<table>
<thead>
<tr>
<th>Title</th>
<th>Robust adaptive stabilization of nonholonomic mobile robots with bounded disturbances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chen, Gang; Gao, Tingting; Huang, Jiangshuai; Zhou, Qicai</td>
</tr>
<tr>
<td>Citation</td>
<td>Chen, G., Gao, T., Huang, J., & Zhou, Q. (2014). Robust adaptive stabilization of nonholonomic mobile robots with bounded disturbances. Abstract and applied analysis, 2014.</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/24693</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 Gang Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</td>
</tr>
</tbody>
</table>
Robust Adaptive Stabilization of Nonholonomic Mobile Robots with Bounded Disturbances

Gang Chen, Tingting Gao, Jiangshuai Huang, and Qicai Zhou

1 School of Mechanical Engineering, Tongji University, Shanghai 200092, China
2 School of Mechanical & Electrical Engineering, Zhejiang Textile & Fashion College, Ningbo, Zhejiang 315211, China
3 School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 679394

Correspondence should be addressed to Tingting Gao; gaotingting.21@163.com

Received 6 August 2014; Accepted 24 August 2014; Published 17 November 2014

Abstract and Applied Analysis
Volume 2014, Article ID 456975, 7 pages

http://dx.doi.org/10.1155/2014/456975

1. Introduction

The motion control of nonholonomic mobile robots has been an active research field in the past few decades and remains a challenging control problem. For nonholonomic mobile robots, it cannot be stabilized by any static continuous state feedback [1], due to the Brockett’s condition [2]. To handle the stability of nonholonomic systems, it has to resort to either a time-varying [3, 4], a discontinuous [5, 6], or a dynamic state feedback controller [7, 8].

The early work in [9] studies the tracking problem based on backstepping method for both a kinematic model and a dynamic model of mobile robot. In [10], a neural network adaptive controller based on input-output linearization design is presented to guide a mobile robot during trajectory tracking. However, these methods are only applicable when the system dynamic parameters are known. In order to handle system disturbances that are inevitable in real applications, an adaptive tracking controller has been proposed for a class of mobile robots with uncertainties [11]. Based on Lyapunov’s direct method and backstepping technique [12], a time-varying global adaptive controller at the torque level that simultaneously solves both tracking and stabilization problems in the case of unknown dynamic parameters has been developed. Similar work can be found in [13]. Moreover, a robust adaptive controller is designed for a mobile robot with bounded unknown disturbances in [14]. The works in [15, 16] extend the control law design for more general uncertain nonholonomic systems. Subsequent related works on the stabilization and tracking control of nonholonomic mobile robots include, but are not limited to, [17–21] and many references therein. However, all the stabilization schemes mentioned above need the assistance of the sinusoidal function; thus, the convergence rate of stabilization is slow.

To overcome this problem, in this paper, we consider the stabilization control of the nonholonomic mobile robot with unknown parameters and bounded external disturbances. In contrast to the aforementioned results, all the system parameters as well as the disturbance are assumed to be unknown. Based on the transverse function approach [22] and backstepping techniques, a robust adaptive controller will be developed to guarantee the asymptotical stability of the nonholonomic mobile robot. By employing the transverse function approach, an “auxiliary manipulated variable” is introduced, with which the difficulty encountered in controlling an underactuated system can be overcome. The rest of this paper is arranged as follows. In Section 2, we present...
the model of nonholonomic mobile robots and problem formulation. Then we propose an adaptive control scheme to achieve stabilization in Section 3, where the stability of the overall system is discussed. Simulation results are provided in Section 4. Finally, some concluding remarks are drawn in Section 5.

2. Problem Formulation

A unicycle mobile robot is considered, which consists of two driving wheels located at the same axis and a passive self-adjusted supporting wheel. The actuated two wheels are driven by two DCservomotors independently. As shown in Figure 1, the geometric center and center of mass of the mobile robot do not coincide. The origin of Po-X₁Y₁ frame is the geometric center Po, the center of mass Pc is on X₁ axis, and the distance to the origin Po is d. The position of Po in global coordinate frame O-XY is (X, Y) and \(\Phi \) is the orientation of the local frame Po-X₁Y₁. For the sake of simplicity, it is assumed that the robot does not slip and there is no sliding between the tire and the road; that is, there is no Coulomb-like friction. Then the system can be described by the following dynamic model and kinematic model [23], where the parameters are shown in Table I:

