<table>
<thead>
<tr>
<th>Title</th>
<th>Continuous blood oxygen saturation detection with single-wavelength photoacoustics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Peng, Qiwen; Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin</td>
</tr>
<tr>
<td>Date</td>
<td>2015</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/25549</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2015 SPIE. This paper was published in Progress in Biomedical Optics and Imaging - Proceedings of SPIE and is made available as an electronic reprint (preprint) with permission of SPIE. The paper can be found at the following official DOI: [http://dx.doi.org/10.1117/12.2077105]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Continuous blood oxygen saturation detection with single-wavelength photoacoustics

Qiwen Penga†, Fei Gaoa†, Xiaohua Fenga, Yuanjin Zhenga*

aSchool of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798

ABSTRACT

Blood oxygen saturation (SO2) reflects the oxygenation level in blood transport and tissue. Previous studies have shown the capability of non-invasive quantitative measurements of SO2 by multi-wavelength photoacoustic (PA) spectroscopy for diagnosis of brain, tumor hemodynamics and other pathophysiological phenomena. However, those multi-wavelength methods require a tunable laser or multiple lasers which are relatively expensive and bulky for filed measurement environment and applications. Besides, the operation of multiple wavelengths, calibration procedures and data processing gets system complicated, which reduces the feasibility and flexibility for continuous real-time monitoring. Here we report a newly proposed method by combining PA and scattered light signals wherein imposing a hypothesis that scattering intensity is linear to the concentrations of oxygenated hemoglobin and deoxygenated hemoglobin weighed by blood scattering coefficients. A rigorous theoretical relationship between PA and scattering signals is thus established, making it possible that SO2 can be measured with only one excitation wavelength. To verify the theory basis, both dual-ink phantoms and fresh porcine blood sample have been employed in the experiments. The phantom experiment is able to quantify the concentration of mixed red-green ink that is in precise agreement with pre-set values. The ex vivo experiment with fresh porcine blood was conducted and the results of the proposed single-wavelength method achieved high accuracy of 1% - 4% errors. These demonstrated that the proposed single-wavelength SO2 detection is able to provide non-invasive, accurate measurement of blood oxygenation, and herein create potential for applying it to real clinical applications with low cost and high flexibility.

Keywords: Photoacoustics, scattering measurement, oxygen saturation, single wavelength

†Authors contributed equally to this work
*yjzheng@ntu.edu.sg; phone 65 65927764; fax 65 67933318.

1. INTRODUCTION

Blood oxygen saturation (SO2) is defined as the ratio of the concentrations between oxygenated hemoglobin (HbO2) to total hemoglobin (oxygenated hemoglobin plus deoxygenated hemoglobin, HbO2+HbR), which is a very important physiological parameter in the medical and clinical fields. It shows the oxygen level of the lungs, blood transport and tissue oxygen consumption. It could provide a potential method for diagnosis and detection of brain, tumor hemodynamics, gene expression, and other pathophysiological phenomena [1-2] whose activities are highly sensitive to oxygen changes. Therefore, a simple, cheap, non-invasive and effective method is required for SO2 monitoring. Pulse oximetry is a widely used and non-invasive method [3]. It is based on the light absorbing variations of the arterial blood following the heartbeat, while the absorption of the skin, muscle, bones and venous blood remain constant. The spectrophotometric method is used to calculate the arterial blood oxygen saturation using multi-wavelength light source [4-5]. However, this method has poor spatial resolution and suffers body movement. On the other hand, the photoacoustic (PA) effect is the mechanism referring to the generation of sound wave through the absorption of light and conversion to heat. Because the PA signal is proportional to the optical absorption and the local optical fluency, the photoacoustic microscopy (PAM) is able to calculate the blood oxygen saturation using multi-wavelength light source [6-8]. The PAM has high spatial resolution, but multi-wavelength PA measurement typically requires an expensive and bulky tunable high-power laser, which is undesirable in non-laboratory environment [9-11]. Besides, the spectral dependence of the local optical fluence, and hence the PA signal, combined with the unknown spectral properties of the surrounding tissues, present challenges to accurate
SO2 measurements. Moreover, the operation of multiple wavelengths, calibration procedures and data processing gets system complicated, which reduces the feasibility and flexibility for continuous real-time monitoring. A recent study reports a single wavelength PA method based on the saturation of the optical absorption, but it may bring damage to organism due to the significantly high laser intensity [12]. In our study, both the optical absorption induced PA signal and diffusively scattered optical signal are collected [13-14]. Based on the PA signal equation and scattered optical equation, we can measure the SO2 and the concentrations of the HbO2 and HbR using single wavelength within the laser safety range.

