<table>
<thead>
<tr>
<th>Title</th>
<th>Etching-free patterning method for electrical characterization of atomically thin MoSe2 films grown by chemical vapor deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Utama, Muhammad Iqbal Bakti; Lu, Xin; Zhan, Da; Ha, Son Tung; Yuan, Yanwen; Shen, Zexiang; Xiong, Qihua</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/25679</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 The Royal Society of Chemistry. This is the author created version of a work that has been peer reviewed and accepted for publication by Nanoscale, The Royal Society of Chemistry. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1039/C4NR03817G].</td>
</tr>
</tbody>
</table>
Etching-free patterning method for electrical characterizations of atomically thin CVD-grown MoSe$_2$ film

M. Iqbal Bakti Utama, Xin Lu, Da Zhan, Son Tung Ha, Yanwen Yuan, Zexiang Shen and Qihua Xiong*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Patterning two-dimensional materials into specific spatial arrangement and geometry is essential for both fundamental materials studies and applications in electronics. However, the patterning methods that are currently available generally involve etching steps that rely on complicated and expensive procedures.

Here we report a facile patterning method of atomically thin MoSe$_2$ film by means of stripping with EBL-exposed SU-8 negative resist layer. Additional steps of chemical and physical etching were not necessary in SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from field effect transistor of CVD-grown MoSe$_2$ film. Notably, the narrowing of conduction channel area with SU-8 patterning was crucial to suppress leakage current within the device, thereby allowing a more accurate interpretation of electrical characterization results from the sample. Electrical transport study, which was enabled by the SU-8 patterning, revealed variable range hopping behaviour at high temperature.

1. Introduction

Layered two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs, e.g., MoS$_2$, WS$_2$, WSe$_2$) have attracted significant interest due to their interesting electronic and optical properties.\(^1\)\(^-\)\(^3\) To harvest those unique material properties for practical applications, it is necessary to have the capability in producing the materials in a scalable manner. In that aspect, chemical vapor deposition (CVD)\(^4\)\(^-\)\(^7\) and liquid exfoliation\(^8\) have been reported to produce layered TMD film samples in promisingly large area and high production rate. To enable the manufacturing of these 2D materials into devices and systems for various electrical studies and applications, the next crucial step is the patterning of the film into specific spatial arrangement and geometry. However, the absence of dangling bonds on the surface of 2D TMDs results in the inertness of the (0001) cleavage plane, making these materials difficult to be removed by conventional wet etchant (e.g., Aqua Regia, HF, KOH) at room temperature (Fig. S1 in ESIF). There have been various of experimental procedures that can be used to pattern TMDs, which were predominantly demonstrated on MoS$_2$.\(^9\)\(^-\)\(^1\)\(^2\) At present, the patterning of TMDs is commonly done via lithography and dry etching process with reactive ion (e.g., SF$_6$ and XeF$_2$).\(^9\)\(^-\)\(^1\)\(^4\) However, reactive ion etching requires multi-step procedures (including both lithography and the etching process itself) which involve highly specialized equipments. Plasma etching that sputters the 2D materials with ion bombardment was also reported,\(^1\)\(^0\) but the sample removal might not be thorough because the process does not produce volatile byproducts and is prone to re-deposition.

While thinning method by laser has been introduced,\(^1\)\(^1\) the method may not be potentially scalable considering that direct laser writing is a prerequisite. Other thinning methods such as by thermal annealing is ineffective for patterning targeted only at a confined area.\(^1\)\(^5\)\(^-\)\(^1\)\(^6\) There are also reports on top-down patterning which incorporate stamping approaches,\(^1\)\(^2\) although ordered pattern can be achieved, the sample may have large variability in the layer thickness, unlike CVD synthesis which may controllably produce very thin layers.

Here we report a patterning method on layered 2D film by utilizing SU-8 negative resist as a stripping layer. By first spincoating the 2D film with SU-8, the region of SU-8 that is then exposed with electron beam lithography (EBL) can be used to strip the film beneath it. The patterning method with SU-8 requires neither chemical nor physical etching steps. The SU-8 patterning is thus attractively simpler than the available patterning methods on 2D material, incurring potential economic advantages for industrial fabrication processing. Our approach also minimizes the possibility of affecting the pre-existing structure or device on the sample as compared with other ion etching methods.