\[
\dot{\eta} = J(\eta)\omega, \quad (1)
\]
\[
M\ddot{\omega} + C(\dot{\eta})\omega + D\omega = \tau + \tau_d, \quad (2)
\]

where \(\eta = (\bar{x}, \bar{y}, \bar{\phi})^T \) denotes the position and orientation of the robot, \(\omega = (\omega_1, \omega_2)^T \) denotes the velocities of the left and right wheels, \(\tau = (\tau_1, \tau_2)^T \) represents the control torques applied to the wheels, \(M \) is a symmetric, positive definite inertia matrix, \(C(\dot{\eta}) \) is the centripetal and Coriolis matrix, \(D \) denotes the surface friction, and \(\tau_d \) is the bounded unknown external disturbance. Matrices \(J(\eta), M, \) and \(C(\dot{\eta}) \) are the same as those in [12], which are given as

\[
J(\eta) = r \begin{bmatrix} \cos \bar{\phi} & \cos \bar{\phi} \\ \sin \bar{\phi} & \sin \bar{\phi} \end{bmatrix}, \quad M = \begin{bmatrix} m_{11} & m_{12} \\ m_{12} & m_{11} \end{bmatrix},
\]
\[
C(\dot{\eta}) = \begin{bmatrix} 0 & r^2 m_c d \bar{\phi}^2 \\ r^2 m_c d \bar{\phi}^2 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} d_{11} & 0 \\ 0 & d_{22} \end{bmatrix}, \quad (3)
\]

\[
m_{11} = \frac{r^2}{4b^2} (mb^2 + 1) + I_w, \quad m_{12} = \frac{r^2}{4b^2} (mb^2 - 1),
\]
\[
m_c = m_c + 2m_w, \quad I = m_c d^2 + 2m_w b^2 + I_c + 2I_m.
\]

The upper bound of the external disturbance is assumed to satisfy

\[
\|\tau_d\| \leq \tau_{d\text{ max}}, \quad (4)
\]

where \(\tau_{d\text{ max}} \) is an unknown positive constant.

Two control vectors are introduced as \(u_1 = 0.5(\omega_1 + \omega_2) \) and \(u_2 = 0.5(\omega_1 - \omega_2) \), and then the kinematic model (1) can be written as

\[
\bar{x} = r \cos \bar{\phi} u_1, \quad (5)
\]
\[
\bar{y} = r \sin \bar{\phi} u_1,
\]
\[
\bar{\phi} = \frac{r}{b} u_2.
\]

Assumption 1. The parameters \(r \) and \(b \) fall in known compact sets; that is, there exist some known positive constants \(\bar{r}, \underline{r}, \bar{b}, \) and \(\underline{b} \), such that \(\underline{r} < r < \bar{r} \) and \(\underline{b} < b < \bar{b} \).

Remark 2. The degrees of freedom of the nonholonomic mobile robot are three, but there are only two independent control inputs, so the system (5) is underactuated.

Table I: Definition of parameters of mobile robot.

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_b)</td>
<td>Mass of body</td>
</tr>
<tr>
<td>(m_w)</td>
<td>Mass of wheel with a motor</td>
</tr>
<tr>
<td>(I_c)</td>
<td>Moment of inertia of the body about the vertical axis through (P_c)</td>
</tr>
<tr>
<td>(I_w)</td>
<td>Moment of inertia of the wheel with a motor about the wheel axis</td>
</tr>
<tr>
<td>(I_m)</td>
<td>Moment of inertia of the wheel with a motor about the diameter</td>
</tr>
<tr>
<td>(b)</td>
<td>Half width of the mobile robot</td>
</tr>
<tr>
<td>(r)</td>
<td>Radius of the wheel</td>
</tr>
<tr>
<td>(d_{11}, d_{22})</td>
<td>Damping coefficients</td>
</tr>
<tr>
<td>(\omega_1, \omega_2)</td>
<td>Velocities of the left and right wheels</td>
</tr>
<tr>
<td>(\tau_1, \tau_2)</td>
<td>Control torques applied to the wheels</td>
</tr>
<tr>
<td>(\tau_d)</td>
<td>External disturbance</td>
</tr>
</tbody>
</table>

3. Controller Design

In this section, the transverse function approach is adopted firstly to perform suitable change of coordinates. With the change of coordinates, an additional controller $\dot{\xi}$ will be created and thus the kinematic model (5) is no longer underactuated. In the second step, the adaptive controller and parameter estimator are designed such that the system is stabilized.

