<table>
<thead>
<tr>
<th>Title</th>
<th>Mn(iii)-catalyzed radical reactions of 1,3-dicarbonyl compounds and cyclopropanols with vinyl azides for divergent synthesis of azaheterocycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chiba, Shunsuke</td>
</tr>
<tr>
<td>Citation</td>
<td>Chiba, S. (2012). Mn(iii)-catalyzed radical reactions of 1,3-dicarbonyl compounds and cyclopropanols with vinyl azides for divergent synthesis of azaheterocycles. CHIMIA, 66(6), 377-381.</td>
</tr>
<tr>
<td>Date</td>
<td>2012</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/25060</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2012 Swiss Chemical Society. This paper was published in CHIMIA and is made available as an electronic reprint (preprint) with permission of Swiss Chemical Society. The paper can be found at the following official DOI: [http://dx.doi.org/10.2533/chimia.2012.377]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Mn(III)-Catalyzed Radical Reactions of 1,3-Dicarbonyl Compounds and Cyclopropanols with Vinyl Azides for Divergent Synthesis of Azaheterocycles

Shunsuke Chiba*

Abstract: Mn(III)-catalyzed formal [3+2]- and [3+3]-annulations have been developed using readily available vinyl azides with 1,3-dicarbonyl compounds and cyclopropanols. Vinyl azides were successfully applied as a three-atom unit including one nitrogen to prepare various azaheterocycles via Mn(III)-catalyzed radical reactions.

Keywords: Azaheterocycles · Cyclopropanols · 1,3-Dicarbonyl compounds · Manganese · Radicals · Vinyl azides

1. Introduction

Azaheterocycles are an omnipresent component of numerous natural alkaloids and potent pharmaceutical drugs.\(^1\) Although diverse synthetic approaches toward azaheterocycles have been exploited,\(^2\) there remains a need for conceptually novel and versatile methodologies for chemical synthesis of azaheterocycles from readily available building blocks. Intermolecular annulation reactions allow rapid and selective construction of complex cyclic molecules in a one-pot manner from relatively simple building blocks, which is one of the most ideal processes in organic synthesis from atom-\(^3\) and step-\(^4\) economical points of view. Guided by these views, we have recently been interested in application of vinyl azides as a three-atom unit including one nitrogen to develop new types of annulation reactions for synthesis of azaheterocycles. This review mainly focuses on the Mn(III)-catalyzed radical reactions of 1,3-dicarbonyl compounds and cyclopropanols with vinyl azides for a divergent synthesis of azaheterocycles, which have been recently developed in our research group at Nanyang Technological University, Singapore.\(^5\)

2. Backgrounds of Vinyl Azides and Mn(III)-Mediated Oxidative Radical Reactions

Vinyl azides are readily prepared from commercially available starting materials in several ways, and generally stable/ easy to handle.\(^6\) The application of vinyl azides to synthetic organic reactions has been exclusively relied on their thermal demitrogenative decomposition to vinyl nitrenes, which could be converted into highly reactive strained three-membered ring, 2H-azirines (Scheme 1).\(^7\) Heating of azido cinnamates in aprotic solvents (for example, xylene at 140 °C) gave indoles via aromatic C–H amination of putative 2H-azirine intermediates, which have been widely utilized for synthesis of indole alkaloids and potent pharmaceutical drugs bearing indole cores.\(^8,9\)

We planned to use the C=C bond of vinyl azides for initiation of the reactions. Although such attempts have been extremely scarce, we could get two key hints from the following literature precedents to implement our research projects with a radical strategy.

The 1st key: In 1975, Suzuki reported the reaction of \(\alpha\)-azido styrene with triethylborane, which provided butyrophenone after aqueous workup (Scheme 2).\(^10\) In 1983, Roberts had clarified the reaction mechanism of this C–C bond forming reaction,\(^11\) which included a free radical process. An ethyl radical generated from triethylborane with molecular oxygen adds to the C=C bond of \(\alpha\)-azido styrene to give the \(\alpha\)-azido radical, which undergoes quick denitrogenation to afford an iminyl radical. The reaction of the resulting iminyl radical reacts with triethylborane to generate an ethyl radical that maintains the radical chain. The resulting iminylborane is hydrolyzed under work-up to give butyrophenone.