As a case study, we demonstrate the SU-8 patterning on molybdenum diselenide (MoSe$_2$) film grown by CVD.\(^1\)\(^7\) The patterning is effective for atomically thin samples that we produce, which can be controlled to thickness primarily within 1-6 layers. We have also fabricated devices from patterned CVD-MoSe$_2$ ribbon channel as a field effect transistor (FET) for the study of electrical transport properties of CVD-MoSe$_2$. Despite being a member to the family of layered TMDs crystal, the relatively lower natural abundance of MoSe$_2$ causes the studies on MoSe$_2$ to be less common than that on MoS$_2$. With the
emergence of CVD synthesis method to produce atomically thin MoSe$_2$ in large area very recently,$^{17-20}$ it becomes compelling to investigate accordingly the electrical transport properties of MoSe$_2$. The SU-8 patterning enables the fabrication of well-defined channel from the MoSe$_2$ film that minimizes the leakage current, thus allowing the electrical characterization results to be interpreted accurately.

2. Experimental

2.1 Sample preparation

Large area atomically thin MoSe$_2$ films (~1 cm2) were synthesized with CVD on highly p-doped Si substrates with 100 nm thick SiO$_2$ (University Wafers, Prime grade).27 MoSe$_2$ devices fabrication and patterning were performed with EBL (JEOL JSM-7001F equipped with Deben beam blanker and Nanometer Pattern Generation System) at 30 kV acceleration voltage. In all devices, the contact was 50 nm of Ni. Negative epoxy-based SU-8 2002 (MicroChem) was used in all SU-8 patterning. SU-8 was spincoated on the sample at 4000 rpm for 40 s, and soft-baked on a hotplate at 65°C for 1 min, followed by another 95°C for 1 min. After EBL exposure, the sample was immersed in SU-8 developer (MicroChem) for 1 min, post-exposure baked at 95°C for 1 min, immersed in Remover PG (MicroChem) at ~65°C for 10-30 min to remove the SU-8 pattern, and blowdried with N$_2$ flow.

2.2 Characterizations

The samples were characterized by scanning electron microscopy (SEM, JEOL JSM-7001F) and tapping mode atomic force microscopy (AFM, Veeco Dimension V). SEM was performed with 5 kV acceleration voltage in top view by detecting the secondary electron emission from the sample. Raman spectra were obtained on a triple-grating micro-Raman spectrometer (Horiba-JY T64000). All samples were excited with 532 nm laser. The signal was collected through a 100× objective, dispersed with a 1,800 g/mm grating, and detected by a liquid N$_2$ cooled charge-coupled device. Raman mapping was performed with Renishaw InVia Raman system using 532 nm laser excitation. Device measurements were performed on probe station (Lakeshore) connected to a current preamplifier and controlled by Semiconductor Device Analyzer (Keithley). Electrical measurements were performed at temperature between 350 to 83 K at pressure below 10$^{-5}$ mBar.

3. Results and discussion

3.1 Patterning of atomically thin MoSe$_2$ film with SU-8

Fig. 1 Schematic diagram of the patterning process

Fig. 1 illustrates schematically the process of patterning with SU-8, whose procedure is described in details in the experimental section. Briefly, after the synthesis of large area and atomically thin MoSe$_2$ film with CVD on SiO$_2$/Si substrate, SU-8 solution was spincoated and soft-baked on top of the sample. As SU-8 is a negative resist, EBL was used to expose the area of SU-8 layer in a certain shape and size that will remain on the sample after the resist development step. Finally, the developed SU-8 structure carries along the MoSe$_2$ layer beneath it upon the removal of the SU-8 layer in Remover PG solvent. Thus, the MoSe$_2$ film is removed in an area whose shape corresponds to the exposed SU-8 area during the EBL process.
As a demonstration, we show in Fig. 2a and b the fabrication process of an array of hexagons opening from CVD-grown MoSe₂ as seen from optical microscope. Due to the thickness of the MoSe₂ film which was within a few nanometer range, the contrast between MoSe₂ and bare SiO₂ substrate is not immediately distinguishable. Fig. 2c shows the same sample area under SEM, where the difference in the yield of secondary electron emission signal from the MoSe₂ film and SiO₂ substrate is beneficial to produce image with visible contrast difference. Meanwhile, MoSe₂ under SU-8 regions that are unexposed by EBL is left without noticeable changes before and after the patterning (Fig. S2 in ESI†).

