<table>
<thead>
<tr>
<th>Title</th>
<th>Redox-responsive mesoporous silica nanoparticles : a physiologically sensitive codelivery vehicle for siRNA and doxorubicin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ma, Xing; Teh, Cathleen; Zhang, Quan; Borah, Parijat; Choong, Cleo Swee Neo; Korzh, Vladimir; Zhao, Yanli</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/25156</td>
</tr>
</tbody>
</table>

© 2014 Mary Ann Liebert. This paper was published in Antioxidants & Redox Signaling and is made available as an electronic reprint (preprint) with permission of Mary Ann Liebert. The paper can be found at the following official DOI: [http://dx.doi.org/10.1089/ars.2012.5076]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Redox-Responsive Mesoporous Silica Nanoparticles: A Physiologically Sensitive Codelivery Vehicle for siRNA and Doxorubicin

Xing Ma,1,2 Cathleen Teh,3 Quan Zhang,1 Parijat Borah,1 Cleo Choong,2 Vladimir Korzh,3,4 and Yanli Zhao1,2

Abstract

Aims: Efficient siRNA/drug codelivery carriers can offer great promises to cancer treatment on account of synergistic effect provided from cancer-associated gene and anticancer drugs. In this work, a redox-responsive drug/siRNA codelivery vehicle based on mesoporous silica nanoparticles was fabricated to simultaneously deliver siRNA and doxorubicin (Dox) in vitro and in vivo. Results: The nanoparticle surface was functionalized with the adamantane (AD) units. Formation of stable host–guest complex between disulfide bond linked-AD and ethylenediamine-modified β-cyclodextrin is capable of fully blocking drugs inside the nanopores, while amino groups can complex with siRNA via electrostatic interaction. Relatively high concentration of glutathione in biophysical environment provides natural reducing agent to trigger drug/siRNA release by cleaving pre-introduced disulfide bonds. B-cell lymphoma 2 (Bcl-2) siRNA was codelivered to silence Bcl-2 protein expression in HeLa cells, resulting in enhanced chemotherapy efficacy in vitro. In vivo delivery experiment carried out in transgenic zebrafish larvae indicates that the delivery of Dox inhibits the development of choroid plexus in a dose-dependent manner, leading to successful decrease of green fluorescence protein transcription in choroid plexus. Reduction of liver tumor was also demonstrated after injection of Dox-loaded nanoparticles. Innovation: We successfully demonstrated that functional nanoparticles could serve as an efficient carrier for the delivery of Bcl-2 siRNA and Dox in HeLa cells and in transgenic zebrafish larvae, leading to enhanced therapeutic efficacy. Conclusion: Enhanced cytotoxicity caused by simultaneous delivery of Bcl-2 siRNA and Dox was observed in HeLa cells. Drug-loaded nanoparticles were internalized in vivo, inhibiting the development of choroid plexus and the progression of liver tumor. Antioxid. Redox Signal. 21, 707–722.
therapeutics for human diseases, including cancer. A hurdle to widespread use of free siRNA-based therapeutics is their inefficient intracellular uptake (1,10). The use of non-viral siRNA-based carriers is an attractive strategy for RNAi therapeutics. Issues, including how to enhance the efficiency of cellular uptake and how to carry out the controlled release of siRNA from carriers, need to be addressed in the design of such technology. Both criteria are essential for effective targeted gene silencing to be achieved in vivo (34). Such non-viral-based drug carriers can be concomitantly used to improve the delivery of pharmacological anticancer drugs into cancer cells, thereby minimizing undesirable side effects of such drugs.

We selected functional mesoporous silica nanoparticles (MSNPs) as the carrier for codelivery of siRNA and anticancer drug. The unique properties of MSNPs, such as tunable nanoparticle size, uniform mesopore, porous interior amendable to drug loading, high surface area, and easy surface functionalization (17,22,23,26,48), make them highly suitable as a therapeutic delivery vehicle. Previous studies on biological applications of MSNPs have demonstrated their potentials for RNA or drug delivery (2,3,5,33,35,42,50,53,56,58). We here would like to employ multifunctional MSNPs as the carrier for effective codelivery of siRNA and drug in a controlled-release manner. Such desirable traits will minimize adverse side effects resulted from uncontrolled release of both siRNA and drugs.

The work presented here verified the efficacy of siRNA/drug codelivery system based on multifunctional MSNPs, where the mesopores of the nanoparticles are capped by redox-responsive nano-gates, that is, ethylenediamine-modified β-cyclodextrin (CD-2NH₂) rings. Intracellular delivery efficacy was first evaluated in HeLa cells, where siRNA against B-cell lymphoma 2 (Bcl-2) was employed. Bcl-2 was targeted since this protein promotes the tumor formation by preventing cellular apoptosis (7) and contributes to the resistance to anticancer drugs (6,52). This codelivery approach leads to increased apoptosis of HeLa cells treated with CD-2NH₂-capped MSNPs containing Bcl-2 siRNA and doxorubicin (Dox). Further proof of the delivery principle was achieved in transgenic zebrafish larvae expressing the green fluorescence protein (GFP) reporter in the choroid plexus (16). Here, siRNA/CD-2NH₂-capped MSNPs were injected into brain to cause a reduction of GFP expression. Choroid plexus growth was significantly inhibited in transgenic larvae when treated with high concentration of Dox-loaded CD-2NH₂-capped MSNPs. The anticancer efficacy of the delivery system was further confirmed in a liver tumor model using transgenic MSNP-SS-AD, the peak of the amino group centered at 2860 cm⁻¹ disappeared. Signals for the AD units on the nanoparticles were not observed, since they overlapped with the broad peak from 1100 to 1300 cm⁻¹. The work validated the use of transgenic zebrafish larvae as a well-controlled reporter system to develop the formulations of siRNA/drug complexes and to identify those with the highest in vivo potency.

Results and Discussion

To develop a viable carrier for controlled siRNA/drug codelivery, we used functional MSNPs, where the mesopores of the nanoparticles are capped by redox-responsive nanogates, that is, CD-2NH₂ rings (49). As shown in Scheme 1, the disulfide bond-containing amino groups were initially attached to the MSNP surface. The adamantane (AD) units were then introduced onto the surface through the amidation between the amino groups and adamantane-1-carboxylic acid (AD-COOH). Then, the AD units on the nanoparticle surface formed stable host–guest complexes with CD-2NH₂ under the association constant of 10⁵–10⁶ M⁻¹ (9). In addition to capping drug molecules inside the mesopores, the second role of CD-2NH₂ is to bind siRNA through electrostatic interactions. The mechanism of controlled siRNA/drug release within cancer cells can be realized by the cleavage of redox-responsive disulfide bonds triggered by intracellular glutathione (GSH) (18,27,41,54), leading to the uncapping of the β-CD rings followed by the drug release from the mesopores. siRNA can also be dissociated from CD-2NH₂ on account of intracellular acidic pH, thereby achieving high RNAi at the level required for gene knockdown.

