<table>
<thead>
<tr>
<th>Title</th>
<th>Extracellular polymeric substance architecture influences natural genetic transformation of acinetobacter baylyi in biofilms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Merod, Robin T.; Wuertz, Stefan</td>
</tr>
<tr>
<td>Citation</td>
<td>Merod, R. T., & Wuertz, S. (2014). Extracellular polymeric substance architecture influences natural genetic transformation of acinetobacter baylyi in biofilms. Applied and environmental microbiology, 80(24), 7752-7757.</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/25686</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 American Society for Microbiology. This paper was published in Applied and Environmental Microbiology and is made available as an electronic reprint (preprint) with permission of American Society for Microbiology. The paper can be found at the following official DOI: http://dx.doi.org/10.1128/AEM.01984-14. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Genetic exchange by natural transformation is an important mechanism of horizontal gene transfer in biofilms. Thirty-two biofilm metrics were quantified in a heavily encapsulated Acinetobacter baylyi strain and a miniencapsulated mutant strain, accounting for cellular architecture, extracellular polymeric substances (EPS) architecture, and their combined biofilm architecture. In general, transformation location, abundance, and frequency were more closely correlated to EPS architecture than to cellular or combined architecture. Transformation frequency and transformant location had the greatest correlation with the EPS metric surface area-to-biovolume ratio. Transformation frequency peaked when EPS surface area-to-biovolume ratio was greater than 3 \(\mu \text{m}^2/\mu \text{m}^3 \) and less than 5 \(\mu \text{m}^2/\mu \text{m}^3 \). Transformant location shifted toward the biofilm-bulk fluid interface as the EPS surface area-to-biovolume ratio increased. Transformant biovolume was most closely correlated with EPS biovolume and peaked when transformation occurred in close proximity to the substratum. This study demonstrates that biofilm architecture influences A. baylyi transformation frequency and transformant location and abundance. The major role of EPS may be to facilitate the binding and stabilization of plasmid DNA for cellular uptake.

Acinetobacter baylyi, in Biofilms

Biofilms provide an optimal environment for the occurrence of horizontal gene transfer, for example, via natural genetic transformation, i.e., the active cellular uptake of free DNA. Free DNA, naturally originating from cell lysis or active cellular secretion (1), is a central component of biofilms (2) and has even been found in higher quantities than intercellular genomic DNA (3). The capacity of biofilms to incorporate DNA into their architecture prevents free DNA from escaping into the surrounding environment and potentially protects free DNA from degradation. Subsequently, the high microbial density of biofilms increases the probability that transformation-competent cells will come into contact with free DNA. The microorganism Acinetobacter baylyi strain ADP1 is a good experimental model for studying natural genetic transformation due to its naturally high competence (4). In contrast to planktonic cultures, its ability to form stable biofilms makes it the organism of choice to investigate genetic transformation as it may occur in the natural environment.

While nutrient conditions, biofilm maturity, and mode of growth (5–7) have been shown to affect natural genetic transformation in A. baylyi biofilms, the influence of biofilm architecture (that is, the biofilm’s physical structure) has not been fully established. Biofilm architecture is integral to microbial life and influences the functional characteristics of the biofilm. For example, biofilm thickness, porosity, surface roughness, and cell cluster density contribute to mass transport limitations (8, 9), while interconnecting channels facilitate mass transport throughout the biofilm’s depth (10, 11). In turn, mass transport affects localized microbial diversity in multispecies biofilms (12, 13), which subsequently determines the extent of metabolic capabilities. We hypothesized that biofilm architecture would also influence transformation frequency and transformant location and abundance.

Many studies investigating biofilm architecture structure-function relationships have focused on the microbial distribution but ignored extracellular polymeric substances (EPS), which exhibit a critical function in biofilms (14, 15). In this study, different architectures were induced in monoculture A. baylyi biofilms by controlling the number of biofilm-establishing cells and biofilm-developmental nutritional conditions. Additionally, the influence of EPS architecture was determined by using the heavily encapsulated strain BD4 and the miniencapsulated mutant strain ADP1 (16). Various metrics of cellular, EPS, and overall biofilm architecture were quantified in situ to elucidate their effect on natural genetic transformation.