To corroborate the success of SU-8 patterning, we compare the Raman spectra collected from the removed MoSe₂ area and that from the remaining MoSe₂ layer (Fig. 2d). Raman spectroscopy is a reliable tool to characterize the presence of atomically thin TMDs since phonon frequencies are not only sensitive to the materials being studied, but are also rich in informations to probe interlayer coupling and layer thickness. 21, 22 The micro-Raman setup also allows signal collection only from the local area where the MoSe₂ film has been removed. Raman signatures of MoSe₂ were identified from the remaining layer, where the signal from the out-of-plane A₁g mode was particularly intense. Meanwhile, those Raman modes disappeared in the spectrum from the removed MoSe₂ area. The mapping of Raman intensity of the A₁g mode (241 cm⁻¹, Fig. 2e) shows that MoSe₂ layer was removed with the SU-8 patterning method. Furthermore, atomic force microscopy (AFM, Fig. 2f) at the boundary of the removed area on similar patterned sample verifies that patterning could produce a clean removal of 2D materials with a relatively sharp edge. Interestingly, we do not observe redeposition issues with SU-8 patterning unlike etching methods relying on purely physical means (e.g., Fig. S3 in ESI†).

We attribute the mechanism behind the MoSe₂ removal with SU-8 patterning to the adhesion between the exposed SU-8 and the MoSe₂ film. As long as the adhesion between MoSe₂ and SU-8 is sufficiently stronger than the adhesion between the MoSe₂ film and the SiO₂ substrate, the MoSe₂ can be removed when the SU-8 is dissolved. Additionally, adhesion of films to SiO₂ layer is generally difficult; an intermediate layer which can be oxidized (e.g., Cr, Ti) is needed to block the transportation of oxygen from within the SiO₂ to the interface to achieve good adhesion. Since MoSe₂ does not oxidize rapidly in air, the adhesion between MoSe₂ and SiO₂ is relatively weak such that SU-8 layer can be used to peel off MoSe₂ film from SiO₂. 23

Typical to most other negative resists, EBL exposure and post-exposure baking cause the SU-8 polymer to be highly cross-linked and more rigid. The rigidity of the exposed SU-8 structure helps to improve the conformal contact with the MoSe₂ area below the SU-8, ensuring that the MoSe₂ layer is stripped from the substrate as a single unity uniformly—as opposed to being dissolved in smaller patches—for the complete removal of the MoSe₂ with the stripping of SU-8. Given the inertness of the (0001) plane of MoSe₂, we do not assume any unique chemical bonds between SU-8 and MoSe₂ to allow the patterning. Consistent with our assumption, we observed that the patterning approach is not unique to SU-8: we found that patterning can be done by using metal sacrificial layer which strip the MoSe₂ film upon the etching of the metal (Fig. S1 in ESI†). On the other hand, SU-8 patterning can also be used to remove MoS₂ flakes that were produced by exfoliation method on SiO₂ (Fig. S4 in ESI†). It is conceivable that similar methods can be performed with other lithography resist polymers. Meanwhile, the inability of some other EBL resists, such as poly(methyl methacrylate) (PMMA), to be used as the stripping layer for patterning was attributed to the poorer adhesion between PMMA and MoSe₂.