Thiol group-containing MSNPs (MSNP-SH) were prepared through the cocondensation reaction (4,38) of tetraethylorthosilicate (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) followed by the removal of structure-directing agent cyclohexyldimethylammonium bromide (CTAB). The MSNP-SH was characterized by powder X-ray diffraction (XRD) and N₂ adsorption/desorption measurements to confirm the mesoporous structure. In the powder XRD pattern (Supplementary Fig. S1; Supplementary Data are available online at www.liebertpub.com/ars), the sharp peak at 2θ = 2.12, corresponding to (100) plane, along with two minor peaks at 2θ = 3.96 and 2θ = 4.60 for (110) and (200) planes, respectively, clearly prove the hexagonal structure of MCM-41 type MSNPs (30). In addition, a typical type-IV isotherm was obtained, indicating that the MSNP-SH possesses a high Brunauer–Emmett–Teller (BET) surface area of 730 m²·g⁻¹ and a narrow Barrett–Joyner–Halenda pore size distribution with an average pore diameter of 2.7 nm.

The surface of MSNP-SH was further treated with 5-(2-aminoethylthio)-2-thiopyridine hydrochloride (SATH) for the formation of the disulfide bonds, leading to amino group-terminated nanoparticles (MSNP-SS-NH₂). AD-functionalized MSNPs (MSNP-SS-AD) were finally prepared by the amidation between MSNP-SS-NH₂ and AD-COOH in the presence of dicyclohexylcarbodiimide (DCC) in dimethylformamide (DMF). The morphology of the MSNP-SH nanoparticles were characterized by field emission scanning electron microscopy (FESEM) (Fig. 1a) and transmission electron microscopy (TEM) (Fig. 1b), showing uniform nanoparticle size with a mean diameter of 150 nm and well-ordered mesoporous structure with the pore diameter of 2–3 nm. The surface modifications of MSNPs were determined by the Fourier transform infrared spectroscopy (FT-IR) analysis (Fig. 1c). After converting thiol groups into the disulfide bond-bridged amino groups on the nanoparticle surface, a minor peak at 2560 cm⁻¹ corresponding to the thiol group (36) disappeared, while a new peak observed at 1530 cm⁻¹ is assigned to the primary amine. After the amidation for the formation of MSNP-SS-AD, the peak of the amino group centered at 1530 cm⁻¹ disappeared. Signals for the AD units on the nanoparticle surface cannot be well identified, since they overlapped with the broad peak from 1100 to 1300 cm⁻¹. The BET surface area of MSNP-SS-AD was measured to be 620 m²·g⁻¹, which is slightly lower than that of MSNP-SH. MSNP-SS-AD was further characterized by solid-state ¹³C cross polarization and magic angle spinning nuclear magnetic resonance (CP MAS NMR) spectroscopy. The ¹³C CP MAS NMR spectrum
(Fig. 1d) of MSNP-SS-AD exhibits strong signals at 11.3, 23, 28, 49.5, and 51.5 ppm, which are attributed to the aliphatic secondary carbon atoms. Signals ranging from 34 to 41 ppm in the spectrum are ascribed to the carbon atoms of the AD units, and the signal at 174 ppm is assigned to the carbonyl carbon of the newly formed amide bond. These observations indicate successful preparation of AD-functionalized nanoparticles (MSNP-SS-AD).

Moreover, zeta potential measurements further support the successful surface functionalization of MSNPs (Supplementary Table S1). A negative zeta potential of -24.4 mV for MSNP-SH was converted to a positive value of 22.5 mV for MSNP-SS-NH$_2$, which can be attributed to the positively charged ammonium species on the surface of MSNP-SS-NH$_2$. After the introduction of the neutral AD units on the surface, a zeta potential decrease from 22.5 to 12.7 mV was observed in the case of MSNP-SS-AD. The zeta potential measurements also provide clear evidence for the formation of the host–guest complex between AD and CD-2NH$_2$ on the nanoparticle surface. When MSNP-SS-AD was capped with β-CD through the complexation, the surface charge of the nanoparticles was reversed from a positive value of 12.7 mV to a negative one of -26.7 mV, on account of the presence of the hydroxyl groups from β-CD. However, when CD-2NH$_2$ was used to cap the nanoparticles, a highly positive surface charge of 19.7 mV was observed because of the protonated amino groups of CD-2NH$_2$. A positive value of 22.2 mV was observed when MSNP-SS-AD was loaded with Dox followed by the capping of CD-2NH$_2$, indicating that the presence of Dox inside the mesopores of the nanoparticles would not affect the complex formation. Highly positive surface charge provided by CD-2NH$_2$ can be employed to bind with negatively charged siRNA through electrostatic interactions, so that the CD-2NH$_2$-capped MSNP-SS-AD nanoparticles serve as an excellent carrier for the siRNA/drug codelivery. In addition, the introduction of CD-2NH$_2$ onto the MSNP-SS-AD surface enhances the stability of the nanoparticles in both distilled H$_2$O and Dulbecco’s modified Eagle’s medium (DMEM) (Supplementary Fig. S2 and Supplementary Table S2). The average diameter of the nanoparticles in DMEM was significantly decreased as compared with that in H$_2$O, suggesting increased dispersibility and stability in cell culture medium. Thus, the surface coverage of CD-2NH$_2$ on MSNP-SS-AD plays a crucial role in cellular internalization, which is an essential step for intracellular siRNA/drug codelivery of using the nanoparticles.

To prove that the drug release was controlled by redox-responsive nano-gates provided by the CD rings, β-CD without any modification was used to complex with MSNP-SS-AD for capping the mesopores. Rhodamine B (RhB) was employed as a model drug, and the loading capacity of MSNP-SS-AD toward RhB was calculated to be 41 μg of RhB per 1 mg of nanoparticles (4.1 wt%), by comparing ultraviolet-visible (UV-vis) absorption intensities of RhB solution before
and after adding MSNP-SS-AD. As seen from Figure 2a and b, the leakage of RhB from β-CD-capped MSNP-SS-AD in the absence of reducing agent was negligible, whereas a significant release profile of RhB from β-CD-capped MSNP-SS-AD was observed upon the addition of reducing agent dithiothreitol (DTT). The observation can be explained by pre-installed disulfide bond cleavage on the nanoparticle surface induced by DTT. This cleavage resulted in the dissociation of the β-CD ring, which in turn led to the release of previously loaded RhB. In comparison, the CD-2NH2-capped MSNP-SS-AD exhibits slower RhB release after the addition of DTT, which may be attributed to stronger blockage caused by the amino group-containing β-CD ring. Similarly, the RhB release profiles in the presence of GSH (25 mM) can also be observed. To understand the release mechanism of real anticancer drugs, similar experiments were carried out using Dox-loaded MSNP-SS-AD capped with CD-2NH2. The loading capacity of MSNP-SS-AD for Dox was 25 μg of Dox per 1 mg of nanoparticles (2.5 wt%). Similar redox-controlled Dox release profiles (Fig. 2c) were observed under the same experimental conditions. To better simulate the Dox release profile in acidic intracellular environment, we conducted the Dox release experiment from Dox-loaded CD-2NH2-capped MSNP-SS-AD complexed with siRNA (MSNP-SS-AD + Dox + CD-2NH2-SiRNA complex) under acidic pH condition in DMEM cell culture medium. The results show that the release rate was decreased in acidic environment (Supplementary Fig. S5). A possible reason for the rate decrease might be attributed to stronger electrostatic interaction between siRNA and amine groups of CD-2NH2 under acidic condition, decreasing the interaction between the reducing agent (DTT or GSH) and embedded disulfide bonds. In fact, redox-controlled release process could even be monitored by naked eye (Supplementary Fig. S4). A sample of RhB loaded MSNP-SS-AD capped with β-CD was placed at the bottom of a fluorescence cuvette containing phosphate buffered saline (PBS) buffer (3 ml, pH 7.4). After the sample was stabilized for 1 h, 50 mM DTT was added into the solution. Obvious RhB release in red was observed at the bottom of the cuvette after 5 min.

