<table>
<thead>
<tr>
<th>Title</th>
<th>Novel defected ground structure and two-side loading scheme for miniaturized dual-band SIW bandpass filter designs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Xu, Shanshan; Ma, Kaixue; Meng, Fanyi; Yeo, Kiat Seng</td>
</tr>
<tr>
<td>Date</td>
<td>2015</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/25246</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [http://dx.doi.org/10.1109/LMWC.2015.2400916].</td>
</tr>
</tbody>
</table>
Novel Defected Ground Structure and Two-Side Loading Scheme for Miniaturized Dual-Band SIW Bandpass Filter Designs

Shanshan Xu, Kaixue Ma, Senior Member, IEEE, Fanyi Meng, Student Member, IEEE, and Kiat Seng Yeo, Senior Member, IEEE

Abstract—This letter reports a novel back-to-back E-shaped defected ground structure (DGS) and two-side loading scheme for miniaturized dual-band substrate integrated waveguide (SIW) bandpass filter designs. The SIW loaded by novel DGS supports evanescent-mode wave propagation below the cut-off frequency of SIW, while achieves two transmission poles at the passband and two controllable transmission zero points. Furthermore, the novel loading scheme by loading different-sized DGS resonators on two sides of SIW is proposed for dual-band bandpass filter designs. To validate the design and analysis, a 2.4-/5.2-GHz filter prototype was designed. In good agreement with theoretical results, the measured results of the dual-band filter achieve insertion losses of 3.6 and 3.1 dB, and fractional bandwidths of 5.8% and 6.45% at 2.4 and 5.2 GHz respectively. The filter size is only 408 mil × 420 mil.

Index Terms—Back-to-back E-shaped, bandpass filter (BPF), complementary split ring resonator (CSRR), complementary open-loop resonator (COLR), defected ground structure (DGS), dual-band filters, miniaturization, substrate integrated waveguide (SIW).

I. INTRODUCTION

SUBSTRATE integrated waveguide (SIW), synthesized on planar substrate using periodic arrays of metalized vias, has been widely used as the platform for implementing low-cost and integrated waveguide filters [1]. With the merits of low-loss and high power handling capability, filters based on SIW technology still suffer from bulky sizes compared to their microstrip counterparts [2].

To circumvent with this issue, the bandpass filters (BPFs) with forward-wave or evanescent-mode wave which can propagate below SIW cut-off frequency (f_c) by loading DGS on SIW sides, were demonstrated in [3]-[8] for filter miniaturization. In these works, the primary investigation was leveraged on complementary split ring resonator (CSRR) [9] and complementary open-loop resonator (COLR) as in Fig. 1(a). The dual-mode and dual-band operations were demonstrated in [5] and [6], by means of loading two same- or different-sized CSRRs on the top side of SIW. To obtain lower resonant frequencies, same-sized CSRRs/COLRs were loaded on two sides of SIW in [3] and [4].

In this letter, a novel DGS shape named as back-to-back E-shaped DGS is proposed as shown in Fig. 1(b). By loading the back-to-back E-shaped DGS on either top or bottom sides of SIW, a dual-mode frequency response with two transmission zero points (ZPs) is obtained. To obtain dual-band response, a new two-side loading scheme with different-sized resonators on top and bottom sides is also proposed in this letter. To validate the concept, a dual-band (2.4- /5.2-GHz) BPF is designed using Rogers RO4003 ($\varepsilon_r = 3.38$, tan$\delta = 0.0027$) with thickness of 8 mil. The fabricated filter achieves good skirt selectivity, high inter-band isolation, good spurious response, and compact size.

II. BACK-TO-BACK E-SHAPED DGS

A. Back-to-Back E-Shaped DGS

As shown in Fig. 1(b), the back-to-back E-shaped DGS is formed by two E-shapes in back-to-back orientation. From its physical configuration, the E-shaped DGSs can be modeled as LC resonators (L_r and C_r) with L_{cr} and C_{cr} denoting their mutual magnetic and electric couplings. The resonant frequencies of each E-shaped DGS are determined by a, b, g, l, and s.

Manuscript received May 15, 2014; revised Oct 18, 2014 and Dec 21, 2014; accepted Jan 10, 2015.
S. Xu and F. Meng are with the School of Electrical and Electronics, Nanyang Technological University, Singapore (e-mail: sxu2@e.ntu.edu.sg).
K. Ma is with the University of Electronic Science and Technology of China (UESTC), Chengdu, China (e-mail: kxma@ieee.org).
K. S. Yeo is also with the Singapore University of Technology and Design (e-mail: eksyeo@ntu.edu.sg).
the unloaded SIW has a high-pass frequency response with developed for the proposed filter. The two sides of SIW are extends upper stopband attenuation of 20 dB to 9.5 GHz. frequency selectivity by generating two transmission ZPs, and 2(a), that potential benefits circuit miniaturization, enhances ANSYS’s HFSS V14 software packages. As shown in Fig. 2(a), the equivalent circuit model of SIW loaded by unit back-to-back E-shaped DGS; even- and odd-mode circuits. (Grey zone: metallization; White zone: defected area; Physical parameters: for SIW d = 50, v = 24, p = 40, w = 372, for single ring CSRR a1 = 6, a2 = 145, a3 = 145, for back-to-back E-shaped DGS; a = 70, b = 145, s = 6, l = 49, g = 6, t = 5 with unit in mil; Circuit elements: \(L_{ci} = 0.692 \text{ pF} \), \(L_r = 0.685 \text{ nH} \), \(C_1 = 1.68 \text{ pF} \), \(L_o = 1.48 \text{ nH} \), \(C_w = 0.711 \text{ pF} \), and \(L_u = 1.03 \text{ pF} \).