2. METHODS AND RESULTS

2.1 Principle of Single-Wavelength Oxygen Saturation Estimation

The During laser-induced PA process, the acoustic signal is launched based on the principle of thermal expansion following the optical energy absorption by the sample. Here the blood vessel is the targeted object, we can acquire the PA signal.

\[P = A\left(\varepsilon_{HbO_2} C_{HbO_2} + \varepsilon_{HbR} C_{HbR}\right) \]

where \(A \) is related to ultrasonic parameter, system parameter, Gruneisen parameter and the local optical fluence which can be expressed as the multiplication of the local laser intensity and laser pulse width. These parameters are all constant for a fixed system setup and experimental environment. \(\varepsilon_{HbO_2} \) and \(\varepsilon_{HbR} \) are known molar extinction coefficients of oxygenated hemoglobin and deoxygenated hemoglobin. \(C_{HbO_2} \) and \(C_{HbR} \) are the unknown concentrations of oxygenated hemoglobin and deoxygenated hemoglobin. Therefore, the PA signal has linear relation with the concentrations of two main kinds of hemoglobin in the blood.

On the other hand, the light will be scattered when it irradiates onto the sample. We hypothesize that the scattered light intensity is linearly related to concentrations of oxygenated hemoglobin and deoxygenated hemoglobin by scattering coefficients \(\mu_{HbO_2} \) and \(\mu_{HbR} \) at certain wavelength, shown as

\[I = B\left(\mu_{HbO_2} C_{HbO_2} + \mu_{HbR} C_{HbR}\right) \]

where \(B \) is related to system parameter and the local optical fluence. From the simultaneous linear equations (1) and (2), SO2 value can be calculated as

\[\langle SO2 \rangle = \frac{I\varepsilon_{HbR} - P\mu_{HbR}}{I\eta\left(\varepsilon_{HbR} - \varepsilon_{HbO_2}\right) + P\left(\mu_{HbO_2} - \mu_{HbR}\right)} \]

where \(\eta = A/B \). The two parameters need to be calibrated since they are both related to specific system setup and experimental environment.
2.2 Phantom study

To verify the hypothesis, phantom study was conducted by two kinds of dyes made from red and green inks to mimic HbO₂ and HbR, respectively. The experimental setup is shown in Fig. 1, where the optical absorption induced photoacoustic signal is captured by the ultrasound transducer (1MHz, V303-SU, Olympus), and the scattered light signal is captured by the photon detector (DET10A, Thorlabs). In the phantom experiment, two ink samples (green and red, Private Reserve Ink) were mixed in various concentration ratios to mimic different levels of SO₂ as pseudo-SO₂, and $[\text{red}]$ and $[\text{green}]$ are used to mimic $[\text{HbO}_2]$ and $[\text{HbR}]$, respectively. Equation (1) and (2) can be simplified to:

$$P = A_1 C_{\text{red}} + A_2 C_{\text{green}} \quad (4)$$

$$I = B_1 C_{\text{red}} + B_2 C_{\text{green}} \quad (5)$$

So that the ratio of the red ink concentration in the total ink concentration $[\text{red}] / ([\text{red}] + [\text{green}])$ which is used to represent pseudo-SO₂ can be expressed as

$$\frac{[\text{red}]}{[\text{red}] + [\text{green}]} = \frac{LA_2 - PB_2}{I(A_1 - A_1) + P(B_1 - B_2)} \quad (6)$$

By controlling the total concentration, the mixed samples have comparable optical absorption coefficients to that of blood. The OPO laser (Opolette 355, OPOTEK Inc.) outputs 532 nm wavelength light with 7 ns pulse width. During data collection, the mixed solution was injected into a silicone transparent tube with an inner diameter of 3 mm. The original red and green inks were diluted with water in four different ratios of 2:8, 4:6, 6:4 and 8:2, namely the fraction of $[\text{red}] / ([\text{red}] + [\text{green}])$ changing from 20% to 80% with a constant interval of 20%. The parameters in two equations (4) and (5) are obtained through curve fitting. The fitting parameters were used in another set of mixed ink were made with the ratios of 1:9, 3:7, 5:5, 7:3 and 9:1 to verify the results.
Through curve fitting, the four parameters are obtained as $A_1 = 0.1936$, $A_2 = 0.1073$, $B_1 = 0.1205$, $B_2 = 0.1291$. Then the Pseudo-SO2 can be calculated from Eq. (6). The experimental results are shown in Fig. 2, where both photoacoustic signal and scattered optical signals are linearly related with SO2. A good accuracy of 4% ($R^2=0.96$) is achieved compared with state-of-art multi-wavelength approaches.
2.3 In vitro study