An essential prerequisite in the design of siRNA delivery vehicle is the ability to form stable complexes with free siRNA. In the case of CD-2NH2-capped MSNP-SS-AD, the complex formation is mediated by electrostatic interaction between negatively charged siRNA and positively charged amino groups of CD-2NH2 on MSNP-SS-AD. The electrostatic interaction was demonstrated by the retarded siRNA band mobility in agarose gel electrophoresis, a phenomenon that was not observed with free siRNA. Bcl-2 siRNA was used in this electrophoresis experiment. As shown in Figure 2d, free siRNA in the first lane has the highest mobility. Upon increasing the nanoparticle-to-siRNA weight ratios (lanes 3–8, Fig. 2d), a gradual decrease in the band mobility and intensity was observed. siRNA concentration was kept constant in all lanes, except in lane 2, where no siRNA was loaded. siRNA became fully condensed on the nanoparticle surface when the nanoparticle-to-siRNA weight ratio reached 110:1. When DTT (50 mM) was added into a sample with a nanoparticle-to-siRNA weight ratio of 110:1 (last lane, Fig. 2d), the recovery of
siRNA band intensity was detected. This result demonstrates that attached siRNA can be released from the nanoparticle surface by redox-triggered disulfide bond cleavage. GSH (25 mM) can also be used to induce the disulfide bond cleavage on the nanoparticle surface, releasing both drug and siRNA for synergistic chemotherapeutic therapy.

To trace the location of the nanoparticles in cells, green fluorescent fluorescein isothiocyanate (FITC) was embedded inside the silica nanoparticles during the fabrication process. Cellular uptake of FITC-labeled MSNP-SS-AD loaded with Dox and capped with CD-2NH₂ (MSNP-SS-AD(FITC) + Dox + CD-2NH₂) was investigated by confocal laser scanning microscopy (CLSM) using HeLa cells as the cancer cell model. The nuclei in HeLa cells were stained blue by 4',6-diamidino-2-phenylindole (DAPI). Green fluorescence (Fig. 3e) was detected around the cell nucleus, indicating effective nanoparticle internalization by HeLa cells. No green fluorescence was detected outside the cancer cells. In comparison, less green fluorescence was detected in HeLa cells, when cellular uptake of FITC-labeled and CD-2NH₂-capped MSNP-SS-AD was assessed (Supplementary Fig. S5). Hence, FITC-labeled MSNP-SS-AD capped with CD-2NH₂ presents much higher cellular internalization capacity, confirming its potential for intracellular therapy. Flow cytometry analysis also supports the enhancement of cellular uptake by the CD-2NH₂ capping (Supplementary Fig. S5g). The CLSM image demonstrated successful release of Dox from MSNP-SS-AD within HeLa cells induced by endogenous GSH (Fig. 3d–i), as shown by the presence of red fluorescent Dox in both cytosol and nucleus. Comparison of the fluorescence intensity reading from FITC and Dox inside HeLa cells further proves the Dox release from the nanoparticles (Supplementary Fig. S6). These observations indicate effective redox-triggered intracellular release of Dox from the nanoparticles and successful delivery of Dox into the nucleus, where the anticancer activity of Dox is executed by its interactions with DNA (15). In addition, the detection of FITC-labeled and CD-2NH₂-capped MSNP-SS-AD containing Bcl-2 siRNA/Dox in perinuclear regions of cytoplasm suggests that the codelivery carrier could bypass the efflux pump resistance observed in HeLa cells (19,55), thereby enhancing Dox-mediated cytotoxicity. Thus, Dox delivered by CD-2NH₂-capped MSNP-SS-AD is protected from the degradation by extracellular enzymes, exhibiting enhanced cellular uptake in cancer cells (44).

Moreover, we conducted time-dependent CLSM experiments on HeLa cells treated with MSNP-SS-AD(FITC) + Dox + CD-2NH₂ and equivalent amount of free Dox (Supplementary Fig. S7). Free Dox can quickly diffuse into cell nucleus and reach the equilibrium within 2h, as no further enhancement of the Dox fluorescence was observed after 2h. On the contrary, for Dox delivered by the MSNP carrier, sustained Dox release inside HeLa cells was observed, indicated by the increasing Dox fluorescence intensity inside the cell nucleus and cytoplasm. The sustained Dox release from
the MSNP carrier could enhance the chemotherapy effect by maintaining effective cancer-killing dosage for a relatively long time. Then, we carried out experiments to assess the amounts of MSNP-SS-AD(FITC) and Dox inside HeLa cells after treated with MSNP-SS-AD(FITC) + Dox + CD-2NH₂ + siRNA (25 and 50 µg·ml⁻¹, respectively) for 24 h. After the treatment, the HeLa cells were washed with PBS three times and then collected by trypsin. The cell density was determined by using cell-counting plate. The cells were treated with lysis buffer to break the cell membrane and the mixture solution was suspended in deionized H₂O (1 ml) for fluorescence measurement. The amounts of MSNP-SS-AD(FITC) and Dox were quantified by the fluorescence intensity of FITC and Dox, respectively. MSNP-SS-AD(FITC) and Dox solutions with known concentrations were used as standard references for the quantification. The results (Supplementary Fig. S8) indicate that the amounts of MSNP-SS-AD(FITC) and Dox in the cells were ca. 5 µg and 61 ng per 10⁶ cells when 25 µg·ml⁻¹ of MSNP-SS-AD(FITC) + Dox + CD-2NH₂ + siRNA was used, and ca. 17 µg and 210 ng per 10⁶ cells when 50 µg·ml⁻¹ of MSNP-SS-AD(FITC) + Dox + CD-2NH₂ + siRNA was used.

