<table>
<thead>
<tr>
<th>Title</th>
<th>Cobalt-catalyzed enantioselective directed C-H alkylation of indole with styrenes (Main article)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lee, Pin-Sheng; Yoshikai, Naohiko</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/25067</td>
</tr>
</tbody>
</table>

© 2014 American Chemical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by Organic Letters, American Chemical Society. It incorporates referee's comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1021/ol503119z].
Cobalt-Catalyzed Enantioselective Directed C–H Alkylation of Indole with Styrenes

Pin-Sheng Lee and Naohiko Yoshikai*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

Supporting Information Placeholder

ABSTRACT: A cobalt–chiral phosphoramidite catalyst promotes enantioselective imine-directed C2-alkylation of Boc-protected indoles with styrenes. The reaction affords 1,1-diarylethane products in moderate to good yields with good enantioselectivities under mild conditions. A deuterium-labeling experiment suggests that the enantioselectivity is controlled by both the styrene insertion and the C–C reductive elimination steps.

Over the last few decades, transition metal-catalyzed, directing group-assisted addition of aromatic and vinyl C–H bonds across alkenes has gained considerable attention as a straightforward and atom-economical approach for the regioselective alkylation of arenes and alkenes. Enantioselective variants of such C–H addition reactions have been achieved in intramolecular settings with rhodium catalysts first by Murai et al. and then extensively by the group of Bergman and Ellman with the aid of nitrogen-based directing groups. On the other hand, intermolecular directed hydroarylation of alkenes has rarely been made enantioselective, mainly because the reaction typically shows anti-Markovnikov selectivity with terminal olefins and thus precludes the formation of a new stereogenic center. To our knowledge, only sporadic examples of iridium(I)–chiral diphasphine-catalyzed addition reactions to norbornene or styrene (Scheme 1a, b) have been reported by the groups of Togni and Shibata as relevant intermolecular reactions involving directed C–H activation of non-prochiral aromatic substrates, while Hartwig achieved highly enantioselective iridim(I)-catalyzed addition of indole and related heteroarenes to norbornene via nondirected C–H activation (Scheme 1c). We report here that a cobalt–chiral phosphoramidite catalyst promotes an imine-directed enantioselective addition reaction of N-protected indoles to styrenes (Scheme 1d). The reaction affords 1,1-diarylethane derivatives in moderate to good yields with a good level of enantioselectivity.

Scheme 1. Directing Group-Assisted Enantioselective Intermolecular Hydroarylation of Olefins

Recently, we developed cobalt–monophosphine catalytic systems for pyridine- or imine-directed hydroarylation reactions of styrenes that afford 1,1-diarylethane derivatives with high...
regioselectivity.9,10 The reactions represent rare examples of transition metal-catalyzed branched-selective styrene hydroarylation.11 Thus, naturally we became interested in developing its enantioselective variant. Our study began with a screening of chiral ligands, monodentate phosphorus ligands in particular, for the cobalt-catalyzed addition of aldimine 1a-Me derived from indole-3-carboxaldehyde8,12 to styrene (2a) (Table 1). The reaction was performed in the presence of a catalyst generated from CoBr\textsubscript{2} (10 mol %), ligand (20 mol %), and Me\textsubscript{3}SiCH\textsubscript{2}MgCl (100 mol %) in THF at 40 °C for 12 h. While the simplest BINOL-based phosphoramidite, (S)-monophosphoranylidene (L1), gave the product 3aa-Me in low yield and enantioselectivity (Table 1, entry 1), modification of the BINOL backbone and/or the amine moiety led to substantial improvement of the catalytic performance (Table 1, entries 2–5). Thus, those having an H\textsubscript{2}-BINOL backbone and a branched dialkylamino moiety (L4 and L5) gave good conversions and moderate ee values up to 57% ee (Table 1, entries 4 and 5). Introduction of additional substituents on the 3,3'-positions had adverse effects (Table 1, entries 6 and 7). Further examination of various BINOL-based phosphoramidite ligands did not lead to an improvement of the enantioselectivity (see Table S1 in the Supporting Information (SI)). Other monodentate phosphorus ligands such as (--)TADDOL-derived phosphoramidite L8 and (S)-MOP (L9) gave poor conversions and very low ee values (Table 1, entries 8 and 9). (S)-BINAP gave a high conversion but with a low ee value (Table 1, entry 10). Note that a high conversion was achieved even under ligand-free conditions (Table 1, entry 11). Thus, some of the ligands tested (e.g., L1) should have delected the reaction.