3.1. Control Objective. Design the control inputs τ to stabilize the nonholonomic mobile robot, as modeled in (2) and (5).

3.1.1. Coordinates Transformation. The new coordinates (x, y, ϕ) and additional controller $\dot{\xi}$ are introduced, and the kinematic model (5) is transformed as follows:

$$
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{\phi}
\end{bmatrix} = \begin{bmatrix}
\mathbf{X}^T \\
\mathbf{Y} \\
\mathbf{Z}
\end{bmatrix} + \mathbf{R}(\phi) \begin{bmatrix}
f_1(\xi) \\
f_2(\xi) \\
f_3(\xi)
\end{bmatrix},
\tag{6}
$$

where

$$
\mathbf{R}(\phi) = \begin{bmatrix}
\cos(\phi) & -\sin(\phi) \\
\sin(\phi) & \cos(\phi)
\end{bmatrix},
\tag{7}
$$

and $f_l(\xi)$, for $l = 1, 2, 3$, are functions of ξ designed as

$$
\begin{align*}
f_1(\xi) &= \varepsilon_1 \sin(\xi) \frac{\sin(f_3)}{f_3}, \\
f_2(\xi) &= \varepsilon_1 \sin(\xi) \frac{1 - \cos(f_3)}{f_3}, \\
f_3(\xi) &= \varepsilon_2 \cos(\xi),
\end{align*}
\tag{8}
$$

where ε_1 and ε_2 are arbitrarily small positive constants and ε_1 satisfies $0 < \varepsilon_2 < \pi/2$. Then the following properties can be shown:

$$
|f_1| < \varepsilon_1, \quad |f_2| < \varepsilon_1, \quad |f_3| < \varepsilon_2.
\tag{9}
$$

Taking the derivatives of x, y, ϕ yields

$$
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{\phi}
\end{bmatrix} = Q \begin{bmatrix}
u_1 \\
\varepsilon_1 \sin(\xi) \frac{\sin(f_3)}{f_3} \\
\varepsilon_1 \sin(\xi) \frac{1 - \cos(f_3)}{f_3}
\end{bmatrix} + \mathbf{R}(\phi) \begin{bmatrix}
f_1(\xi) \\
f_2(\xi) \\
f_3(\xi)
\end{bmatrix} \frac{\partial \mathbf{R}(\phi)}{\partial \phi},
$$

$$
\dot{f}_3 = rb^{-1}u_2 - \frac{\partial f_2}{\partial \xi} \dot{\xi},
\tag{10}
$$

where

$$
Q = \begin{bmatrix}
\cos(\phi) \\
\sin(\phi)
\end{bmatrix} \mathbf{R}(\phi) \begin{bmatrix}
\frac{\partial f_1}{\partial \xi} \\
\frac{\partial f_2}{\partial \xi} \\
\frac{\partial f_3}{\partial \xi}
\end{bmatrix}
\tag{11}
$$

is ensured to be invertible [17]. Different from $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$, the transformed coordinates (x, y, ϕ) can be controlled separately by u_1, u_2, and $\dot{\xi}$, where $\dot{\xi}$ is an auxiliary manipulated variable to be designed; thus, (10) are not underactuated.

3.1.2. Controller Design. By replacing (5) with (10), the closed-loop system composed by (2) and (10) is of strict feedback form. Therefore, the backstepping technique [24, 25] method is applied to design the control inputs τ. Obviously, the design procedure can be divided into two steps. In the first step, the virtual controls u_{1d} and u_{2d} together with the “auxiliary manipulated variable” $\dot{\xi}$ will be constructed to stabilize the system. In the second step, the actual control signals for τ will be delivered such that u_1 and u_2 in (10) can approach the virtual controls u_{1d} and u_{2d}, respectively. Apart from these, the adaptive laws for the unknown system parameters will also be provided.

Step 1. Define the parameter estimation errors $\tilde{\theta}_i = \theta_i - \hat{\theta}_i$, $i = 1, 2$, where θ_i and $\hat{\theta}_i$ are the estimated values of r and rb^{-1}, respectively.

Let $q = [x, y]^T$, and choose the Lyapunov function candidate in this step as

$$
V_1 = \frac{1}{2} q^2 + \frac{1}{2} \phi^2,
\tag{12}
$$

and then the derivative of V_1 is $\dot{V}_1 = q^T \dot{q} + \dot{\phi} \phi$.