To assess the efficacy of gene knockdown mediated by Bcl-2 siRNA delivered by CD-2NH₂-capped MSNP-SS-AD, the level of Bcl-2 protein expression in transfected HeLa cells was evaluated by western blot. After disrupting the cell membrane with lysis buffer, the protein concentration of each sample was quantified by Pierce® BCA Protein Assay Kit. Protein concentration of all the six samples was around 1000 µg·ml⁻¹ (Supplementary Fig. S9). No obvious cell death was detected in HeLa cells transfected with CD-2NH₂-capped MSNP-SS-AD alone, CD-2NH₂-capped MSNP-SS-AD/Bcl-2 siRNA complex, or free siRNA. Commercially available Lipofectamine®
equal amount of nanoparticle concentration and equivalent amount of Dox. (a-6) Lipofectamine + siRNA (+), (b-2) siRNA weight ratio is 100:1. (a-3) MSNP-SS-AD + CD-2NH2, (a-4) MSNP-SS-AD + CD-2NH2 + siRNA (+), (a-5) free siRNA, and (a-6) Lipofectamine + siRNA (+). (b) Relative cell viability of HeLa cells treated with indicated samples under an equivalent amount of nanoparticle concentration and equivalent amount of Dox. (b-1) MSNP-SS-AD + CD-2NH2 + siRNA (−), (b-2) free Dox, (b-3) MSNP-SS-AD + Dox + CD-2NH2, and (b-4) MSNP-SS-AD + Dox + CD-2NH2 + siRNA (+). Nanoparticle-to-siRNA weight ratio is 100:1. Bcl-2, B-cell lymphoma 2.

FIG. 4. Bcl-2 protein silence and enhanced chemotherapy effect. (a) Bcl-2 protein knockdown by CD-2NH2-capped MSNP-SS-AD/siRNA(+) complex (MSNPs-SS-AD + CD-2NH2 + siRNA) in HeLa cells (nanoparticle-to-siRNA weight ratio of 110:1). Gene expression was evaluated by the ratio of intensity of the Bcl-2 band to that of the internal standard, β-tubulin. The ratio of each sample was normalized to the value of the sample without any treatment. (a-1) control, (a-2) MSNP-SS-AD + CD-2NH2, (a-3) MSNP-SS-AD + CD-2NH2 + siRNA(+), (a-4) MSNP-SS-AD + CD-2NH2 + siRNA(−), (a-5) free siRNA, and (a-6) Lipofectamine + siRNA(+). (b) Relative cell viability of HeLa cells treated with indicated samples under an equivalent amount of nanoparticle concentration and equivalent amount of Dox. (b-1) MSNP-SS-AD + CD-2NH2 + siRNA(−), (b-2) free Dox, (b-3) MSNP-SS-AD + Dox + CD-2NH2, and (b-4) MSNP-SS-AD + Dox + CD-2NH2 + siRNA(+). Nanoparticle-to-siRNA weight ratio is 100:1. Bcl-2, B-cell lymphoma 2.
small developing larvae, which at 5 days is 4 mm long. Thus, we made use of the similarity in high rate of cellular proliferation during embryonic tissue growth to model unregulated proliferations in cancer cells (37). Since more than 80% of human cancers (such as skin cancer and lung, stomach, and mammary tumors) derive from epithelial tissues (14,40), the choroid plexus, a tissue of epithelial origin, was selected to model primary tumor growth. Two zebrafish transgenic lines with GFP (Et(krt4:EGFP)sqet33e20 or SqET33-e20) and membrane localized with KillerRed (SqKR19) expression in the choroid plexus were chosen as the in vivo epithelial tissue models to assess cellular uptake of drugs delivered by the nanoparticles and their impact on choroidal epithelial cell proliferation (Supplementary Fig. S11). Imaging in these optically transparent transgenic larvae provides initial assessment of anti-proliferative therapy mediated by Dox-loaded CD-2NH2-capped MSNP-SS-AD in vivo.

We first verified in vivo cellular uptake of CD-2NH2-capped MSNP-SS-AD. Passive targeting was conducted by micro-injecting 0.4 µg·µl⁻¹ CD-2NH2-capped FITC-labeled MSNP-SS-AD into the brain ventricle of SqKR19 transgenic zebrafish larvae (29) after 36 hours post fertilization (hpf). Being located dorsal to the IV ventricle cavity and immediately under the skin, the choroid plexus is an easily accessible site. The morphology of choroidal epithelial cells was highlighted by membrane-localized KillerRed in SqKR19 transgenics (Fig. 5b). The fluorescent signal of internalized FITC from MSNP-SS-AD was observed inside choroidal epithelial cells 2 days after injection. Cells that internalized FITC-loaded nanoparticles were predominantly found in peripheral regions of
the choroid plexus defined by white serrated boxes (Fig. 5b). Next, the efficiency of in vivo anti-GFP siRNA interference was assessed using the SqET3-e20 transgenic zebrafish larvae (16) expressing cytosolic GFP in the choroid plexus. Briefly, GFP-positive choroidal cells were first detected at 28 hpf in the layer of neuroepithelial cells, and at 36 hpf they formed a cellular sheet representing the roof of the IV ventricle. These cells then converged toward the midline to form the button-like choroid plexus represented by two to three layers of cells at 3 days post fertilization (dpf). Microinjection of siRNA-containing CD-2NH2-capped MSNP-SS-AD into the brain ventricle was conducted at 36 hpf. Injected larvae were grown for 2 days before being processed for analysis of GFP siRNA expression by whole mount in situ hybridization (WISH). siRNA duplex targeting EGF (CAA GCC GAC CUC AAA GAA CTG; IDT) was used for this experiment (Supplementary Fig. S12). To minimize potential off-target effect of GFP siRNA reported in cell lines (51), a standardized low dose of 0.04 μg·μl⁻¹ GFP siRNA was used in all brain ventricle injections to knockdown GFP transcripts in the choroid plexus. The efficacy of GFP knockdown mediated by free GFP siRNA and by the same amount of GFP siRNA complexed with different weight ratios of CD-2NH2-capped MSNP-SS-AD was compared. Formulations were prepared and incubated over ice for 2 h before the brain ventricle injection. Free GFP siRNA at a concentration of 0.04 μg·μl⁻¹ was inefficient in decreasing GFP transcripts (Fig. 5d). Enhanced GFP knockdown was detected when 3:1 or 5:1 weight ratio of CD-2NH2-capped MSNP-SS-AD was complexed to 0.04 μg·μl⁻¹ siRNA (Fig. 5e, f), while increasing the weight ratio to 10:1 reversed this trend (Fig. 5g). CD-2NH2-capped MSNP-SS-AD/GFP siRNA complexes with weight ratios of 3:1 (C2) and 5:1 (C3) inhibit more efficient GFP transcription than that caused by the injection of free GFP siRNA alone (C1). Interestingly, the ability to inhibit GFP transcription was lost when the weight ratio of CD-2NH2-capped MSNP-SS-AD to GFP siRNA was increased to 10:1 (C4 in Fig. 5h). This observation suggests that excess of positively charged CD-2NH2-capped MSNP-SS-AD interferes with intracellular release of GFP siRNA, which in turn impedes GFP silencing with inefficient GFP knockdown.