\[Y_{in} = -\frac{j}{\omega L_{ci} + \frac{j \omega C_{ci} - j \omega C_{ci}}{1 + \frac{\omega^2}{L_r C_i}}}, \]

\[Y_{line} = -\frac{j}{\omega L_{ci} + \frac{j \omega C_{ci} - j \omega C_{ci}}{1 + \frac{\omega^2}{L_r C_i}}}. \]

The odd- and even-mode transmission poles are located when \(Y_{in} \) and \(Y_{line} \) approaches infinity:

\[f_{odd} = \frac{\sqrt{L_c L_{cr} + 2L_c L_{cr} + 2 L_c L_{cr}}}{2\pi}, \]

\[f_{even} = \frac{\sqrt{L_c L_{cr} + 2L_c L_{cr} + 2 L_c L_{cr}}}{2\pi}, \]

where only odd-mode resonant frequency \(f_{odd} \) is influenced by the mutual coupling elements \(L_{cr} \) and \(C_{cr} \). It is investigated by using EM simulation as the results given in Fig. 3 by varying parameter \(t \) and extracting the coupling coefficients \(M \) as:

\[M = \frac{|f_{odd} - f_{even}|}{f_{odd} + f_{even}}. \]

It is verified that \(f_{odd} \) is much more sensitive to the variation of \(k \) while \(f_{even} \) has negligible frequency shift. On the other hand, the transmission ZPs are determined using \(Y_{line} = Y_{line} \) [11]:

\[f_{ZP1} = \frac{1}{2\pi \sqrt{L_c C_{ci}}}, \quad f_{ZP2} = \frac{1}{2\pi \sqrt{L_c C_{cr}}}. \]

Fig. 3. EM investigation of even, odd frequencies and coupling coefficient versus parameter \(t \). (Parameters of structure in Fig. 1 given in caption of Fig. 2)
The dual-band filter can be designed by EM (FBW) of 5.8%. The coupling coefficient is calculated as 2.4-GHz filter is designed first with fractional bandwidth DGS on bottom side for the 2.4-GHz band are proposed. The coupling matrix is generated as $M_{12} = 0.079$. Since the frequency 5.2-GHz is 2.17, $s_c = 145$, $g = 8$, and $l = 122$.

As shown in Fig. 5, a dual-band BPF is designed by loading DGS resonators on both top and bottom sides. A back-to-back E-shaped DGS filter on top side for the 5.2-GHz band and a DGS on bottom side for the 2.4-GHz band are proposed. The 2.4-GHz filter is designed first with fractional bandwidth (FBW) of 5.8%. The coupling coefficient is calculated as $Q_e = 12.97$ and $M_{12} = 0.089$. With 2.4-GHz resonator loaded on the bottom side, the 5.2-GHz passband is designed on the top side with FBW of 6.5%, the coupling matrix is $M_{12} = 0.089$.

As a result, 5.2-GHz filter has relatively less effect on the 2.4-GHz filter. The dual-band filter can be designed by EM optimization of the stacked 5.2-GHz filter on top and 2.4-GHz on bottom. Thus, compared to parallel loading two different-sized resonators on the same side [6], the size of proposed dual-band filter can be reduced by half.

Fig. 6 shows the fabricated dual-band filter with a compact size of 408 mil × 420 mil (i.e. 0.152 λ_g × 0.156 λ_g, λ_g is the 2.4 GHz guided wavelength). The measured results agree with the EM simulation result. For the 2.4-GHz band, the insertion loss is 3.6 dB with a 3dB FBW of 5.8%. For the 5.2-GHz band, the insertion loss is 3.1 dB with FBW of 6.45%. The return losses are better than 15 dB in both passbands. The designed dual-band filter shows a sharp roll-off and high inter-band isolation better than 34 dB due to the generation of two transmission ZPs. The upper stopband with more than 20 dB attenuation extends to 12 GHz.

IV. Conclusion

In this letter, the back-to-back E-shaped DGS and the two-side loading scheme of different-sized DGSs on top and bottom sides of SIW are proposed for miniaturized dual-band filter designs. Based on the analysis and investigations, a 2.4-/5.2-GHz BPF was designed and verified experimentally. It is noted that the proposed back-to-back E-shaped DGS for SIW and loading scheme can be extended for miniaturized multi-band components.

REFERENCES