We then introduce two new error variables:

$$
u_{1d} = u_1 - u_{1d}, \quad u_{2d} = u_2 - u_{2d},
\tag{13}
$$

where u_{1d} and u_{2d} are the virtual controls for u_1 and u_2, respectively. u_{1d}, u_{2d} and ϕ are chosen as

$$
\begin{bmatrix}
u_{1d} \\
u_{2d}
\end{bmatrix} = \begin{bmatrix}
\tilde{\theta}_1^{-1} & 0 \\
0 & 1
\end{bmatrix} Q^{-1} \begin{bmatrix}
k_1q & -R'(\phi) f_1(\xi) \\
0 & -k_2 \phi
\end{bmatrix} \times (-k_2 \phi),
\tag{14}
$$

where k_1 and k_2 are positive constants. The above design delivers the following results:

$$
\dot{q} = -k_1 \dot{q} + Q \begin{bmatrix}
\tilde{\theta}_1 u_1 + \tilde{\theta}_1 u_{1d} \\
0
\end{bmatrix}
$$

$$
+ \frac{\partial R(\phi)}{\partial \phi} \begin{bmatrix}
\dot{f}_1(\xi) \\
\dot{f}_2(\xi)
\end{bmatrix} \times (\tilde{\theta}_2 u_2 + \tilde{\theta}_2 u_{2d}),
\tag{15}
$$

$$
\dot{\phi} = -k_2 \dot{\phi} + \tilde{\theta}_2 u_2 + \tilde{\theta}_2 u_{2d}.
$$

The parameter estimators for r and rb^{-1} are designed as

$$
\dot{\hat{\theta}}_1 = \text{Proj} \left(\tilde{\theta}_1, y_0, \pi_1 u_1 \right),
\tag{16}
$$

$$
\dot{\hat{\theta}}_2 = \text{Proj} \left(\tilde{\theta}_2, y_0, \pi_1 u_2 \right),
$$

where $\pi_1 = x \cos(\phi) + y \sin(\phi)$, $\pi_2 = q(\partial R(\phi)/\partial \phi)[f_1(\xi)] + \phi$. Note that Proj$(\cdot)$ denotes a Lipschitz continuous projection operator about which the design details and properties can be found in [26] and the following results are then obtained.
Lemma 3. If \(|\hat{b}(t_o)| \leq b_M\), then the projection satisfies
\(|\hat{b}\text{Proj}(a, \hat{b})| \geq ba\), where \(\hat{b} = b - \hat{b}\).

Choose the Lyapunov function candidate in this step as
\[
V_2 = V_1 + \frac{1}{2\gamma_{\hat{\theta}_i}} \tilde{\theta}_i^2 + \frac{1}{2\gamma_{\hat{\theta}_j}} \tilde{\theta}_j^2.
\] (17)
We obtain that
\[
\dot{V}_2 \leq -k_1 q^T q - k_2 \phi^2 + \pi_1 \tilde{\theta}_1 u_{1c} + \pi_2 \tilde{\theta}_2 u_{2c}.
\] (18)
\[
\text{where } \theta = \begin{bmatrix} \frac{r^3}{2b^2} m_r d_1 d_2 m_{11} m_{12} m_{11} r m_{12} r m_{11} r^{-1} m_{12} r^{-1} \end{bmatrix},
\]
\[
\chi = \begin{bmatrix} -\omega u_2 & -\omega u_1 & \Delta_{11} & -\Delta_{12} & -\Delta_{21} & -\Delta_{22} & -\Delta_{31} & -\Delta_{32} \end{bmatrix},
\]
\[
\Delta_{ik} = \frac{\partial \omega_{id}}{\partial \theta_i} \hat{\theta}_i + \frac{\partial \omega_{id}}{\partial \theta_j} \hat{\theta}_j,
\]
\[
\Delta_{2k} = \frac{\partial \omega_{id}}{\partial \phi} u_1 \cos \phi + \frac{\partial \omega_{id}}{\partial \phi} \sin \phi,
\]
\[
\Delta_{3k} = \frac{\partial \omega_{id}}{\partial \phi} u_2, \quad k = 1, 2.
\]