Table 1. Screening of Chiral Ligands for the Addition of Imine 1a-Me to Styrenea

<table>
<thead>
<tr>
<th>entry</th>
<th>ligand</th>
<th>yield (%)b</th>
<th>ee (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L1</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>L2</td>
<td>69</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>L3</td>
<td>84</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>L4</td>
<td>83</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>L5</td>
<td>61</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>L6</td>
<td>66</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>L7</td>
<td>29</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>L8</td>
<td>31</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>L9</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>10d</td>
<td>(S)-BINAP</td>
<td>83</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>None</td>
<td>89</td>
<td>–</td>
</tr>
</tbody>
</table>

aThe reaction was performed on a 0.15 mmol scale at a concentration of 0.4 M. bEstimated by GC using n-tridecane as an internal standard. cDetermined by HPLC using a chiral stationary phase. d0.0 mol % of (S)-BINAP was used.

Having identified the moderately effective ligands such as L4 and L5, we next examined the effect of the indole N-substituent (Table 2). Using L4, the reaction of the N-Boc derivative 1a-Boc was achieved in a moderate yield (67%) with a substantially improved ee value of 73% (Table 2, entry 1), while L5 gave rise to a diminished catalytic activity (Table 2, entry 2). Note that the loading of Me\textsubscript{3}SiCH\textsubscript{2}MgCl could be reduced to 75 mol %, while further reduction led to a substantial decrease in the product yield. Note also that other phosphoramidite ligands shown in Table 1 performed poorly for 1a-Boc. The N-Cbz and N-Ts derivatives gave slightly lower ee values, the reaction of the latter being sluggish (Table 2, entries 3 and 4). The N-diethylcarbamoyl derivative did not afford the desired product at all (Table 2, entry 5). While the N-benzyl derivative smoothly participated in the reaction, the enantioselectivity was modest (Table 2, entry 6). The yield and the enantioselectivity for the N-phenyl derivative were comparable to that for the N-Boc derivative (Table 2, entry 7). Upon further modification of the reaction conditions (see Table S2 in the SI), the reaction of 1a-Boc was improved by using Co(acac)\textsubscript{2}, as the precatalyst and lowering the reaction temperature to room temperature (24–26 °C), affording the product 3aa-Boc in 90% yield and 83% ee (Table 2, entry 8). In contrast to the reaction of 1a-Me (Table 1, entry 11), the reaction of 1a-Boc was rather sluggish in the absence of L4. Note that the metal/ligand ratio of 1:2 was found to be optimum and that the reaction did not take place at 0 °C.

Table 2. Effect of Indole N-Substituenta

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>ligand</th>
<th>yield (%)b</th>
<th>ee (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boc</td>
<td>L4</td>
<td>67</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>Boc</td>
<td>L5</td>
<td>13d</td>
<td>NDe</td>
</tr>
<tr>
<td>3</td>
<td>Cbz</td>
<td>L4</td>
<td>65</td>
<td>67</td>
</tr>
<tr>
<td>4f</td>
<td>Ts</td>
<td>L4</td>
<td>19</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>CONEt</td>
<td>L4</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>Bn</td>
<td>L4</td>
<td>77</td>
<td>53</td>
</tr>
</tbody>
</table>
With the Co(acac)3-L4 system in hand, we explored the scope and limitation of the enantioselective addition of 1-Boc-3-iminoindole derivatives to styrenes (Scheme 2). Styrenes bearing a para- or meta-substituent participated in the reaction with 1a-Boc to afford the corresponding hydroarylation products in yields of 48–88% with ee values of 73–86%. High ee values (85–86%) were achieved in the reactions of 4-methoxystyrene and 4-trimethylsilylstyrene (see 3aBoc and 3acBoc). The former reaction could be performed on a 3 mmol scale without significant decrease in the yield and the enantioselectivity (77% yield, 85% ee). The absolute stereochemistry of the major enantiomer of 3abBoc was determined to be R by X-ray crystallographic analysis of its SAMP hydrazone derivative (see the SI). Electron-withdrawing fluoro and chloro substituents lowered the enantioselectivity down to 73% ee (see 3ahBoc and 3aiBoc). Ortho-substituted styrenes such as 2-fluorostyrene and 2-methylstyrene as well as β-substituted styrene such as (Z)-β-trimethylsilylstyrene failed to participate in the reaction.13 The reactions of 3,4-methylenedioxy- and 3,4,5-trimethoxystyrene were rather sluggish when performed under the standard conditions. For these substrates, CoBr2 served as a better precatalyst, affording the products 3ajBoc and 3akBoc in moderate yields and enantioselectivities (ca. 70% ee). 2-Vinylnapthalene afforded the desired product 3alBoc in a modest yield with 76% ee.

The reactions of indole substrates bearing a substituent in the 5- or 6-position with 4-methoxystyrene were achieved in moderate to good yields with enantioselectivities higher than 83% ee (see 3bbBoc, 3cbBoc, and 3dbBoc), while the presence of a 7-ethyl substituent on indole resulted in diminished reactivity and enantioselectivity (see 3ebBoc). Note that, in this and other cases of low to moderate yields, the unreacted starting materials were recovered without affording byproducts including a linear alkylation product (i.e., the addition reaction took place exclusively in a branched manner). Unfortunately, aromatic imines other than the indole derivatives, such as those derived from 1-naphthaldehyde and acetophenone, did not participate in the reaction with styrene under the present reaction conditions.