Considering the adhesion mechanism of the removal, we believe that the SU-8 patterning method will be especially useful to be employed in layered material samples with small grains. When the grain size of MoSe₂ is smaller than the feature size of the SU-8 pattern, the presence of the grains will help to ensure that the film will break following the shape of SU-8. Thus, we believe that the SU-8 patterning method will have strong applications in layered materials films produced from processes such as liquid phase exfoliation 8 and certain CVD synthesis approaches. 6, 17

3.2 Device application

An immediate application of the SU-8 patterning is to define a conduction channel for electrical characterizations. Here, we patterned a ribbon channel from MoSe₂ film in a back-gated FET device (Fig. 3a,b). Two 80×80 μm² Ni pads were used as the device electrodes. By constraining the current flow into the channel, it is possible to avoid defect structures existing on the substrate that may hamper the performance of the device. For example, in a MoSe₂ film FET prior to patterning, we noticed a significant amount of gate leakage current (~nA, Fig. 3c). A typical signature of gate leakage is exhibited: the current direction is inverted when the gate voltage polarity is switched, implying that there is conduction between the source-drain electrodes to the back gate. By narrowing the area of MoSe₂ conduction channel into a ribbon, the gate leakage level can be suppressed by two orders of magnitude (Fig. 3c inset) and is now nearly independent of the gate voltage sweep. As a direct benefit of such gate leakage suppression, device performance such as I-V characteristics (Fig. S5a in ESI†) and electrical transport properties (section 3.3) can be measured more accurately.
Our hypothesis regarding the mechanism of gate leakage reduction with the device patterning patterning is explained schematically in Fig. 3d. Defects on the substrate such as pinholes in gate oxide may form due to the imperfection of the substrate production, the high temperature during the sample synthesis (as was also observed for CVD-grown MoS$_2$ FET), device fabrication and processing steps. The creation of oxide defects is particularly problematic since it generally creates reliability issues, such as short circuit of the back gate with the top electrodes. Prior to patterning, the MoSe$_2$ film may have electrical connection to these defects, which results in appreciable gate leakage. The current leakage issue is exacerbated due to the large area (~1 cm2) of the as-grown film, which causes the connection between the device to existing oxide defects somewhere on the substrate. By reducing the area of the active conduction channel with the SU-8 patterning, it is possible to avoid electrical connection from the MoSe$_2$ layer to such oxide defects, thus eliminating the gate leakage current.

Consistent with our hypothesis that SU-8 patterning may break electrical connection between a device to oxide defects, we show that SU-8 patterning can also be used to electrically isolate the device. By performing SU-8 patterning on the conduction channel (Fig. 3e), the channel can be cut to produce an open circuit. Prior to channel cut, drain current flows in response to the application of bias voltage (Fig. 3f). However, the drain current becomes insensitive to bias voltage after channel cut, dropping to ~pA level, which corresponds to the noise level of the measurement (Fig. 3f inset). This result confirms that the removal of MoSe$_2$ from the channel was indeed completed.

3.3 Electrical transport measurements

The SU-8 patterning method enables a more in-depth characterization of transport properties of the CVD-grown MoSe$_2$. Temperature-dependent electrical characterizations were performed on the sample (Fig. 4a). The MoSe$_2$ channel had a high resistance at tens of MΩ at room temperature, multiple orders higher than that of the contact resistance between MoSe$_2$ and Ni that reaches only hundreds of kΩ at 35 V gate overdrive. The drain current was also strongly dependent on temperature, showing an insulating behaviour where the conductance decreases with decreasing temperature. Moreover, the current level at temperature < 80 K was beyond our measurement noise level. This suggests that the CVD-grown MoSe$_2$ is highly disordered, where electron localization and thermally-activated hopping conduction may play important roles in the electronic transport within CVD-MoSe$_2$. We also noted that the temperature-dependent conductance data exhibit nonlinearity when graphed in Arrhenius plot (Fig. 4b). The nonlinearity of the curve indicates that simple thermally activated model transport, where $\sigma \propto \exp(-E_a/k_BT)$, does not explain the temperature-dependence of our sample properly. Thus, we attempt to explain the transport behaviour in terms of variable range hopping (VRH) mechanism.
VRH transport has been observed in monolayer and few layered 2D materials samples such as MoS$_2$.\(^{26-30}\) Likewise, VRH in bulk MoSe$_2$ has also been reported.\(^{31}\) However, the transport behavior in ultrathin MoSe$_2$ samples remains elusive. Previous experimental data on few-layers MoSe$_2$ exfoliated from powder seemed to display a phonon-limited transport, where the device mobility decreases with increasing temperature.\(^{25}\) In exfoliated MoS$_2$ and bulk MoSe$_2$, VRH behaviour started only in temperature range below 200 K. In contrast, our CVD-MoSe$_2$ devices exhibit VRH at high temperature (350 K), similar to previous work on reduced graphene oxide.\(^{32}\)