MATERIALS AND METHODS

Bacterial strains, plasmids, and media. Acinetobacter baylyi strain BD4 and A. baylyi strain ADP1 (17), previously referenced as Acinetobacter sp. strain ADP1, were used as model biofilm-forming organisms. The plasmid pGAR38, a Mob\(^+\) Tra\(^+\) gentamicin- and tetracycline-resistant IncQ plasmid, was used as the model DNA element for transformation. pGAR38 is pML10 (18) containing the wild-type green fluorescent protein (GFP) gene, pff (Clontech, Palo Alto, CA), under the regulation of a PpsA promoter (19). Induction of the promoter was not necessary. Brain heart infusion (BHI) medium, mineral medium M9 (20), and 0.01 M MgSO\(_4\) were used during transformation experiments.

Biofilm growth and transformation. Biofilms were grown in stainless steel, multilane flow cells previously described by Hendrickx et al. (21) under continuous flow conditions. The entire system was autoclaved prior to experimentation. Prior to flow cell inoculation, all cultures were washed three times in 1× phosphate-buffered saline (PBS) after having been grown overnight in BHI at 30°C. A 250-µl volume of washed cells containing either 10\(^7\) or 10\(^9\) cells was inoculated into flow cell lanes and allowed to settle for 2 h before starting continuous flow of the growth media listed in Table 1. All biofilms were grown with a flow rate of 2.5 ml/h in a constant-temperature chamber at 30°C.
TABLE 1 Biofilm developmental growth conditions and subsequent transformation frequency results

<table>
<thead>
<tr>
<th>Growth medium</th>
<th>No. of cells</th>
<th>Transformation frequency (10^-3) (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01% gluconate in M9</td>
<td>10^3</td>
<td>2.4 ± 1.6</td>
</tr>
<tr>
<td>0.3% gluconate in M9</td>
<td>10^7</td>
<td>0.42 ± 0.06</td>
</tr>
<tr>
<td>Brain heart infusion</td>
<td>10^9</td>
<td>0.98 ± 0.15</td>
</tr>
<tr>
<td>Brain heart infusion</td>
<td>10^7</td>
<td>9.6 ± 1.16</td>
</tr>
<tr>
<td>Brain heart infusion</td>
<td>10^7</td>
<td>2.9 ± 2.6</td>
</tr>
<tr>
<td>Brain heart infusion</td>
<td>10^7</td>
<td>5.5 ± 5.1</td>
</tr>
</tbody>
</table>

* a Number of cells inoculated into flow chamber to initiate biofilm growth.
 b The standard deviation was calculated from 21 scanned locations.

Each strain was subjected to four different growth conditions (Table 1) in order to manipulate the formation of architectural characteristics. For each growth condition, two biofilms were grown in the same flow cell to obtain replicate biofilm architectures prior to transformation (22). Biofilms were allowed to grow for 3 days prior to being washed with growth medium for 12 h with M9 containing no carbon source. Following the wash step, one of the two biofilms underwent transformation with 2.5 μg/ml of pGAR38 in M9 containing 0.2% pyruvate. The remaining biofilm was sacrificed to visualize the initial EPS and cellular architecture. For transformation, a 500-μl volume of plasmid-containing medium was pumped into flow channels equating to 1.25 μg pGAR38 applied over the time course of 12 min. The plasmid-containing medium was then switched to M9 containing 0.2% pyruvate without DNA to allow GFP expression and maturation. After 3 days, the biofilm was visualized for cells and transformants using confocal laser scanning microscopy (CLSM).

Biofilm staining and CLSM observation and image acquisition. Biofilms were stained under a continuous flow for 1 h and then washed with 0.01 M MgSO₄ for 30 min. Cells were stained with 5 μM Syto60 (Molecular Probes, Eugene, OR) suspended in 0.01 M MgSO₄. EPS was stained with 0.05% (by weight) Solophenyl flavine (SPF; Huntsman Int. LLC, High Point, NC) suspended in 0.01 M MgSO₄ and filtered using a 0.2-μm sterilization filter (23).

Flow cells were mounted on a Zeiss 510 META CLSM (Carl Zeiss, Jena, Germany) motorized stage and visualized using a 63×/1.2 numerical aperture (NA) (C-Apochromat) water immersion objective lens. Syto60-stained cells were scanned using a 633-nm helium laser with a 650-nm long-pass filter. EPS stained with SPF and GFP-expressing transformants were scanned using a 488-nm argon laser with a 505-nm long-pass filter.

