there are $\frac{p^m-1}{p-1}$ subgroups of $G/\phi(G)$ of order p.

Proposition 1: The number of maximal subgroups of a p-group having Frattini subgroup of index p^k is $\frac{p^m-1}{p-1}$.

Proof: Let G be a group of order p^k and suppose $[G : \phi(G)] = p^m$. By Lemma 4, the number of subgroups of order p of the quotient group $G/\phi(G)$ is $\frac{p^m-1}{p-1}$. Now by the subgroup correspondence theorem [4], the subgroups of G containing $\phi(G)$ and subgroups of $G/\phi(G)$ are in 1-1 correspondence.

Let M be a maximal subgroup of G of index p (Lemma 2). Then $|M| = p^{k-1}$. Consider the subgroup $M/\phi(G) \leq G/\phi(G)$. Since $[G/\phi(G)] = p^m$ and $|M/\phi(G)| = p^{k-1}(k-m)$, it is p^{m-1} and therefore $[G/M/\phi(G)] = p$. From [4] and [9], the number of index p-subgroups and the number of order p-subgroups of an elementary abelian p-group are the same, $\frac{p^{m-1}}{p-1}$ in total.

Let G be a p-group which is abelian representable. Recall that it means that we can find an abelian group A and subgroups A_i, such that $[G : G_{A_i}] = [A : A_i]$ for all $A \subseteq N$. Note that A may have more subgroups than G.
Suppose that the Frattini subgroup \(\phi(G) \) of \(G \) is non-trivial and of index \(p^m \). Because \(A \) may contain more subgroups than \(G \), \(|\phi(G)| \) and \(|\phi(A)| \) may not be equal. For example, \(|\phi(D_8)| = 2 \neq 1 = |\phi(\mathbb{Z}_2^2)| \). By Proposition 1, there are \(p^m - 1 \) maximal subgroups of \(G \) of index \(p \). Suppose \(\psi : G \to A \) is a mapping which preserves the subgroup structure of \(G \), used to prove that \(A \) is an abelian group representation of \(G \). Under this mapping, the subgroup lattice of \(G \) is embedded into that of \(A \) and \(|G : \phi(G)| = |A : \psi(\phi(G))| = p^m \).

Suppose we construct a quasi-uniform code \(C \) of length \(n \) from \(G \) using its abelian representation \(A \) and assume that all subgroups corresponding to the maximal subgroups of \(G \) are included. Then the minimum distance of \(C \) is bounded as follows:

Proposition 2: Let \(G \) be a \(p \)-group which is abelian representable and suppose \(G \) has a non-trivial Frattini subgroup, \(\phi(G) \) of index \(p^m \). Then the quasi-uniform code obtained from the abelian representation of \(G \) has a minimum distance \(d \) such that:

\[
1 \leq d \leq n - \frac{p^m - 1}{p - 1},
\]

where \(n \) is the length of the code.

Proof: Since no codeword is repeated, \(G_N = 1 \) implies \(n > \max_{G, A \neq 1} |A| \) so that \(d = n - \max_{G, A \neq 1} |A| \geq 1 \).

From Proposition 1, \(\max_{G, A \neq 1} |A| \geq \frac{p^m - 1}{p - 1} \) since all maximal subgroups are included and hence \(d \leq n - \frac{p^m - 1}{p - 1} \). That is,

\[
1 \leq d \leq n - \frac{p^m - 1}{p - 1}.
\]

The above bound is tight. Consider the \((7, |C|, 4)\) code \(C \), obtained by puncturing the first column of the \((8, |C|, 4)\) code proposed in Section IV. That is, the puncturing is done by removing a subgroup which is not maximal. Its minimum distance is \(d = 4 \). Since \(|D_8 : \phi(D_8)| = 4 \) and \(n - (2^2 - 1) = n - 3 = 4 = d \), equality holds.

Corollary 1: Consider the quasi-uniform code construction of the above proposition, but where we do not include \(l \) maximal subgroups out of \(\frac{p^m - 1}{p - 1} \) in the code construction. Then \(\max_{G, A \neq 1} |A| \geq \frac{p^m - 1}{p - 1} - l \) and the bound on the minimum distance becomes:

\[
1 \leq d \leq n + l - \frac{p^m - 1}{p - 1}.
\]

It is worth repeating that the number of maximal subgroups also decide the number of components of the codewords that will live in \(\mathbb{Z}_p \), thus this bound gives a trade-off between coefficients in \(\mathbb{Z}_p \) and minimum distance.

Corollary 2: Let \(C \) be a quasi-uniform code of length \(n \) formed from the dihedral 2-group \(D_{2k+1} \). Suppose \(t \) subgroups of order 2, distinct from the center, are included. Then the minimum distance \(d \) of the code is \(d = t \leq 2^k \), that is, it only depends on the number of subgroups of order 2.

Proof: We know that the center \((r^{2^{k-1}})\) is of order 2 and is contained in all but subgroups of order 2. Then \(\max_{G, A \neq 1} |A| = n - t \) implies \(d = n - (n - t) = t \). There are \(2^k \) subgroups of order two except the center and so \(t \leq 2^k \).

ACKNOWLEDGEMENT

The work is supported by the Nanyang Technological University under Research Grant M58110049.

REFERENCES