Scheme 2. Scope of the Addition of 1-Boc-3-iminoindoles to Styrenes

"The reaction was performed on a 0.15 mmol scale. Isolated yields are shown. The ee values were determined by HPLC using a chiral stationary phase. The reaction time was 24 h. CoBr2 was used instead of Co(acac)3. Performed on a 0.3 mmol scale.

The Boc group of the hydroarylation product 3aa-Boc was readily removed by the treatment with K2CO3 in aqueous MeOH to afford the NH indole 3aa without change of the ee value (Scheme 3). The formyl group of 3aa could further be removed under iridium catalysis,14 which was, however, accompanied by a substantial erosion of the enantiomeric purity (see 3aa). Note that attempted decarbonylation of the same compound using some of Rh-catalyzed or Pd-catalyzed methods5 resulted in a poor conversion, which suggests the need for further improvement of chemoselective decarbonylation methods.

Scheme 3. Removal of Boc and Formyl Groups

To gain mechanistic insight, we performed the reaction of C2-deuterated substrate 1a-Boc-d and vinylarene 2b for 3 h, which
afforded a mixture of the hydrolyzed substrate 1a-Boc', 2b and the product 3ab-Boc (Scheme 4). Curiously, the use of CoBr2 instead of Co(acac)3 was essential to achieve a reasonable conversion. Otherwise, the reaction was rather sluggish (< 10% conversion after 12 h). We observed a decreased deuterium content (by 30%) at the C2 position of 1a-Boc' and a similar degree of deuterium incorporation into the methylene terminus of 2b. The deuterium incorporation into the α-position of 2b was marginal (< 10%). Consistent with these observations, the methyl group of 3ab-Boc was substantially deuterated, while deuterium at the methine moiety was negligible.

Scheme 4. Deuterium-Labeling Experiment

```
N           PMP                  CoBr2 (10 mol %)      Me2SiCH2MgCl (75 mol %)       H+ \\
[1a-Boc-d (>85% D)] + [p-An]   THF, rt, 3 h
```

```
1a-Boc (38%) + 2b (1 equiv) 
```

```
2.26H + 0.96H + p-An   
```

The yields and the proton contents were determined by 1H NMR spectroscopy.

With the assumption of a catalytic cycle consisting of C=H oxidative addition, migratory insertion of styrene into the Co-H bond, and reductive elimination, the result of the deuterium-labeling experiment suggests that the former two steps are reversible and that migratory insertion occurs predominantly in a branched manner. In addition, reductive elimination would not be significantly slower than de-insertion of styrene as judged from the limited degree of H/D exchange. Thus, we speculate that both the migratory insertion and reductive elimination steps influence the enantioselectivity of the present reaction.

In summary, we have developed an enantioselective imine-directed addition reaction of an indole C2=H bond across a styrenyl C=C bond using a cobalt–chiral phosphoramidite catalyst, affording 1,1-dialkylenamine derivatives in moderate to good yields with good enantioselectivities. Search for more effective catalytic systems applicable to a broader range of aromatic substrates is currently underway.

ASSOCIATED CONTENT

Supporting Information

Experimental details, characterization of new compounds, and crystallographic information file (CIF) for SAMP hydrazone of 3ab-Boc. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

E-mail: nyoshikai@ntu.edu.sg

ACKNOWLEDGMENT

This work was supported by Singapore National Research Foundation (NRF-RF200905), Nanyang Technological University, and JST, CREST. We thank Drs. Yongxin Li and Rakesh Ganguly (Nanyang Technological University) for assistance in X-ray crystallographic analysis.

REFERENCES

(13) The N-phenyl substrate 1a-Ph reacted with 2-fluorostyrene (40%, 34% ee) and (Z)-β-trimethylsilyl-β-styrene (8%, 40% ee) albeit in low yields and enantioselectivities.
(17) Regardless of the significant difference in the catalytic activity, we speculate that the nature of the asymmetric induction process would not
change depending on the cobalt precatalyst, because the ee value of the model reaction is rather independent of the precatalyst (see Table S2).
\[
\text{cat. Co(acac)\textsubscript{3}–L} \quad \text{Me\textsubscript{3}SiCH\textsubscript{2}MgCl}
\]
\[
\text{THF, rt, 12 h} \quad 88\%
\]
\[
\rightarrow \quad \text{Ar = 4-MeOC\textsubscript{6}H\textsubscript{4}}
\]
\[
(\text{ee} = 86\%)
\]