In vivo release of internalized Dox mediated by redox-responsive CD-2NH2-capped MSNP-SS-AD nanocarrier was then investigated. We performed localized delivery of Dox by the nanoparticles to sites flanking the choroid plexus, to mimic localized delivery of anticancer drugs into the vicinity of tumor cells. The effect of internalized Dox was assessed based on the inhibition of tissue proliferation in choroidal epithelial cells where the Dox-loaded nanoparticles were internalized. Again, transgenic larvae were injected at 36 hpf and the effect on choroid plexus growth and GFP intensity was assessed. Different weight ratios of injected Dox-loaded nanoparticles complexed with GFP siRNA were evaluated. Six transgenic larvae were imaged 2 days post injection for each formulation. Untreated transgenic larvae were used as a control for normal growth of choroid plexus and intensity of GFP expression (Supplementary Figs. S13 and S14). In larva exposed to C3 (0.2 μg·μl⁻¹ Dox-loaded nanoparticles with 0.04 μg·μl⁻¹ siRNA, 5:1) and C4 (0.4 μg·μl⁻¹ Dox-loaded nanoparticles with 0.04 μg·μl⁻¹ siRNA, 10:1) formulations, the shape of the choroid plexus changed and GFP fluorescence was reduced (Supplementary Fig. S13d, e). These changes were noticed upon single injection of the formulation with concentration above 0.2 μg·μl⁻¹ of Dox-loaded CD-2NH2-capped MSNP-SS-AD. A second set of experiments was conducted in 3-day-old transgenic larvae, where reiterative injections of the same formulation were made into the brain ventricle on two consecutive days. The impact on choroid plexus was then assessed at 7 dpf. When compared to un.injected controls, the injection of free anti-GFP siRNA decreased the mean GFP intensity by 45% (Fig. 6b) without any effect on tissue morphology, that is, the cellular uptake of GFP siRNA had no effect on maintenance of already formed choroid plexus. Injection of increased weight ratio of Dox-loaded CD-2NH2-capped MSNP-SS-AD/GFP siRNA complex caused defect of the choroid plexus. This phenomenon correlated with the internalization of Dox-loaded carrier and the appearance of clones of GFP-negative choroidal epithelial cells (Fig. 6c, d). The most significant effect was detected upon injection by two consecutive doses of C4 formulations (0.4 μg·μl⁻¹ Dox-loaded CD-2NH2-capped MSNP-SS-AD with 0.04 μg·μl⁻¹ siRNA, 10:1), the highest concentration of Dox used for this set of experiment. Here, the GFP expression was lost not only in epithelial cells of the midline cluster, but also in glial cells of the choroid plexus located in rhombic lips (i.e., adjacent walls of hindbrain, HB; Fig. 6e). Thus, a positive correlation was observed between disturbed morphology of choroid plexus and the amount of injected Dox-loaded CD-2NH2-capped MSNP-SS-AD. Although the drug carrier, CD-2NH2-capped MSNP-SS-AD, was designed for tumor-targeted drug delivery, we compared the tissue distributions of free Dox (250 μg·ml⁻¹) and Dox-loaded nanoparticles (10 mg·ml⁻¹) when they were introduced into systemic circulation by pericardial injection. The dose for this experiment was adjusted 10-fold higher for whole larva detection by CLSM. Transgenic zebrafish that express EGFP in all blood vessels TG(fli1:GFP) was used as the reporter line in this experiment (32). Larva toxicity was detected in the group injected with free Dox. In this group, reduced larval growth and concurrent fluid accumulation in the body (edema) were observed in five out of six injected larvae after 3 days post injection. The developmental defect was only observed in one out of six larvae injected by Dox-loaded nanoparticles (Supplementary Fig. S15). Hence, redox-triggered Dox release by CD-2NH2-capped MSNP-SS-AD led to lesser side effects than that of free Dox.

We proceeded to verify the anticancer property of Dox-loaded CD-2NH2-capped MSNP-SS-AD by using a zebrafish mifepristone-inducible liver tumor model that expresses oncogenic EGF-kras12. Hyperplastic growth of liver tumors was induced in larvae from 4 dpf (45). The advantage of this model is a possibility to visualize and quantify the changes in liver with CLSM. We injected 5 nl of Dox-loaded CD-2NH2-capped MSNP-SS-AD at a concentration of 10 mg·ml⁻¹ into the abdomen of inducible kras12 transgenic zebrafish larvae at 4 dpf. The anticancer property of Dox-loaded nanoparticles was assessed after 6-day post injection using LSM510 META. Representative images of non-injected transgenic larvae (Fig. 7a) and Dox-containing nanoparticle-injected transgenic larvae (Fig. 7b) experiencing liver hyperplasia are presented. All supporting materials that contribute to the bar chart in Figure 7d are shown in Supplementary Figure S16. On average, the liver tumor area was 35.5% less in transgenic larvae that were exposed to Dox-loaded CD-2NH2-capped MSNP-SS-AD.
than that of non-injected transgenic zebrafish experiencing liver hyperplasia (∼10). Two-tailed t-test confirmed that the reduction of liver tumor is statistically significant (P=0.0291). A magnified view of GFP-positive liver tumor cells with internalized Dox (red fluorescent areas in Fig. 7c) further supports the conclusion that the reduction of hyperplastic liver is due to successful internalization and release of Dox from CD-2NH2-capped MSNP-SS-AD. We also observed significant inhibition of the liver tumor growth after the treatment of Dox-loaded CD-2NH2-capped MSNP-SS-AD (2 and 5 μg/ml, respectively) and in vivo Dox release by using the CLSM (Supplementary Fig. S17). The determination of fluorescent intensity of Dox inside the liver tumor provides quantitative indication of the Dox release in the liver tumor.

In conclusion, we have successfully fabricated a redox-responsive drug/siRNA codelivery system based on MSNPs (MSNP-SS-AD). Ethylenediamine-modified β-cycloextrin (CD-2NH2) rings have been introduced onto the nanoparticle surface as smart nano-gates to (i) block drug molecules within the mesopores and (ii) provide a platform for the complexation with siRNA through electrostatic interactions. Controlled drug/siRNA release from multifunctional nanoparticles by redox-triggered disulfide bond cleavage has been demonstrated in solution. Successful RNAi using siRNA to target two different genes has proved the efficacy of CD-2NH2-capped MSNP-SS-AD as a delivery vehicle for siRNA under a broad range of temperatures. First, the inhibition of Bcl-2 expression has been detected in Bcl-2 siRNA transfected HeLa cell lines maintained at 37°C. Second, the in vivo experiment carried out in transgenic zebrafish larvae (maintained at 28.5°C) has showed that CD-2NH2-capped MSNP-SS-AD/GFP siRNA complex injected into the brain ventricle decreases GFP transcription in two different populations of cells of the choroid plexus. CD-2NH2-capped MSNP-SS-AD could be used as a carrier for simultaneous anticancer drug (Dox) and siRNA delivery. Enhanced cytotoxicity caused by simultaneous delivery of Dox/Bcl-2 siRNA has been demonstrated in HeLa cells. Enhanced cytotoxicity has not been observed upon the injection of Dox-loaded nanoparticle/GFP
siRNA complex since GFP siRNA represents physiologically benign target. In contrast, not only Dox-loaded CD-2NH2-capped MSNP-SS-AD has been internalized by cells in vivo, but the development of choroid plexus and the progression of liver hyperplasia have also been inhibited by Dox-loaded nanoparticles in a dose-dependent manner. Lack of inhibition of GFP transcripts by high weight ratio formulations of nanoparticle/siRNA complex (≥ 10:1) has indicated that the activity of formulations of drug/siRNA needs to be rigorously tested in vivo before optimal effect of synergistic formulation could be achieved.

