<table>
<thead>
<tr>
<th>Title</th>
<th>Polymorphonuclear leukocytes restrict growth of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kragh, Kasper N.; Alhede, Morten; Jensen, Peter Ø.; Moser, Claus; Scheike, Thomas; Jacobsen, Carsten S.; Poulsen, Steen Seier; Eickhardt-Sørensen, Steffen Robert; Trøstrup, Hannah; Christoffersen, Lars; Høiby, Niels; Bjarnsholt, Thomas</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/25690</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 American Society for Microbiology. This paper was published in Infection and Immunity and is made available as an electronic reprint (preprint) with permission of American Society for Microbiology. The paper can be found at the following official DOI: [http://dx.doi.org/10.1128/IAI.01969-14]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Polymorphonuclear Leukocytes Restrict Growth of *Pseudomonas aeruginosa* in the Lungs of Cystic Fibrosis Patients

Kasper N. Kragh,a,b Peter Ø. Jensen,b Claus Moser,b Thomas Scheike,c Carsten S. Jacobsen,d Steen Seier Poulsen,f Steffen Robert Eckhardt-Sørensen,a Hannah Trastrup,b Lars Christoffersen,b Hans-Petter Hougen,b Lars F. Rickelt,b Michael Kühl,a,b Niels Høiby,a,b Thomas Bjarnsholt,a,b Niels Høiby,a,b Morten Alhede,a,b Peter Ø. Jensen,b Claus Moser,b Thomas Scheike,c Carsten S. Jacobsen,d Steen Seier Poulsen,f Steffen Robert Eckhardt-Sørensen,a Hannah Trastrup,b Lars Christoffersen,b Hans-Petter Hougen,b Lars F. Rickelt,b Michael Kühl,a,b Niels Høiby,a,b Thomas Bjarnsholt,a,b

Department of International Health, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark; Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark; Geological Survey of Denmark and Greenland, Copenhagen, Denmark; Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark; Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark; Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark; Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, New South Wales, Sydney, Australia; Singapore Centre on Environmental Life Science Engineering, School of Biological Science, Nanyang Technological University, Singapore.

Cystic fibrosis (CF) patients have increased susceptibility to chronic lung infections by *Pseudomonas aeruginosa*, but the ecophysiology within the CF lung during infections is poorly understood. The aim of this study was to elucidate the in vivo growth physiology of *P. aeruginosa* within lungs of chronically infected CF patients. A novel, quantitative peptide nucleic acid (PNA) fluorescence in situ hybridization (PNA-FISH)-based method was used to estimate the in vivo growth rates of *P. aeruginosa* directly in lung tissue samples from CF patients and the growth rates of *P. aeruginosa* in infected lungs in a mouse model. The growth rate of *P. aeruginosa* within CF lungs did not correlate with the dimensions of bacterial aggregates but showed an inverse correlation to the concentration of polymorphonuclear leukocytes (PMNs) surrounding the bacteria. A growth-limiting effect on *P. aeruginosa* by PMNs was also observed in vitro, where this limitation was alleviated in the presence of the alternative electron acceptor nitrate. The finding that *P. aeruginosa* growth patterns correlate with the number of surrounding PMNs points to a bacteriostatic effect by PMNs via their strong O2 consumption, which slows the growth of *P. aeruginosa* in infected CF lungs. In support of this, the growth of *P. aeruginosa* was significantly higher in the respiratory airways than in the conducting airways of mice. These results indicate a complex host-pathogen interaction in chronic *P. aeruginosa* infection of the CF lung whereby PMNs slow the growth of the bacteria and render them less susceptible to antibiotic treatment while enabling them to persist by anaerobic respiration.

Patients with the genetic disorder cystic fibrosis (CF) have highly viscous endobronchial mucus and decreased mucociliary clearance of the airways, which renders them susceptible to chronic bacterial lung infections. Severe chronic *Pseudomonas aeruginosa* lung infections are the most common cause of morbidity and mortality in CF patients (1, 2). Lungs of CF patients with chronic *P. aeruginosa* infections are characterized by intrabronchial mucus-imbedded aggregates of bacterial cells (biofilms) surrounded by high numbers of polymorphonuclear leukocytes (PMNs) (3, 4). Such PMN-surrounded biofilms can persist over the lifetime of CF patients, despite an extensive inflammatory response and aggressive antibiotic treatment (5).