Twenty-one CLSM image stacks were acquired from each biofilm to obtain a representative sample of architectural variation (24). Automatic acquisition was accomplished using the MultiTime Series (MTS) macro supplemental to Zeiss’s CLSM interface software. Scanning locations were limited to the central 20-mm region of the flow lane to exclude entrance and exiting flow effects on biofilm architecture occurring 10 mm from the inlet and outlet. Scanning was also limited to 1.5 mm from the channel walls to exclude excessive biofilm accumulation. z stacks scans from a single biofilm contained the same number of images. The number of images was set to capture the thickest part of the biofilm. Images had a pixel resolution of 0.2856 μm/pixel. The z step for images in a z stack was 0.75 μm. In accordance with optimal settings described by Sekar et al. (25), images were acquired utilizing a 1× digital magnification, a pinhole setting of 1 Airy unit, and a scan average of 2; the detector gain (500 to 550 arbitrary units), amplifier offset (0 to 0.05 arbitrary unit), and laser intensity (10% to 25%) were set to obtain adequately contrasted gray-scale images based on the brightest region of the biofilm that was scanned.

Image analysis. Semiautomated image analysis was performed utilizing the programs Auto PHILIP-ML (26) and PHILIP (27). Auto PHILIP-ML (available at http://sourceforge.net/projects/auto-phlip-ml/) calculates an Otsu threshold for image stacks not biased by extraneous images (images without pixels of biological significance). Extraneous images are identified and removed based on their area coverage of biomass as described by Merod et al. (26). The percent area coverage value used for extraneous image removal (PACVEIR) identifying the substratum was set at 1%. The bulk medium interface was defined by the limit of EPS and iteratively determined to have a PACVEIR of either 0% or 0.005%. PHILIP version 0.7, a MatLab-based image analysis toolbox (available at http://sourceforge.net/projects/phlip/), was used to quantify architectural metrics for each z stack. The Auto PHILIP-ML-calculated Otsu thresholds for transformant images were too low to obtain meaningful data, so the thresholds were set manually.

The following biofilm architectural metrics are included in PHILIP v0.7 and described by Mueller et al. (27). Biovolume is the volume of cellular biomass, transformant biomass, EPS biomass, or cellular-and-EP (overall) biomass. The surface area-to-biovolume ratio is the surface area of the biomass divided by the biovolume. Mean thickness is the average thickness of the biomass. Roughness is a measure of how much the biomass thickness varies. Horizontal, vertical, and total spatial spreading is a characterization of the spreading of the biomass in space.

Scripts for the following architectural metrics were added to the single-channel and all-channel image processing operations of PHILIP. Proliferosity (μm²/μm³) is calculated as the difference between total volume and biovolume divided by the total volume, where total volume was calculated as the biomass mean thickness multiplied by the z-stack–x–y area. Maximum thickness (μm) is calculated as the number of images in the z stack multiplied by the z step (the μm distance between each image). Surface area (μm²) is calculated as the product of biovolume and surface area-to-biovolume ratio. Normalized mean location (NML) of biomass is calculated as described by Hendrickx and Wurzel (5). Normalized mean location ranges from 0 (substratum) to 1 (biofilm-bulk medium interface) and provides a normalized z location for the majority of biomass.

\[
\text{NML} = \frac{\sum_{i=0}^{n} z_i \times (z_{i+1} - z_i) \times A_i}{V \times z_k}
\]

where \(z_i\) is distance from the substratum at image \(i\) (μm), \(Z_i\) is maximum thickness of biomass (μm), \(A_i\) is area coverage of biomass at image \(i\) (μm²), and \(V\) is biovolume of biomass of the z stack (μm³).

Architectural metrics were calculated for both the cellular component and EPS component of the biofilm using PHILIP’s single-channel processing. The overall architecture for each metric was calculated using PHILIP’s all-channel image processing, which superimposed the cellular channel and EPS channel. The three-dimensional (3D) colocalization of cells and transformants was defined to equal the transformation frequency (i.e., biovolume of transformants per biovolume of cells). The biovolume of transformants was calculated by multiplying the transformation frequency by the biovolume of cells.