Materials and Methods

Materials

Absolute ethanol (>99.9%), acetic acid, AD-COOH, 2-aminoethyliothiol hydrochloride, 3-aminopropyltriethoxysilane, Bcl-2 primary antibody (Mouse), bovine serum albumin (BSA), cetyltrimethylammonium bromide (CTAB, 90%), DAPI, DCC, diethyl ether, DMF (99%), MTT, 2,2'-dithiodipyridine, DTT, Dox, DMEM, fetal bovine serum (FBS), FITC, formaldehyde, GSH, hydrochloride (HCl, assay 37%), N-hydroxysuccinimide (NHS), Lipofectamine RNAiMAX reagent (Invitrogen), MPTMS, methanol (MeOH, 99.5%), PBS buffer, siRNA duplex against Bcl-2 protein, sodium hydroxide (NaOH), TEOS (99%), tris-borate-ethylenediaminetetraacetic acid (TBE) buffer, β-tubulin primary antibody (Rabbit) and secondary antibody (goat anti-mouse and goat anti-rabbit), and universal siRNA negative control were purchased commercially.

Instruments

FESEM and TEM images were captured by FESEM 6340 at 5 kV and JEOL 2010 TEM at 200 kV, respectively. XRD pattern was collected by low-angle X’Pert XRD from 2θ = 1.5 to 8. Zeta potential values were measured by MavernNanosizer, and each sample was measured thrice for statistic analysis. Surface area and pore size distribution of MSNP-SH were characterized by ASAP-2020 Mircomeritics. FT-IR spectra were measured through Fourier transformed infrared spectrometer. 13C solid state NMR spectrum of MSNP-SS-AD was carried out by 400 MHz JEOL ECA400 with cross polarization magic angle spinning probe. In vitro release test was monitored by RF-5301 fluorophotometer. Nanodrop 1.0 was used to determine the siRNA concentration. UV-vis absorption was measured by UV-vis 2501 Spectrometer. Agarose gel electrophoresis was performed by ENDRO GEL XL E0160 electrophoresis system. A microplate reader (infinite 200 PRO; Tecan) was used for the MTT assay. CLSM images of transfected HeLa cells were taken by a confocal fluorescence microscope (Leica TCS SP5, 40× oil objective). Flow cytometry data were collected by BD FACS Calibur Flow Cytometer. In vivo images of transgenic zebrafish larvae were acquired with an upright Zeiss Axiovert 200M laser scanning microscope (LSM Meta 510 (Carl Zeiss), equipped with a×40 numerical aperture and 0.75 W

FIG. 7. The liver tumor in the inducible kras^{v12} transgenic zebrafish model was reduced after exposure to Dox-loaded CD-2NH2-capped MSNP-SS-AD when compared with untreated control. (a) A view of transgenic zebrafish larvae Kras^{v12} experiencing liver hyperplasia at 10 days post fertilization. (b) A view of transgenic zebrafish larvae experiencing liver hyperplasia after 6 days post injection of Dox-loaded CD-2NH2-capped MSNP-SS-AD. (c) A magnified view of liver tumor cells exposed to Dox-loaded CD-2NH2-capped MSNP-SS-AD. Released Dox (red) can be seen inside liver tumor cells colored in green. (d) The average area of liver tumor between non-injected control (n = 8) and siblings injected with Dox-loaded CD-2NH2-capped MSNP-SS-AD (n = 10) quantified after 6 days post injection is presented as a bar chart with values stated as mean liver area ± standard error of mean. Liver size from each specimen was quantified using the associated software in LSM510 META. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
Achroplan long working distance dipping objective. Bright field zebrafish images were acquired with Olympus AX70 upright compound microscope attached to a ProgRes C10 plus digital camera (JENOPTIK Laser, Optik, Systeme GmbH).

MSNP-SH

MSNP-SH was prepared by a cocondensation method in base solution to obtain uniform surface distribution of the functional groups. In a typical synthetic procedure, CTAB (500 mg) was dissolved in distilled H2O (250 ml). NaOH aqueous solution (1.75 ml, 2 M) was added into the above solution. The mixture solution was heated to 80°C under vigorous stirring. When the temperature was stabilized, TEOS (2.5 ml) was slowly added into the mixture solution. MPTMS (0.5 ml) was added dropwise after 15 min. The mixture solution was gently stirred for 2 h in the dark at 80°C. Then, the formed nanoparticles, FITC (1.3 mg) was dissolved in absolute ethanol (1.5 ml) containing 3-triethoxysilylpropylamine (3 μl), and the mixture solution was gently stirred for 2 h in the dark before adding into TEOS (2.5 ml). Then, the formed nanoparticles were collected by centrifugation at 8000 rpm for 10 min and washed with MeOH and distilled H2O. Surfactant particles were collected by centrifugation at 8000 rpm for 10 min and washed with MeOH and distilled H2O. The nanoparticles were dried in vacuo at 80°C for 24 h.

S-(2-Aminoethylthio)-2-thiopyridine hydrochloride

The preparation of the compound was according to a previous literature report (11).

MSNP-SS-NH2

Disulfide bond formation on the nanoparticle surface was realized by suspending MSNP-SH (200 mg) in MeOH (30 ml) followed by the addition of SATH (200 mg). The mixture solution was stirred at room temperature for 24 h. MSNP-SS-NH2 formed was collected by centrifugation, thoroughly washed with MeOH and distilled H2O. The nanoparticles were dried in vacuo at 80°C for 24 h.

MSNP-SS-AD

AD-COOH (225 mg) was dissolved in DMF (10 ml) containing DCC (645 mg) and NHS (360 mg). After the mixture solution was stirred for 2 h, a DMF (5 ml) solution containing fully suspended MSNP-SS-NH2 (100 mg) was added. After reacting for 24 h, MSNP-SS-AD was collected by centrifugation and washed with DMF, MeOH, and distilled H2O extensively.

CD-2NH2

Ethylenediamine-modified β-CD derivative was prepared according to a previous report (58). Seven ethylenediamine groups were covalently linked at the primary side of the β-CD ring.