In VRH, the electrons occupy localized states which have a distribution of energy and position in real space. Hopping occurs due to mutual overlap of eigenfunctions of neighbouring states. The conductance of electron is proportional to the probability per unit time of hopping to happen which is given by \(P(r) \propto \exp\left[-2r / \xi - \Delta E(r) / k_BT\right]\), where \(r\) is the hopping distance, \(\xi\) is the localization length, and \(\Delta E\) is the activation energy.\(^{33}\) For Mott-VRH in 2D material, it is assumed that density of states \(N(E)\) is constant near the Fermi level. The most likely hopping maximizes \(P(r)\) by circumscribing \(dP/dr = 0\). This results in the VRH conductivity that can be written as

\[
\sigma(T) = \sigma_0 \exp\left(-T_0 / T\right)^{1/3}, \tag{1}
\]

where \(T_0\) is a fitting parameter.\(^{33}\) We remark that there have been different accounts on the temperature-dependence of the exponential prefactor, \(\sigma_0\), in 2D Mott-VRH. Ghatak \textit{et al.}\(^{26}\) reported that \(\sigma_0 \propto T^{1/3}\), as backed by a theoretical study.\(^{34}\) Meanwhile, other previous experimental and theoretical works report \(\sigma_0\) that is \(T\)-independent\(^{32,33,35}\) to yet other forms of \(T\)-dependence.\(^{36,37}\) For our experiments, we notice that the \(T\)-dependence of \(\sigma_0\) does not affect our conclusion dramatically and hence we shall assume that \(\sigma_0\) is constant in the following discussions.

We then extract the temperature-dependent conductance of the sample at the quasi-Ohmic regime near \(V_{ds} = 0\) V. Fig. 4c shows that the data can be fitted adequately with the Mott-VRH model from equation (1), giving coefficient of determination \((R^2)\) value \(> 0.995\) for all \(V_g\). The inset shows the \(T_0\) fitting parameter with respect to the carrier concentration, \(n = C_g(V_g - V_{th})\), where \(C_g = 3.45 \times 10^{-4}\) \(\text{Fm}^{-2}\) is the gate capacitance and \(V_{th}\) is the threshold voltage. In support to our conclusion toward a hopping transport, we find that the mobility of the sample increases with temperature (Fig. 4d). This observation is in contrast to the band-like diffusion transport, as observed in MoS$_2$ and MoSe$_2$ flakes from exfoliation.\(^{29,35}\) Moreover, the mobility also follows an \(\exp\left(-T_0 / T\right)^{1/3}\) trend, in agreement with a Mott-VRH in 2D sample.\(^{26,37}\)

In MoS$_2$, Qiu \textit{et al.}\(^{38}\) attributed the carrier localization

Fig. 4 Electrical transport properties of patterned CVD-MoSe$_2$ ribbon channel. (a) I-V characteristics of two-probe device at various temperatures. The channel length was 0.5 \(\mu\)m. Inset: Optical micrograph of a typical patterned ribbon device. Scale bars: 100 \(\mu\)m (left) and 10 \(\mu\)m (right). (b) Arrhenius plot of the width-normalized conductance data. Black, dashed straight line is a guide to the eye. (c) Temperature dependence of width-normalized conductance in semilog scale plotted with respect to \(T^{-1/3}\). Inset: Fitting parameter \(T_0\) as a function of carrier density. (d) Temperature dependence of the field-effect mobility of electrons. Inset: Simplified band diagram, showing the position of localized states.