The 2nd key: Manganese(III)-mediated oxidative radical reactions have been extensively studied to construct new C–C bonds since the pioneering reactions of acetic acid with alkenes mediated by Mn(III) acetate were reported in 1968.\(^12\) Especially, this Mn(III)-mediated oxidative radical strategy has been applied for the reactions of 1,3-dicarbonyl compounds with various carbon–carbon unsaturated bonds in both inter- and intramolecular manners, leading to highly functionalized
organic molecules (Scheme 3).[13] From a mechanistic point of view, initially formed Mn(III)-enolates undergo rapid loss of Mn(II) to give α-carbonyl radicals, which form a new C–C bond with alkenes or alkynes. Similarly, this Mn(III)-mediated oxidative manner can be served for generation of α-carbonyl radicals from cyclopropanols.[14] However, these strategies basically need superstoichiometric amounts of Mn(III) complexes to complete the reactions because the resulting carbon radicals should be terminated by some oxidative manners (i.e. further oxidation to carboxyls) under the reaction conditions.

3. Design of Mn(III)-Catalyzed Radical Reactions with Vinyl Azides

We speculated that the combination of the two above-mentioned radical concepts, namely, i) addition of carbon radicals onto vinyl azides and ii) Mn(III)-mediated oxidative radical reactions using 1,3-dicarbonyl compounds or cyclopropanols, could lead to unique β-carbonyl radicals from cyclopropanols, that could be characterized as a formal [3+2]-annulation process.[15] The reactions of α-azido styrene with β-keto ester, 1,3-diketone, and β-keto acid using Mn(III) catalysts are shown in Scheme 5. Interestingly, for each kind of 1,3-dicarbonyl compounds, the preferential Mn(III)-catalyst is varied.
depending on the nature of 1,3-dicarbonyl compounds as well as the redox potentials of Mn(III) catalysts.[16] As a consequence, Mn(OAc)\textsubscript{3}, 2H\textsubscript{2}O was an effective catalyst for the reactions of vinyl azides and β-keto esters, while a stronger oxidant, Mn(pic)\textsubscript{3}, is required for the reactions with 1,3-diketones. On the other hand, Mn(acac)\textsubscript{3} was preferred for the reactions of vinyl azides and β-keto acids. These [3+2]-annulation strategies have a general and wide scope on substituents of both vinyl azides and 1,3-dicarbonyl compounds to give a variety of pyrroles in good yields.

3.2 Mn(III)-Catalyzed Radical Reactions of Vinyl Azides and Cyclopropanols[17]

We next focused on the use of cyclopropanols as a precursor of β-carbonyl radicals and investigated their addition reactions toward vinyl azides followed by C–N bond formation (formal [3+3]-annulation). The reactions of α-azidostyrene and 1-phenylcyclopropanol were investigated to target 2,6-diphenylpyridine (Scheme 6). It was revealed that treatment of a mixture of vinyl azide and cyclopropanol with a catalytic amount of Mn(acac)\textsubscript{3} (10 mol%) in MeOH consumed vinyl azide within 5 min at room temperature, and the subsequent addition of oxygen (1 atm O\textsubscript{2} as an atmosphere) and HCl (2 equiv.) provided the desired 2,6-diphenylpyridine in 80% yield. A wide scope was shown in the substrates of vinyl azides as well as cyclopropanols, and some representative examples were described below.

Next, we envisioned utilizing bicyclic cyclopropanols such as bicyclo[3.1.0]hexan-1-ol as a source of β-carbonyl radicals (Scheme 7). Interestingly, an unusual 2-azabicyclo[3.3.1]non-2-ene was isolated in 89% yield by the reaction with α-azidostyrene using only a catalytic amount of Mn(acac)\textsubscript{3} (5 mol%). It is noteworthy that treatment of optically active cyclopropanol (85% ee)[18] with α-azidostyrene afforded the racemic product. No transmission of the chirality of cyclopropanol would suggest that generation of achiral ring-expanded β-carbonyl radical [19] followed by its radical addition to vinyl azide is involved in the reaction mechanism, forming iminyl manganese(III) II-eq and II-ax placing an iminyl tether in the equatorial- and axial-like position, respectively. Conformational inversion of II-eq to II-ax should be indispensable to achieve the further cyclization of the iminyl manganese II-ax with the carbonyl group to give alkyloxy manganese(III) species III that could be protonated to afford 2-azabicyclo[3.3.1]non-2-en-1-ol.