Drug loading and controlled release test

Rhb or Dox was loaded into the nanoparticles by stirring aqueous solution (1 ml) containing either Rhb or Dox (1 mg) and MSNP-SS-AD (10 mg) at room temperature for 24 h. Then, β-CD or CD-2NH2 (5 mg) was added into the solution to cap the mesopores by forming the host–guest complex between AD and β-CD on the nanoparticle surface. After stirring the solution for 5 h, the nanoparticles were collected by centrifugation at 13,000 rpm for 10 min and washed with distilled H2O for three times. The collected nanoparticles were suspended in PBS buffer (5 ml, pH 7.4) as stock solution (2 mg·mL⁻¹) for future tests. The loading amount of the drugs was calculated by comparing the UV-vis absorption at 553 nm for Rhb and 485 nm for Dox. Controlled release experiments were conducted by adding as-prepared stock solution (500 μl) into PBS buffer (500 μl, pH 7.4) with or without the reducing agent GSH or DTT. The solution was centrifuged at 13,000 rpm for 3 min, and fluorescence intensity (λex/em = 510/572 nm for Rhb, λex/em = 485/553 nm for Dox) of the supernatant was recorded to monitor the kinetic release process of each sample. The final fluorescence intensity after 24 h was regarded as complete release (100%). For each sample, three independent experiments were carried out for statistic analysis.

Agarose gel electrophoresis

MSNP-SS-AD (1 mg) was mixed with CD-2NH2 (1 mg) in aqueous solution, and the mixture was stirred for 5 h. CD-2NH2-capped MSNP-SS-AD (MSNP-SS-AD + CD-2NH2) was collected by centrifugation and excess CD-2NH2 was removed by washing the nanoparticles thrice with distilled H2O. Then, MSNP-SS-AD + CD-2NH2 was suspended in distilled H2O (1 ml, 2 mg·mL⁻¹). siRNA duplex against Bcl-2 protein, Bcl-2 siRNA, was used in agarose gel electrophoresis. Proper amount of Bcl-2 siRNA solution (0.2 μg·μL⁻¹) and MSNP-SS-AD + CD-2NH2 solution (2 mg·mL⁻¹) were mixed to obtain different nanoparticle-to-siRNA(+) weight ratios. Free Bcl-2 siRNA without the nanoparticles was placed in the first lane as the control. In the second line, only MSNP-SS-AD + CD-2NH2 was added. To demonstrate that the siRNA(+) release is induced by the disulfide bond cleavage, DTT (50 mM) for 1 h before running the electrophoresis. The agarose gel electrophoresis was carried out in agarose gel (1.5 wt%) within TBE buffer at 100 V for 15 min.

Cell culture

HeLa cells were cultured in DMEM containing 10% FBS and nonessential amino acids (0.1 mM). The culture was maintained at 37°C in a humidified atmosphere containing 5% CO2.

Bcl-2 gene knockdown and Western blot assay

siRNA duplex sequence against Bcl-2 protein, noted as siRNA(+), was presented as follows: sense strand 5′-rGrUrArCrArUrCrArUrArUrArGrCrUrGrCrCdAdG-3′, antisense strand 5′-rGrUrGrCrArCrArGrCrUrUrArUrArGrGrUrArCrUrCrUrU-3′. Non-targeting siRNA duplex, noted as siRNA(-), was used as the negative control. HeLa cells were seeded into six-well plate at a density of...
20 \times 10^6 cells/well in complete DMEM and grown for 24 h. Fresh DMEM without any antibiotics and PBS was used for the gene knockdown experiments. CD-2NH2-capped MSNP-SS-AD (MSNP-SS-AD + CD-2NH2, 50 l, 2 mg·ml⁻¹) was mixed with either siRNA(+) or siRNA(−) (5 l, 0.2 μg·ml⁻¹), and the mixture was incubated for 2 h with gentle stirring every 20 min. The CD-2NH2-capped MSNP-SS-AD/siRNA complex (MSNP-SS-AD + CD-2NH2 + siRNA) with a nanoparticle-to-siRNA weight ratio of 110:1 was stabilized by BSA (1 mg·ml⁻¹) before adding fresh medium (445 l). For siRNA transfection by Lepofectamine as the positive control, same amount of siRNA(+) was used according to the product instruction of Lipofectamine RNAiMAX reagent. Free siRNA(+) (5 l, 0.2 μg·ml⁻¹) and MSNP-SS-AD + CD-2NH2 (50 l, 2 mg·ml⁻¹) were added into fresh medium (495 and 450 l), respectively. In total, each sample was prepared in the same volume (500 l). The cell culture medium in the six-well plate was removed and the prepared sample (500 l) was added. After 16 h exposure, the medium in each well was replaced by fresh complete DMEM (2 ml), and HeLa cells were incubated for another 56 h. Then, the cell culture medium was removed and the cells were washed with chilled PBS buffer (pH 7.4) for three times. After adding lysis buffer (500 l), the plate was shaken at 4°C for 30 min to break cell membranes. The lysis buffer was collected and centrifuged (13 rpm, 4°C) for 10 min, and the supernatant was then collected. The protein concentration was quantified by Pierce BCA Protein Assay Kit according to its product instruction.

The expression level of Bcl-2 protein was measured by western blot assay using β-tubulin as internal standard, which was performed according to its standard protocol.

Confocal laser scanning microscopy

HeLa cells were seeded in 35 mm plastic-bottomed μ-dishes and grown in complete DMEM for 24 h. Then, HeLa cells were treated with FITC-labeled MSNP-SS-AD, CD-2NH2-capped MSNP-SS-AD (MSNP-SS-AD + CD-2NH2), and Dox-loaded CD-2NH2-capped MSNP-SS-AD (MSNP-SS-AD + Dox + CD-2NH2), respectively, under an equivalent amount of MSNP-SS-AD concentration (50 μg·ml⁻¹). After 24 h incubation, the medium was removed and the cells were washed twice with PBS buffer (pH 7.4) and fixed with 4.0% formaldehyde at room temperature for 15 min. After removing 4.0% formaldehyde and washing with PBS buffer (pH 7.4) thrice, the cell nucleus was stained with DAPI (1 μg·ml⁻¹) for 15 min and washed with PBS buffer (pH 7.4) thrice before capturing the CLSM images using a confocal microscope (Leica TCS SP5, 60× oil objective).

Flow cytometry analysis

HeLa cells were seeded in six-well plate and grown for 24 h. Then, the cells were treated with FITC labeled MSNP-SS-AD, CD-2NH2-capped MSNP-SS-AD (MSNP-SS-AD + CD-2NH2), Dox-loaded CD-2NH2-capped MSNP-SS-AD (MSNP-SS-AD + Dox + CD-2NH2), respectively, under an equivalent amount of MSNP-SS-AD concentration (50 μg·ml⁻¹), and also treated with equivalent amount of free Dox. After 24 h incubation, the cells were washed by PBS thrice and collected by trypsin. The flowcytometry analysis was performed after washing the collected cells with PBS by centrifugation. The flow cytometry data were collected by BD FACSCalibur Flow Cytometer.

Zebrafish care and maintenance

Wild-type and transgenic zebrafish lines TG(fli1:EGFP), SqKR19, Et(kt4:EGFP)setq3e20 (or SqET33-e20), and Krass argued in the Institute of Molecular and Cell Biology zebrafish facility. The embryos were obtained and the experiments were carried out according to the Institutional Animal Care and Use Committee, Agency for Science, Technology and Research, Singapore (IACUC) rules and regulations (the Biopolis IACUC application No. 090430). To prevent the formation of melanin and to ensure optical translucence of transgenic larvae for confocal imaging, 1-phenyl-2-thiourea was added to zebrafish embryos at 22 hpf.