This journal is \(©\) The Royal Society of Chemistry [year]
responsible for VRH to the sulfur vacancies, which is also the electron donor of the sample.27 Analogously, we have also observed that Se vacancies exist in our sample, as verified from scanning transmission electron microscopy.17 Thus, it is reasonable to suggest that similar mechanism also contributes to the VRH in MoSe\textsubscript{2}. Meanwhile, we observed that the fitting parameter \(T_0 \) in MoSe\textsubscript{2} to be one order higher than that in MoS\textsubscript{2}. For 2D Mott-VRH, \(T_0 \) is given by

\[
T_0 = \frac{13.8}{k_B N(E_F) \xi^2},
\]

where \(N(E_F) \) is the density of states near the Fermi level.28 Given that equation (1) in Mott-VRH is derived by assuming a nearly constant \(N(E_F) \) within the range of several \(k_B T \), then one may write that \(\xi \approx 1 \) Å, lower than that assumed in MoS\textsubscript{2} exfoliated flakes (6 Å) in the literature.27 A shorter \(\xi \) suggests that it is more difficult for charge carriers to hop across localized states that is distantly separated in space. This point is consistent with the relatively low conductance and mobility of CVD-MoS\textsubscript{2}: film (electronic mobility reaching only 0.02 cm2V-1s-1 at 300 K). While the MoSe\textsubscript{2} film mobility seems low, we remark that such mobility is within the typical values reported from previously CVD-grown MoS\textsubscript{2} film which also contain numerous grains (0.003–0.8 cm2V-1s-1).6, 36, 39 The occurrence of VRH behavior at room temperature can also explain the performance of MoSe\textsubscript{2}: FET which has on-off ratio of only 102 at 37.5 V gate overdrive: considering that carrier localization induces states at the bandgap (see inset of Fig. 4d), it is possible for charge carriers to still contribute toward the electrical conduction across the device although the gate voltage was tuned to position the Fermi level within the bandgap of MoSe\textsubscript{2}. Meanwhile, the decrease of \(T_0 \) at higher carrier concentration is attributable to the increased screening effect, thus extending the localization length.

Conclusions

In conclusion, we have demonstrated the patterning of 2D materials with SU-8 on CVD-grown MoSe\textsubscript{2}. The success of the patterning was characterized optically and electronically. The patterning enables further study and applications of the CVD-MoS\textsubscript{2} in electronics, where the narrowing of conduction channel area with SU-8 patterning is beneficial in reducing leakage current significantly. We found that the film exhibited variable range hopping transport behavior.

The SU-8 patterning method can be used as an alternative for etching process with a preexisting structure on the sample. For instance, it is possible to benefit from the patterning method to create array of opening on the sample for further fabrication steps, such as by performing another growth step of 2D material to stitch additional material into the patterned area. In that way, lateral heterostructures with more complex arrangements can be realized.40, 41

Although EBL was used in this study, we believe that it is also possible to use UV photolithography to perform the SU-8 patterning since the method could also create similar cross-linking to induce stronger adhesion of SU-8 to the 2D film. The use of photolithography will also help to improve the throughput of the patterning.

Concerning the materials involved in the patterning, it is likely that other lithography resist can be used for similar patterning approach, subject to adequate adhesion with the material to be patterned. On the other hand, considering that the patterning depends only on strong adhesion of SU-8 to MoSe\textsubscript{2} after exposure with EBL, with no unique chemical reaction and binding being assumed, we also believe that the method should be general and applicable to other 2D materials as well, including graphene, h-BN, MoS\textsubscript{2}, and WSe\textsubscript{2}.

Acknowledgements

Q.X. thanks the Singapore National Research Foundation via a fellowship grant (NRF-RF2009-06), Ministry of Education via an AcRF tier2 grant (MOE2012-T2-2-086), and Nanyang Technological University via a start-up grant (M58110061) supports.

Notes and references

1 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371; E-mail: Qihua@ntu.edu.sg

2 N	extsuperscript{ovita}s, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

‡ These authors contributed equally to this work.

† Electronic Supplementary Information (ESI) available: Further experiments on patterning and additional electrical characterizations data.

See DOI: 10.1039/b000000x/

This journal is © The Royal Society of Chemistry [year].