Statistical analysis. The architecture of sacrificed biofilms was used to replicate the initial architecture [i.e., the architecture prior to transformation] of the biofilm used for transformation that developed under identical growth conditions. Three-way analysis of variance (ANOVA) was used on the initial architecture characteristics to determine if biofilms displayed significantly different architectures when grown under different medium conditions. The factors for the three-way ANOVA were biofilm type (eight levels: two A. baylyi strains each with four treatments [Table 1]), architectural component (three levels: cellular, EPS, and overall), and architecture metric (ten levels: biovolume, NML, porosity, mean thickness, roughness, horizontal spreading, vertical spreading, total spreading, surface area, and surface area-to-biovolume ratio). Each architectural metric had a sample number of 21. Based on this design, each biofilm type has three architectural components, and each architectural component has 10 architecture metrics. Therefore, the architecture of each biofilm type was quantified by 30 levels of measurement.

Spearman rank order analysis was used to determine which initial architecture metrics correlated with transformation frequency, transformant biovolume, or transformant NML. Each architectural metric had a sample number of 168, corresponding to 8 biofilms each with 21 z stacks.
The Spearman rank order coefficient (r_s) has a value range from $+1$ to -1. Coefficient values were defined to have the following level of correlation: $0.75 \leq r_s < 1$ and $-0.75 \geq r_s > -1$ were strong; $0.50 \leq r_s < 0.75$ and $-0.50 \geq r_s > -0.75$ were intermediate; $0.25 \leq r_s < 0.50$ and $-0.25 \geq r_s > -0.50$ were weak; and $-0.25 \leq r_s < 0.25$ had no correlation. Positive values had a positive correlation, and negative values had a negative correlation. SigmaStat version 3.5 (Systat Software, Inc.) was used for all statistical analyses.

RESULTS

Effect of growth conditions on biofilm architecture

To determine the role that biofilm architecture plays in natural genetic transformation, different architectures were induced. The wild-type strain *A. baylyi* strain BD4 and the miniencapsulated EPS mutant *A. baylyi* strain ADP1 were used to investigate the effect of differences in EPS. Additionally, different growth conditions were utilized during biofilm development to promote architectural differences between biofilms (Table 1). Brain heart infusion medium was chosen to provide a rich, unlimited growth environment and promote a “fluffy” architecture, while M9 medium with different concentrations of gluconate was used to induce more dense biofilm architectures.

The architecture of each biofilm was quantified by 30 levels of measurement. Three-way ANOVA allowed us to evaluate if the eight biofilms had significant differences in architecture. The Tukey test on three-way-ANOVA results showed a significant difference in all biofilm pairwise comparisons ($P < 0.05$) except for two: ADP1_gluconate_10° versus BD4_BHI_10° and ADP1_BHI_10° versus BD4_gluconate_10° (biofilm names have the format “strain _growth medium_inoculation cell number”). On the basis of these results, we concluded that sufficient architectural variation exists to evaluate the effect of architecture on transformation frequency and location.

Effect of biofilm architecture on transformation frequency

The average transformation frequency ranged from 0.019 to 0.00042, measured as transformant biovolume per cellular biovolume (Table 1). As expected, the miniencapsulated mutant strain ADP1, which is known to be highly competent, exhibited the greatest transformation frequency. Cellular, EPS, and overall biofilm architecture were investigated to determine their influence on transformation frequency. Biofilm architecture was measured using 10 architectural metrics (see “Image analysis” in Materials and Methods). Additionally, 3D colocalization of cells and EPS and maximum thickness were examined, totaling a comparison of 32 architectural metrics. Five of the 32 metrics correlated weakly with transformation frequency (Table 2). No comparisons resulted in a strong or intermediate correlation. The EPS surface area-to-biovolume ratio was the most closely correlated, with an r_s value of -0.42 and a P value less than 0.001. Transformation frequency peaked when EPS surface area-to-biovolume ratio was greater than 3 $\mu m^2/\mu m^3$ but less than 5 $\mu m^2/\mu m^3$ (Fig. 1).

Effect of biofilm architecture on transformant biovolume

Transformant biovolume underwent the same Spearman rank order correlation analysis that was performed on transformation frequency. As with transformation frequency, transformant biovolume did not strongly correlate with any of the 32 architectural metrics. However, transformant biovolume had an intermediate correlation with EPS biovolume and EPS porosity. Nine other architectural metrics had a weak correlation (Table 3). In general, the metrics biovolume, porosity, and surface area for each aspect of biofilm architecture (i.e., cellular, EPS, and overall) were correlated with transformant biovolume. Transformant biovolume peaked when transformation occurred in close proximity to the substratum.

