<table>
<thead>
<tr>
<th>Title</th>
<th>Strain profile and size dependent electronic band structure of GeSn/SiSn quantum dots for optoelectronic application (Conference Presentation PPT - Full length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Bose, Sumanta; Fan, W. J.; Chen, J.; Zhang, D. H.; Tan, Chuan Seng</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/25017</td>
</tr>
</tbody>
</table>

© 2014 OSA. This is the author created version of a work that has been peer reviewed and accepted for publication by International Conference on Fibre Optics and Photonics, Optical Society of America. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1364/PHOTONICS.2014.S4D.5].
Strain Profile and Size Dependent Electronic Band Structure of GeSn/SiSn Quantum Dots for Optoelectronic Application

Presenter
Sumanta Bose (sumanta001@e.ntu.edu.sg)

Presentation ID
S4D.3

Authors

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
NOVITAS, Nanoelectronics Centre of Excellence, Nanyang Technological University, Singapore
Singapore-MIT Alliance for Research and Technology (SMART), Singapore
Part 1:
Background and algorithm of atomistic quantum dot simulation.

Part 2:
Towards Si photonics: GeSn/SiSn – our system. Strain, gain & energy profile result
Part 1:
Background and algorithm of atomistic quantum dot simulation.
What are Quantum Dots?

“Man-made nanoscale structures in which electrons can be confined in all 3 dimensions”

- Electron energy is quantized -> artificial atoms (coupled QD->molecule)
- Contains a countable number of electrons

Quantum dots are artificial atoms that can be custom designed for a variety of applications

M. Usman, Multi-million Atom Electronic Structure Calculation for Quantum Dots, PhD thesis (online nanoHUB)
Quantum Dots devices & applications

Laser

Photo-detector/Amplifier

Quantum Computation

World's First Semiconductor Optical Amplifier with Signal Waveform Re-shaping Function at 40Gbps

March 4, 2005

March 4, 2005

Quantum Information Science is rapidly progressing, and Quantum Dot based optical devices are approaching the market!

M. Usman, Multi-million Atom Electronic Structure Calculation for Quantum Dots, PhD thesis (online nanoHUB)
How Can Theory, Modelling, and Computation Help?

- Why Theory, Modeling and Computation?
 - Modeling can provide essential insight into the physical data
 - Obtain information where experimental data is not readily available
 - Can help experimentalists to design their experiments

- Quantum dots grow in different shapes and sizes
- PL intensity is measured to determine light spectrum
- Experimentalists need to understand the PL spectrum

Experiment → Diagnostic data → Simulation → Comparison

M. Usman, Multi-million Atom Electronic Structure Calculation for Quantum Dots, PhD thesis (online nanoHUB)
Features:
• Calculates eigenstates of arbitrarily structures
• Strain: Valence force field (VFF)

Already used in simulating:
• QDs & Alloyed QDs
• Long range strain effects on QDs
• Effects of wetting layer
• Piezo-electric effects in QDs
• QD nuclear spin interactions
• Impurities in QDs
Capabilities:
- Arbitrary shape/size of quantum dot
- Long range strain, piezoelectric fields
- Atomistic representation of alloy
- External Electrical/Magnetic fields
- Zincblende/Wurtzite crystals

Computation Flowchart

M. Usman, Multi-million Atom Electronic Structure Calculation for Quantum Dots, PhD thesis (online nanoHUB)
Part 1:
Background and algorithm of atomistic quantum dot simulation.

Part 2:
Towards Si photonics: GeSn/SiSn – our system. Strain, gain & energy profile result
Part 2:
Towards Si photonics: GeSn/SiSn – our system. Strain, gain & energy profile result.
INTO SILICON PHOTONICS
Group IV compatibility with Si CMOS fab
Integration of optical and electronic components onto a single microchip
Providing faster optical data transfer between and within microchips.

CHOICE OF STRUCTURE/MATERIAL
Quantum Dot (QD) based optoelectronic devices: a key enabler in this domain
This work: Self assembled Ge$_{0.5}$Sn$_{0.5}$/Si$_{0.5}$Sn$_{0.5}$ QDs.

COMPUTATION METHODS
Valence force field (VFF) using Keating potential estimates strain profile
Electronic band structure calculation using 8 band $k\cdot p$ method

STUDY & IMPACT
Strain profile & contour
Energy band structure
QD size effect on the fundamental transition energy.
The effect of tensile strain on the band structure of Ge.

Fig a, Schematic of how the band diagram changes as biaxial tensile strain is applied.

Fig b, Plot of the bandgap energies for the Γ ($E_g(\Gamma)$) and L ($E_g(L)$) bands as a function of tensile strain.
Figure (a) Band structure of bulk Ge, showing a 136 meV difference between direct & indirect BG
(b) the difference between direct & indirect BG can be decreased by tensile strain
(c) the rest of the difference between direct & indirect BG in tensile strained Ge can be compensated by filling electrons into the L valleys via n-type doping.

Photonics 2014, 1(3), 162-197
Our QD geometry: Pyramidal
Pyramidal QD grows along $+z$ direction, the base and wetting layer in the x-y plane.

- QD Height (h) = (6 to 18) $\times a_0$ and base ($2h$) = (12 to 36) $\times a_0$.
- The entire system's height is $3h$ and the length/width is $4h$.