To demonstrate the capability of imaging blood oxygen flux, in vitro experiments were performed using freshly collected porcine blood stored in a conical flask. The experiment is done in a modified system shown in Fig. 3. A transparent tube was used to export the blood to the water tank for PA and scattered light measurement. The conical flask was connected with an O$_2$ cylinder and a CO$_2$ cylinder to increase and decrease the SO2 in the blood respectively. PA and scattered light signals at two different wavelengths are used to calibrate system parameters. For wavelength λ_1,

\[
P(\lambda_1) = A\left(\varepsilon_{\text{HbO}_2}(\lambda_1)C_{\text{HbO}_2} + \varepsilon_{\text{HbR}}(\lambda_1)C_{\text{HbR}}\right)
\]

For wavelength λ_2,

\[
P(\lambda_2) = A\left(\varepsilon_{\text{HbO}_2}(\lambda_2)C_{\text{HbO}_2} + \varepsilon_{\text{HbR}}(\lambda_2)C_{\text{HbR}}\right)
\]

Calibrated SO2 can be calculated by dividing equation (7) with equation (9) as:

\[
\langle \text{SO2} \rangle_{\text{cal}} = \frac{P(\lambda_2)\varepsilon_{\text{HbR}}(\lambda_1) - P(\lambda_1)\varepsilon_{\text{HbR}}(\lambda_2)}{P(\lambda_2)(\varepsilon_{\text{HbR}}(\lambda_1) - \varepsilon_{\text{HbO}_2}(\lambda_1)) - P(\lambda_1)(\varepsilon_{\text{HbR}}(\lambda_2) - \varepsilon_{\text{HbO}_2}(\lambda_2))}
\]

Taking wavelength λ_2 as reference wavelength, for example, the corresponding equations (9) and (10) have the same relation with equation (3). So from (3) and (11), we can obtain:

\[
\eta = \frac{A}{B} = \frac{\langle \text{SO2} \rangle_{\text{cal}} \cdot P(\lambda_2)(\mu_{\text{HbO}_2}(\lambda_2) - \mu_{\text{HbR}}(\lambda_2)) + P(\lambda_2)\mu_{\text{HbR}}(\lambda_2)}{I(\lambda_2)\varepsilon_{\text{HbR}}(\lambda_2) - \langle \text{SO2} \rangle_{\text{cal}} \cdot I(\lambda_2)(\varepsilon_{\text{HbR}}(\lambda_2) - \varepsilon_{\text{HbO}_2}(\lambda_2))}
\]
Ultimately, wavelength λ_1 can be utilized as the single-wavelength laser illumination for SO2 detection and continuous monitoring with calibrated value η:

$$\langle \text{SO2} \rangle_{\text{Meas}} = \frac{I(\lambda_1) \varepsilon_{\text{HbR}}(\lambda_1) \eta - P(\lambda_1) \mu_{\text{HbR}}(\lambda_1)}{I(\lambda_1) \eta(\varepsilon_{\text{HbR}}(\lambda_1) - \varepsilon_{\text{HbO2}}(\lambda_1)) + P(\lambda_1)(\mu_{\text{HbO2}}(\lambda_1) - \mu_{\text{HbR}}(\lambda_1))}. \quad (13)$$

Figure 4. The in vitro experimental results based on (a) conventional dual wavelength, and (b) proposed single wavelength approach.

To validate the measurement accuracy, conventional dual-wavelength method and a standard PO2 electrode (DO-166MT-1, LAZAR Research Laboratories) was utilized to monitor SO2 inside the tube as the preset values. Firstly, carbon dioxide (CO2) is pumped into the blood to make the SO2 close to 0%. Then oxygen (O2) is continuously pumped into the blood to fine tune the SO2 from 20% to 80% with 10% intervals. PA signals and scattering light signals were measured respectively. Meanwhile, to investigate the measurement accuracy, conventional dual-
wavelength (584 nm and 600 nm) method and a standard SO2 meter were utilized to measure SO2 accordingly. The experimental results are shown in Fig. 4 using both dual wavelength (Fig. 4(a)) and single wavelength (Fig. 4(b)). It demonstrates that both dual-wavelength and proposed single wavelength approaches could achieve good agreement with preset SO2 value, where dual-wavelength approach gives higher accuracy ($R^2=0.95$) than single-wavelength approach ($R^2=0.92$).

3. SUMMARY

In conclusion, a novel approach fusing optical absorption and scattering for single wavelength SO2 detection is proposed and proved experimentally on phantom and ex vivo blood. This proposed single wavelength approach may be highly integrated, inexpensive, and much simpler than multi-wavelength approaches for SO2 monitoring, showing significant potential for portable and on-site diagnostics.

4. ACKNOWLEDGEMENTS

This research is supported by the Singapore National Research Foundation under its Exploratory/Developmental Grant (NMRC/EDG/1062/2012) and administered by the Singapore Ministry of Health’s National Medical Research Council.

REFERENCES