<table>
<thead>
<tr>
<th>Title</th>
<th>Building a lewis acidic phosphorus (Main article)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tay, Madelyn Qin Yi; Lu, Yunpeng; Ganguly, Rakesh; Frison, Gilles; Ricard, Louis; Vidovi, Dragoslav; Carmichael, Duncan</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/25066</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 Taylor & Francis Group, LLC. This is the author created version of a work that has been peer reviewed and accepted for publication by Phosphorus, Sulfur, and Silicon and the Related Elements, Taylor & Francis Group, LLC. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1080/10426507.2014.980413].</td>
</tr>
</tbody>
</table>
Building a Lewis Acidic Phosphorus

Madelyn Qin Yi Tay,* Yunpeng Lu,* Rakesh Ganguly,* Gilles Frison,* Louis Ricard,* Dragoslav Vidović,*∥ Duncan Carmichael*∥

*Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.

∥Laboratoire de Chimie Moléculaire, UMR CNRS 9168, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France.

dvidovic@ntu.edu.sg, duncan.carmichael@polytechnique.edu

Abstract

Using the σ- and π-donating properties of carbodiphosphorane ligands, we recently synthesized a phosphorus (III)-containing dication. It is observed to undergo interesting reactivity with PMe₃, H₂O and MeOH.

Keywords

Phosphenium, Carbodiphosphoranes, Two-coordinate, Dication

Introduction

There has been recent interest in frustrated Lewis acid and base pairs.[1] Phosphenium salts potentially provide both acidic and basic sites on one atom and over the years, many crystallographically established phosphenium ions have been obtained.[2] Different types of ligands including N-heterocyclic carbenes[3a,b] and cyclic alkylamino carbenes[3c] have been used for the stabilization of a variety of main group compounds, including phosphenium ions. Such ligands act as strong 2- electron σ-donors but relatively poor π-acceptors. On the other hand, carbodiphosphorane ligands, also known as “carbones”, are quite different, in that they can act as strong 2- electron σ- and 2- electron π-donors. A number of research groups have utilized the electron donating properties of carbone ligands to stabilize electron deficient main group compounds[4] and Matthews[5] and Schmidpeter[6] have succeeded in using them to support phosphorus centers. We managed to utilize the strong donor properties of carbones to synthesize a carbone-stabilized two-coordinate phosphorus (III)-containing dication,[7] which exhibited interesting reactivity with PMe₃, H₂O and MeOH.[8]
Results and Discussion

Carbones can be represented using various different resonance structures as shown in Scheme 1.[9]

![Resonance structures of carbone ligands](image)

Scheme 1. Resonance structures of carbone ligands

The overall synthetic procedure for the preparation of the target dication is depicted in Scheme 2. Carbone was reacted with excess iPr₂NPCI₂ in benzene to give the monocationic chloride displacement product [1]Cl. Addition of 2.0 equiv of AlCl₃ resulted in the synthesis of a two-coordinate phosphorus (III)-containing dication via a halide abstraction reaction.

![Key reagents/conditions](image)

Scheme 2. Key reagents/conditions: i) iPr₂NPCI₂ (excess), benzene; ii) 2.0 equiv of AlCl₃ in CH₂Cl₂.

It was also possible to obtain 2 in the presence of BAr₄⁻ anions. When [2][BAr₄⁻]₂ was reacted with either 2.0 or 3.0 equiv of PMe₃, ³¹P NMR studies suggested an equilibrium between the dication and the dication-PMe₃ adduct (Scheme 3). As expected, the equilibrium could be shifted towards the adduct at low temperatures.

![Key reagents/conditions](image)

Scheme 3. Key reagents/conditions: i) 2.0 or 3.0 equiv of PMe₃ in CH₂Cl₂, variable temperatures from 23 to -30°C.
On the other hand, introducing 1.0 or 2.0 equiv of PMe₃ to a solution containing [2][AlCl₄]₂ showed anion interference and the establishment of an additional equilibrium between PMe₃ and the anion (Scheme 4). This could be rationalized by using the Hard-Soft Acid-Base (HSAB) concept, which has already been established for similar systems.[2b]

![Scheme 4. Proposed equilibria.](image)

A facile formal oxidative addition of water or methanol to [2][BARF₄]₂ was also possible at room temperature, in the absence of activators, using only 1.0 equiv of these substrates. Subsequently, it was possible to abstract a further proton from the water addition product [3a][BARF₄]₂ by introducing 1.0 equiv of NEt₃ (Scheme 5). Interestingly, the resulting compound [4a][BARF₄]₂ depicts a very rare example of H-bonding between two distinct cationic moieties.

![Scheme 5. Key reagents/conditions: i) 1.0 equiv of ROH (R = H or Me), CH₂Cl₂; ii) 1.0 equiv NEt₃, CH₂Cl₂.](image)

Conclusion

A carbone-stabilized two-coordinate phosphorus (III)-containing dication has been synthesized and its reactivity has been explored.

Acknowledgements

We would like to thank A*STAR (grant number: 122 070 3062) for the financial support.
References