Fig. 1. Front view schematic of our pyramidal QD

Fig. 2. 3D schematic of our pyramidal QD

Fig. 3. Top view schematic of our pyramidal QD
Valence Force Field Strain Calculation

✓ Valence Force Field (VFF) method with Keating potential
✓ Calculate the strain energy, E_{strain} expressed in terms of the bond lengths and bond angles as:

$$E_{strain} = \frac{1}{2} \sum_{i(j)} \frac{3\alpha_{i-j}}{8d_{0,i-j}^2} \left(\left| x_i - x_j \right|^2 - d_{0,i-j}^2 \right)^2 + \sum_{i(j)} \frac{3\beta_{i-j-k}}{8d_{0,i-j}d_{0,i-k}} \left[\left| x_i - x_j \right| \cdot \left| x_i - x_k \right| + \frac{1}{3} d_{0,i-j}d_{0,i-k} \right]^2$$

x_i is the position vector of the i^{th} atom.
For i-j bond, $d_{0,i-j}$ & $\alpha_{0,i-j}$ are strain free bond length & lattice constant respectively. α_{i-j} & β_{i-j-k} are bond stretching & bond bending force constant.

E_{strain} is minimized to attain a stable state by allowing each atom to vibrate and settle.
Force on the i^{th} atom is $F_i = -\nabla_i (E_{strain})$.
Compare final & initial atom position to compute strain profile.
8 band $k.p$ calculation

✓ Use the 8 band $k\cdot p$ method to calculate the electronic band structure.

✓ 6 band $k\cdot p$ method does not consider the CB-VB interaction.

✓ The Hamiltonian for the strained QD can be simply written as

$$[H = H_k + V_{\Gamma}(z) + H_s]$$

✓ H_k stands for the kinetic 8-band effective-mass Hamiltonian (incorporating the CB-VB/spin-orbit interaction).

✓ $V_{\Gamma}(z)$ accounts for the band offset effects

✓ H_s stands for the strain induced Hamiltonian.
Results and Discussion

$\text{Ge}_{0.5}\text{Sn}_{0.5}/\text{Si}_{0.5}\text{Sn}_{0.5}$
Strain Profile along [001]
Strain Profile along [010]

Strain vs. [010] direction (in Å)

- Tensile
- Compressive

Legend:
- \(\varepsilon_{xx} \)
- \(\varepsilon_{yy} \)
- \(\varepsilon_{zz} \)
Strain Profile along [100]

strain

Tensile
Compressive

[100] direction (in Å)
Strain Profile ε_{xx} in (001) plane, $z=0$
Strain Profile ε_{yy} in (001) plane, $z=0$
Strain Profile ε_{zz} in (001) plane, $z=0$
How Strain Changes the Electronic Spectra?

Strain has a very important role in QD energy, gain and optical performance.
Energy Profile
(h/a = 6)

System: Ge$_{0.5}$Sn$_{0.5}$/Si$_{0.5}$Sn$_{0.5}$

\[E_1 - H_1 = 1079.27 \text{ meV} \]
Gain Profile
(h/a = 6)

System: Ge_{0.5}Sn_{0.5} / Si_{0.5}Sn_{0.5}

Gain vs. Energy for varying carrier concentration

- 40 \times 10^{18} \text{ cm}^{-3}
- 41 \times 10^{18} \text{ cm}^{-3}
- 43 \times 10^{18} \text{ cm}^{-3}
- 45 \times 10^{18} \text{ cm}^{-3}

Energy (meV)

Gain (cm\(^{-1}\))
Energy Profile
(h/a = 12)

System: Ge_{0.5}Sn_{0.5} / Si_{0.5}Sn_{0.5}

\[E_1 - H_1 = 511.34 \text{ meV} \]
Energy Profile
(h/a = 18)

System: Ge_{0.5}Sn_{0.5}/Si_{0.5}Sn_{0.5}

E_1 - H_1 = 414.19 meV
Gain Profile
(h/a = 18)

System: Ge\textsubscript{0.5}Sn\textsubscript{0.5} / Si\textsubscript{0.5}Sn\textsubscript{0.5}

Gain vs. Energy for varying carrier concentration

Gain (cm-1)

Energy (meV)
Size dependency of Band Gap of QD (inversely proportional to dimension2)

<table>
<thead>
<tr>
<th>(h/a)</th>
<th>BG (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1079.27</td>
</tr>
<tr>
<td>7</td>
<td>891.70</td>
</tr>
<tr>
<td>8</td>
<td>667.96</td>
</tr>
<tr>
<td>10</td>
<td>538.59</td>
</tr>
<tr>
<td>11</td>
<td>521.54</td>
</tr>
<tr>
<td>12</td>
<td>511.34</td>
</tr>
<tr>
<td>15</td>
<td>451.57</td>
</tr>
<tr>
<td>18</td>
<td>414.19</td>
</tr>
</tbody>
</table>

Model: Inverse square relation

Equation: \[(E_1 - H_1) = [27.07499 (h/a)^2 + 0.3077] \text{ eV}\]

Reduced Chi-Sqr: 0.00139

Adj. R-Square: 0.97473

Red shift pattern
Studied GeSn/SiSn QDs for their strain profile and electronic band structure...

...using valence force field method and 8 band $k \cdot p$ method.

Strain profile was studied in fair depth for the [001] direction and (001) plane...

...with distinct identification of zones of compressive and tensile strain.

Size effect on the fundamental transition energy was studied...

...which is an essential tuning factor in optoelectronic device designs.

Selective gain curves was studied.

Observed that it predominantly varies inversely with the second power of QD height.
Acknowledgement

W. J. Fan would like to acknowledge the support from MOE Tier 1 funding RG 32/12.

References (as used in the paper)

Thank you!

... for your patience and time...