Effect of biofilm architecture on transformant location

As with transformation frequency and transformant biovolume, the same biofilm architecture metrics were investigated to determine their influence on transformant normalized mean location (NML). Twenty-one out of 32 metrics correlated with transformant NML (Table 4). The top five correlated metrics were all a measure of EPS architecture. The metric EPS surface area-to-biovolume ratio was strongly positively correlated (Fig. 2), while EPS NML (Fig. 3), porosity, total spreading, and vertical spreading were intermediately positively correlated. Of the remaining 16 comparisons, 14 (five cellular, two EPS, six overall architectural metrics, and maximum thickness) were weakly positively correlated to transformant NML and two were weakly negatively correlated (EPS biovolume and 3D colocalization of cells and EPS).

![FIG 1 Correlation of transformation frequency and EPS surface area-to-biovolume ratio. The Spearman rank order correlation coefficient, r_s, is -0.42, with a P value of < 0.001. The reference line at 0.01 shows that transformation frequency peaked when the EPS surface area-to-biovolume ratio was greater than 3 $\mu m^2/\mu m^3$ and less than 5 $\mu m^2/\mu m^3$. Each data point represents the result from one scanned location.](http://aem.asm.org/)

Table 2 Transformation frequency Spearman rank order correlation results for significant architectural metrics

<table>
<thead>
<tr>
<th>Correlation level</th>
<th>Metrics with indicated correlation (r_s, $	ext{P}$ value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>None, None, 3D colocal cellular EPS (0.38, <0.001), EPS SA/BV (-0.42, <0.001), EPS porosity</td>
</tr>
<tr>
<td>Intermediate</td>
<td>None, None, EPS biovolume (-0.27, <0.001), overall (0.28, <0.001), NML (-0.25, 0.001)</td>
</tr>
<tr>
<td>Weak</td>
<td>3D colocal cellular EPS (0.38, <0.001), EPS SA/BV (-0.42, <0.001), EPS porosity, EPS biovolume (-0.27, <0.001), overall (0.28, <0.001), NML (-0.25, 0.001)</td>
</tr>
</tbody>
</table>

a Correlations with a P value less than 0.05 were considered to be significant. 3D colocal cellular EPS, three dimensional colocalization of cellular and EPS architecture; EPS, extracellular polymeric substances; NML, normalized mean location; SA/BV, surface area-to-biovolume ratio.

b r_s values were defined as having the following levels of correlation: $0.75 \leq r_s < 1$ and $-0.75 \geq r_s > -1$ were strong; $0.50 \leq r_s < 0.75$ and $-0.50 \geq r_s > -0.75$ were intermediate; $0.25 \leq r_s < 0.50$ and $-0.25 \geq r_s > -0.50$ were weak; and $-0.25 \leq r_s < 0.25$ had no correlation.

FIG 1 Correlation of transformation frequency and EPS surface area-to-biovolume ratio. The Spearman rank order correlation coefficient, r_s, is -0.42, with a P value of < 0.001. The reference line at 0.01 shows that transformation frequency peaked when the EPS surface area-to-biovolume ratio was greater than 3 $\mu m^2/\mu m^3$ and less than 5 $\mu m^2/\mu m^3$. Each data point represents the result from one scanned location.
DISCUSSION

We investigated whether monoculture *A. baylyi* biofilm architecture—in terms of cellular, EPS and their combined characteristics—influences the efficiency of gene transfer by transformation.

Previous studies have implicated the high cell density of biofilms as a major influence on transformation efficiency (21, 28, 29). Li et al. (28) showed that natural genetic transformation was 10 to 600 times more frequent in *Streptococcus mutans* biofilms than in planktonic cultures. Additionally, Hendrickx et al. (21) showed that transformation is detectable in *A. baylyi* biofilms with a concentration as low as 1 fg of plasmid DNA per ml. The present study demonstrates that *A. baylyi* biofilm architecture has a varying degree of influence on transformation frequency, transformant volume, and transformant location.