Introduce the estimate \(\hat{\theta}\) for unknown parameter vector \(\theta\). Then the local control torque and adaptive law are designed as
\[
\tau = -Kz - \chi^T \hat{\theta} - 0.5 \Xi - \text{sgn}(z^T) \ast \hat{r}_{id \text{ max}},
\] (22)
\[
\dot{\hat{\theta}} = \Gamma \chi z,
\] (23)
where \(K\) is a given positive matrix and \(\hat{r}_{id \text{ max}}\) is the estimate of the upper bound of \(r_{id}\), \(\Xi = [\Xi_1, \Xi_2]^T\) with
\[
\Xi_1 = \pi_1 \hat{\theta}_1 + \pi_2 \hat{\theta}_2,
\]
\[
\Xi_2 = \pi_1 \hat{\theta}_1 - \pi_2 \hat{\theta}_2.
\] (24)
The update law for \(\hat{r}_{id \text{ max}}\) is chosen as
\[
\dot{\hat{r}}_{id \text{ max}} = |z_i|, \quad i = 1, 2.
\] (25)
Choose the Lyapunov function for the overall system as
\[
V_3 = V_2 + \frac{1}{2} \left(z^T M z + \hat{\theta}^T \Gamma^{-1} \hat{\theta} + \|r_{id}\|^2 \right),
\] (26)
where \(\Gamma\) is a symmetric and positive definite matrix and \(\bar{\theta} = \theta - \hat{\theta}\). We obtain that
\[
\dot{V}_3(t) \leq -k_1 q^T q_e - k_2 \phi^2_e - z^T (K + D) z.
\] (27)

The main results in this section are formally presented in the following theorem.

Step 2. We are at the position to derive the actual control torque \(\tau\).

Define \(z_i = \omega_i - \omega_{id}\), \(i = 1, 2\), where \(\omega_{id} = u_{id} + u_{2d}\), \(\omega_{id} = u_{id} - u_{2d}\). Let \(z = [z_1, z_2]^T\); thus, we have
\[
z = \omega - \begin{bmatrix} \omega_{id} \\ \omega_{id} \end{bmatrix}.
\] (19)

Multiplying the derivatives of both sides of (19) by \(M\) and combining it with (14), we obtain that
\[
M \dot{z} = M \chi \dot{\theta} + \tau + \tau_d,
\] (20)
where
\[
\text{Theorem 4. Consider the nonholonomic mobile robot system (1) and (2), with the controller (22) and parameter update laws (23) and (25) under Assumption 1. Then the closed-loop system is stable and satisfies}
\[
\lim_{t \to \infty} \Xi(t) \leq 2 \Xi_1,
\]
\[
\lim_{t \to \infty} \chi(t) \leq 2 \Xi_1,
\] (28)
\[
\lim_{t \to \infty} \phi(t) \leq \epsilon_2.
\]

Proof. Considering the projection operation, \(\bar{\theta}_i, i = 1, 2\) are bounded. Thus from (27), all signals in \(V_3\) are bounded. Hence, \(x, y, \phi\) are bounded. From (14), it is easy to check that \(u_{id}, u_{2d}\) and \(\xi\) are bounded. Thus \(u_i\) and \(u_2\) are bounded. From (26), the boundedness of \(\tau\) is concluded.

From (6) and (8), we obtain that
\[
\|\begin{pmatrix} x - \bar{x} \end{pmatrix}\| \leq 2 \epsilon_1, \quad |\phi - \bar{\phi}| \leq \epsilon_2.
\] (29)

It then follows that
\[
|x| \leq |x - x| + |x|,
\]
\[
|\phi - \bar{\phi}| \leq |\phi - \bar{\phi}| + |\phi|,
\] (30)
\[
|\phi| \leq |\phi - \bar{\phi}| + |\phi|.
\]
Since x, y, and ϕ will converge to zero asymptotically, (28) hold.

Remark 5. Since ϵ_1 and ϵ_2 are arbitrarily small positive constants; thus from (28) we know the stabilization errors are also arbitrarily small. The convergence rate of the system is actually close related to the design parameters k_1, k_2, and D; thus, compared to the results mentioned in the Introduction, the convergence rate can be much faster.

4. Simulation Results

In this section, we illustrate the design procedure and how to compute the bound of the control torque based on design parameters in Table 2 using Matlab.
5. Conclusions

In this paper, stabilization problem of nonholonomic mobile robot with unknown system parameters and external disturbances is investigated. By considering the kinematic model and dynamic model of the system, the traverse function approach and the backstepping method are used to stabilize the mobile robot.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