Brain-targeted microinjection of CD-2NH2-capped MSNP-SS-AD

36 hpf or 3-day-old transgenic larvae were first immobilized, dorsal side up, in 1% UltraPure™ low melting point agarose (Invitrogen). CD-2NH2-capped MSNP-SS-AD (6 nl, 0.4 μg·ml⁻¹) was then microinjected into the brain ventricle. Microinjected zebrafish larvae and non-injected control were grown in an incubator under 28.5°C.

Pericardial microinjection of free Dox or Dox-loaded CD-2NH2-capped MSNP-SS-AD

For microinjection into the zebrafish circulation, 3-day-old TG(fli1:EGFP) larvae (32) were mounted ventral side up in 1% molten low melting agarose, and Dox (250 μg·ml⁻¹) or Dox-loaded CD-2NH2-capped MSNP-SS-AD (10 mg·ml⁻¹) was injected into the sinus venosus of transgenic zebrafish larvae.
Abdominal microinjection of Dox-loaded CD-2NH$_2$-capped MSNP-SS-AD

For microinjection into the vicinity of liver tumor (45), 4-day-old transgenic zebrafish experiencing liver hyperplasia was mounted ventral side up in 1% UltraPure low melting point agarose (Invitrogen), and Dox-loaded CD-2NH$_2$-capped MSNP-SS-AD (10 mg·m$^{-1}$) was injected into the site of the abdomen near the liver without injuring the tissue.

Whole mount in situ hybridization

Embryos at 3 dpf were processed for WISH using a technique that was described previously (40). Dig-labeled (Roche Applied Science) antisense EGFP RNA probe was used for this analysis. Images were taken using Olympus AX70 upright compound microscope attached to a ProgRes C10 plus digital camera (JENOPTIK Laser, Optik, Systeme GmbH), and the stained EGFP-positive area was quantified using the Image J software. A quantitative measurement of interference with GFP expression was assessed using WISH to detect choroid plexus expressing EGFP. The stained EGFP-positive area was quantified using the Image J software.

Formulations of CD-2NH$_2$-capped MSNP-SS-AD complexed with siRNA for brain-targeted injections

siRNA duplex targeting EGFP (CAA GCU GAC CUA GAA GUU CTT) was purchased from Integrated DNA Technologies, Inc. Condition 1 (C1): 0.04 µg·µl$^{-1}$ of siRNA against GFP; Condition 2 (C2): 0.12 µg·µl$^{-1}$ CD-2NH$_2$-capped MSNP-SS-AD with 0.04 µg of siRNA against GFP, 3:1; Condition 3 (C3): 0.2 µg·µl$^{-1}$ CD-2NH$_2$-capped MSNP-SS-AD with 0.04 µg of siRNA against GFP, 5:1; and Condition 4 (C4): 0.4 µg·µl$^{-1}$ CD-2NH$_2$-capped MSNP-SS-AD with 0.04 µg of siRNA against GFP, 10:1.

In vivo imaging of transgenic zebrafish larvae

Transgenic larvae were mounted in 1% UltraPure low melting point agarose prior to imaging. Confocal microscopy images of living transgenic larvae were acquired with an upright (Zeiss Axiovert200M) laser scanning microscope (LSM Meta 510; Carl Zeiss) using two laser lines (30 mW Argon and 1 mW HeNe) as the excitation source to visualize GFP and internalized Dox and using the 505/530 nm and 560/615 nm emission band-pass filters, respectively. Images were acquired under the same acquisition settings, for all imaged larvae.

Acknowledgments

This work was financially supported by the Singapore National Research Foundation Fellowship (NRF2009NRF-RF001-015), the Singapore National Research Foundation CREATE program—Singapore Peking University Research Centre for a Sustainable Low-Carbon Future, and the Centre of Excellence for Silicon Technologies (A*Star SERC No. 112 351 0003). We thank Alexander Emelyanov for providing transgenic zebrafish with misfpristone-inducible krasV12 expression in the liver.

Author Disclosure Statement

No competing financial interests exist.

References

18. Giri S, Trevyn BG, Stellmaker MP, and Lin VSY. Stimuli-responsive controlled-release delivery system based on

Address correspondence to:
Prof. Yanli Zhao
Division of Chemistry and Biological Chemistry
School of Physical and Mathematical Sciences
Nanyang Technological University
21 Nanyang Link
637371, Singapore
Singapore

E-mail: zhaoyanli@ntu.edu.sg

Date of first submission to ARS Central, November 28, 2012; date of final revised submission, July 29, 2013; date of acceptance, August 10, 2013.

Abbreviations Used

AD = adamantane
AD-COOH = adamantane-1-carboxylic acid
BET = Brunauer–Emmett–Teller
Bcl-2 = B-cell lymphoma 2
BSA = bovine serum albumin
CD = cyclodextrin
CD-2NH₂ = ethylenediamine-modified β-cyclodextrin

CLSM = confocal laser scanning microscopy
CP MAS NMR = cross polarization and magic angle spinning nuclear magnetic resonance
CTAB = cetyltrimethylammonium bromide
DAPI = 4',6-diamidino-2-phenylindole
DCC = dicyclohexylcarbodiimide
dpf = days post fertilization
DMEM = Dulbecco’s modified Eagle’s medium
DMF = dimethylformamide
Dox = doxorubicin
DTT = dithiothreitol
FBS = fetal bovine serum
FESEM = field emission scanning electron microscopy
FITC = fluorescein isothiocyanate
FT-IR = Fourier transform infrared spectroscopy
GFP = green fluorescence protein
GSH = glutathione
HCL = hydrochloride
hpf = hours post fertilization
IACUC = Institutional Animal Care and Use Committee, Agency for Science, Technology and Research, Singapore
MeOH = methanol
MPTMS = 3-mercaptopropyltrimethoxysilane
MSNPs = mesoporous silica nanoparticles
MSNP-SH = thiol group-containing MSNPs
MSNP-SS-AD = AD-functionalized MSNPs
MSNP-SS-NH₂ = amino group-terminated nanoparticles
MTT = 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide
NaOH = sodium hydroxide
NHS = N-hydroxysuccinimide
PBS = phosphate buffered saline
RhB = rhodamine B
RNAi = RNA interference
SATH = S-(2-aminoethylthio)-2-thiopyridine hydrochloride
TBE = tris-borate-Ethylenediaminetetraacetic acid
TEM = transmission electron microscopy
TEOS = tetraethylorthosilicate
UV-vis = ultraviolet-visible
WISH = whole mount in situ hybridization
XRD = X-ray Diffraction
This article has been cited by:

1. Gauthier Marc A.. 2014. Redox-Responsive Drug Delivery. Antioxidants & Redox Signaling 21:5, 705-706. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]

2. Chung Yen Ang, Si Yu Tan, Yanli Zhao. 2014. Recent advances in biocompatible nanocarriers for delivery of chemotherapeutic cargoes towards cancer therapy. Organic & Biomolecular Chemistry 12, 4776. [CrossRef]