Because nutrient conditions are known to influence natural comp-

![FIG 2 Distribution of transformant normalized mean location as a function of EPS surface area-to-biovolume ratio. The Spearman rank order correlation coefficient, \(r_s \), is 0.75 with a \(P \) value of <0.001. Each data point represents the result from one scanned location. The regression line has the equation \(y = -0.176 + 0.082x \), with an \(R^2 \) value of 0.62. NML values near 0 indicate biomass near the substratum, while values close to 1 indicate biomass close to the bulk medium interface.](http://aem.asm.org/)

![FIG 3 Correlation of transformant normalized mean location and EPS normalized mean location. The Spearman rank order correlation coefficient, \(r_s \), is 0.55, with a \(P \) value of <0.001. Each point represents the result from one scanned location. NML values near 0 indicate biomass near the substratum, while values close to 1 indicate biomass close to the bulk medium interface.](http://aem.asm.org/)
petence (6, 30–32), biofilms in this study were washed prior to transformation to avoid growth medium-induced competence variability. Perumbakkam et al. (33) and Hendrickx et al. (21) previously showed that transformants were most abundant in areas with high cellular density. Corresponding to results from Hendrickx et al., transformation biovolume in this study peaked near the biofilm substratum (Fig. 4), which typically had high cell densities (Fig. 5). However, transformant biovolume had a greater positive correlation with EPS and overall biovolume than with cellular biovolume (Table 3), suggesting that cell density is not the major factor governing the occurrence of transformation and that transformants may not be randomly distributed in the biofilm. Unlike in planktonic cultures, development of competency will be affected by a cell’s location in a biofilm, which may be at a different growth stage than other cells in the biofilm or may be experiencing different substrate concentrations. Notably, EPS architecture was not measured in the investigations performed by Perumbakkam et al. (33) and Hendrickx et al. (21). Specifically, competence may not be uniform throughout the biofilm but may develop in some subpopulations but not others, leading to the phenomenon of bistability (34). This phenomenon may have played a role in the biofilms that did not have significantly different architectures but did have different transformation frequencies.

Of the three biovolume metrics, EPS biovolume had the greatest Spearman rank order correlation with transformant biovolume (Table 3). Although transformant biovolume was not strongly correlated with any architectural metrics, the two metrics with the greatest Spearman rank order correlation were a measure of EPS architecture. The importance of EPS architecture is also apparent in its influence on transformant NML, where the top five correlated metrics were also measures of EPS architecture (Table 4). In particular, EPS surface area-to-biovolume ratio had the greatest Spearman rank order correlation to both transformation frequency (Table 2) and transformation NML (Table 4).

While BD4 has been described as being highly competent (16), to our knowledge the transformation efficiency of BD4 planktonic cultures or biofilms has not previously been quantified. Historically, the miniencapsulated ADP1 has been used for experimentation due to its ease of use in liquid cultures; the copiously capsulated BD4 can be problematic in protocols requiring centrifugation because it does not pellet sufficiently. Although it has been shown that the capsule of BD4 does not prevent transformation (16), we hypothesized that its capsule would reduce transformation frequency. Kaplan and Rosenberg (35) showed that BD4 produces four times the amount of the primary capsular polysaccharide component, L-rhamnose, that ADP1 does. While these results were obtained using liquid cultures, similar differences in EPS production were also observed in biofilms in this study, where BD4 EPS biovolume was typically twice that of ADP1 biofilms. However, despite increased EPS, a BD4 biofilm had the second greatest average transformation frequency (Table 1).

The major role of EPS may be facilitating the binding and stabilization of plasmid DNA for cellular uptake. Specifically, an optimized ratio of EPS surface area to biovolume was necessary to enhance transformation frequency (Fig. 1). A high ratio value increases interconnecting channels, which can facilitate transport to deeper biofilm regions (10, 11). However, a high surface area also increases the chances of plasmid DNA adhesion close to the bulk medium interface.
before the DNA can penetrate into the biofilm. As a result, when the ratio increases, transformants are found closer to the bulk medium interface (Fig. 2). The lower observed volume of transformants at the biofilm-bulk interface is due to its architectural characteristics and not the relative amount of EPS present. This effect of EPS architecture on transformation may also be apparent in biofilms of other A. baylyi strains, which have been characterized as being highly competent (17). Future research quantifying the amount of retained DNA based on biofilm architecture would further benefit this area of study.

ACKNOWLEDGMENTS

R.T.M. was partially funded by an industry-supported fellowship under the Training Program in Biomolecular Technology at the University of California, Davis, and by the NEAT-IGERT program, sponsored by the National Science Foundation (IGERT grant DGE-9927241).

REFERENCES