With the preparation method for 2-azabicyclo[3.3.1]non-2-en-1-ol, we then explored their transformations to 2-azabicyclo[3.3.1]nonane (morphan) or 2-azabicyclo[3.3.1]non-2-ene frameworks, which are prevalent in several natural alkaloids as well as biologically active molecules.[20] Treatment of 2-azabicyclo[3.3.1]non-2-en-1-ol with NaBH\textsubscript{4}CN in the presence of HCl induced the double hydride reduction of the C=2N bond and C–O bonds, affording 2-azabicyclo[3.3.1]nonane stereoselectively in 70% yield (Scheme 8). The first hydride attack at the C=2N bond entirely from the less hindered \textit{exo}-face to form aminal I. Subsequent dehydration of I gave the bridgehead iminium species II, which could be reduced by one more hydride to afford 2-azabicyclo[3.3.1]non-2-en-1-ol.

It was found that a one-pot conversion could be achieved starting from the reaction of vinyl azides and cyclopropanols using Mn(acac)\textsubscript{3} as a catalyst followed by treatment with NaBH\textsubscript{4}CN (3 equiv.) with HCl (3 equiv.), producing 2-azabicyclo[3.3.1]nonanes in good yields without isolation of 2-azabicyclo[3.3.1]non-2-en-1-ols (Scheme 9). This one-pot/two-step process represented a straightforward procedure for construction of the morphan...
framework from readily available vinyl azides and bicyclic cyclopropanols.

Further methods for reduction of the C–O bond at the bridgehead position were explored using acetate prepared from 2-azabiclo[3.3.1]non-2-en-1-ol (Scheme 10). Interestingly, TiCl$_4$-mediated reduction of acetate with Et$_3$SiH induced selective C–O bond cleavage, affording 2-azabiclo[3.3.1]non-2-en-1-ols. These transformations might proceed via a bridgehead carbocation, which was then immediately trapped by present nucleophiles. Stimulated by the one-pot process developed to prepare 2-azabiclo[3.3.1]nonanones (Scheme 9), the same procedure was employed to react the azidoSTYRENE and bicyclo[4.1.0]heptan-1-ol to synthesize 2-azabiclo[4.3.1]dec-4-ene derivatives. To our delight, 2-azabiclo[4.3.1]dec-4-ene derivatives in good yields from vinyl azides and bicyclic cyclopropanol.

Further methods for reduction of the C–O bond at the bridgehead position were explored using acetate prepared from 2-azabiclo[3.3.1]non-2-en-1-ol (Scheme 10). Interestingly, TiCl$_4$-mediated reduction of acetate with Et$_3$SiH induced selective C–O bond cleavage, affording 2-azabiclo[3.3.1]non-2-en-1-ols. These transformations might proceed via a bridgehead carbocation, which was then immediately trapped by present nucleophiles.

Stimulated by the one-pot process developed to prepare 2-azabiclo[3.3.1]nonanones (Scheme 9), the same procedure was employed to react the azidoSTYRENE and bicyclo[4.1.0]heptan-1-ol to synthesize 2-azabiclo[4.3.1]dec-4-ene derivatives. To our delight, 2-azabiclo[4.3.1]dec-4-ene derivatives in good yields from vinyl azides and bicyclic cyclopropanol.

Scheme 9.

Scheme 10.

4. Conclusions

We have developed a divergent synthetic route to construct azaheterocycles from readily available vinyl azides and 1,3-dicarbonyl compounds/cyclopropanols via formal [3+2]- or [3+3]-annulation using Mn(II) complexes. A series of azaheterocycles such as pyrroles, pyridines, and azabiclic cyclopropanol have been successfully prepared by utilizing this promising strategy. Further investigation to explore...
other modes of annulation reactions of vinyl azides to prepare azaheterocycles is currently underway.

Acknowledgment

This work was supported by funding from Nanyang Technological University, Singapore Ministry of Education, and Science & Engineering Research Council (A*STAR grant No. 082 101 0019). We thank Dr. Yongxin Li (Division of Chemistry and Mathematical Sciences, Nanyang Technological University) for assistance in X-ray crystallographic analysis.

Received: March 9, 2012