Slow growth within bacterial biofilms is recognized as a major contributor to high antibiotic tolerance because the effectiveness of the majority of antibiotics in clinical use decreases with low bacterial metabolism (6, 7). Limited molecular oxygen (O2) can further increase the tolerance of *P. aeruginosa* biofilms for antibiotics in vitro (8). Mucus in the conducting airways of chronically infected CF patients is characterized by steep O2 concentration gradients ranging from normoxic to anoxic conditions, and the combination of slow diffusive transport and intense O2 consumption within the mucus leads to anoxia (9). This is accompanied by ongoing denitrification, as evidenced by N2O production (10), the denitrification biomarker OprF in sputum (11), antibodies against nitrate reductase in serum (12), and upregulation of genes for denitrification (13, 14). O2 gradients in the endobronchial secretions are primarily a result of the O2 consumed by PMNs for the formation of reactive oxygen species (15, 16) during respiratory burst (15, 16) and for the production of nitric oxide (10) by nitric oxide synthase (54, 55). In addition, the fraction of O2 consumed by PMNs for aerobic respiration in endobronchial secretions from chronically infected CF patients is negligible (15, 16). The growth rate of *P. aeruginosa* is diminished by the low availability of O2 (17); therefore, depletion of O2 within the mucus of CF patients could serve as a limiting factor for the growth of *P. aeruginosa* and may contribute to the slow growth of *P. aeruginosa* in the sputum of chronically infected CF patients (18). Alternatively, it has been suggested that isolates from chronically infected CF patients may develop genetic adaptations that reduce the growth rate of the bacteria (19). Under these conditions, the above-mentioned denitrification indicators point to anaerobic respiration using nitrate as an alternative metabolic mode of *P.
P. aeruginosa, resulting in lower energy yields and possibly lower growth rates in biofilms in the CF lung. However, only the in vitro growth of bacteria isolated from sputum samples has been studied (18), and the actual growth rates of P. aeruginosa within CF lungs have neither been mapped nor correlated to growth limitation in vivo.

In this study, we developed a new quantitative peptide nucleic acid fluorescence in situ hybridization (PNA-FISH)-based method that enabled mapping of the in vivo growth rates of P. aeruginosa for the first time. This method was used to investigate the growth of P. aeruginosa in chronically infected CF lungs and in the conducting and respiratory airways of P. aeruginosa-infected mice. A significant negative correlation was observed between the growth rate and the abundance of PMNs surrounding the bacterial biofilm aggregates. A strong PMN-induced O2 limitation on P. aeruginosa growth was confirmed in vitro, while the bacterial growth limitation was alleviated in the presence of an alternative electron acceptor (nitrate) that enabled denitrification.

MATERIALS AND METHODS

Bacterial strains. The P. aeruginosa PA01 wild-type strain used in all in vitro experiments was obtained from the Pseudomonas Genetic Stock Center (strain PA0001 [http://www.pseudomonas.med.ecu.edu]). The Escherichia coli laboratory strain MG1655 was used for production of spike-in DNA (20).

Ex vivo CF patient samples. Samples were obtained from explaned lungs of three CF patients chronically infected with P. aeruginosa (one male and two females ranging from 30 to 42 years old). Tissue was collected following approval (KF-01278432) from the Danish Scientific Ethical Board. All three patients had undergone double-sided lung transplantation at the Copenhagen University Hospital, Rigshospitalet. Lung tissue samples (n = 6 to 7 from each patient) were removed immediately after extraction. Samples (n = 20) were fixed in phosphate-buffered saline containing 4% paraformaldehyde and embedded in paraffin. Sections (4 μm thick) were cut using a standard microtome and fixed on glass slides. The slides were stored at 4°C until further analysis. In total, 59 bacterial biofilms were analyzed.

Mouse model. To examine differences in bacterial growth rate as a function of O2 partial pressure, we used a recently described model based on the installation of bacteria immobilized on small or large alginate beads into the respiratory or conducting zone of the lungs (21). Briefly, the P. aeruginosa strain PAO579 was propagated overnight at 37°C in ox broth (Statens Serum Institute, Denmark). The overnight culture was centrifuged at 4°C and 4,400 × g and resuspended in 5 ml of serum bouillon (Department of Clinical Microbiology, Herlev Hospital, Denmark). Alginate (Protanal LF 10/60; FMC BioPolymer, Norway) was dissolved in 0.9% NaCl to a concentration of 1% and sterile filtered. The bacterial solution was diluted 1:20 in the alginate solution. The solution was transferred to a 10-ml syringe and placed in a syringe pump (model 3100; Graseby, United Kingdom), which fed the alginate to the encapsulation chamber (Var J30; Nisco Engineering, Zurich, Switzerland). The alginate was flushed at 4°C and 4,400 × g, and the alginate was transferred to 20 ml of 0.9% NaCl containing 4% (wt/vol) formaldehyde solution (VWR, Denmark). Bacterial growth was measured in 34 aggregates (14 aggregates from respiratory airways and 20 aggregates from conducting airways).

Quantitative PNA-FISH. Paraffin-embedded samples were deparaffinized by treatment with xylene (twice for 5 min), 99.9% ethanol (EtOH; twice for 3 min), and 96% EtOH (twice for 3 min) and were then washed in MilliQ water three times for 3 min. A drop of a Texas Red-conjugated PNA-FISH probe specific for P. aeruginosa 16S rRNA (AdvanDx, USA) was applied to the tissue section and then covered with a coverslip (22). Samples were incubated for 90 min at 55°C (AdvanDx Workstation, AdvanDx, USA). The coverslip was removed, and the slides were washed in warm washing buffer at 55°C (AdvanDx, USA) for 30 min and then air dried in the dark. A drop of Vectashield mounting medium with 4',6'-diamidino-2-phenylindole (DAPI; Vector, USA) was placed on top of the slide, which was then covered with a coverslip (Menzel-Glaser, Germany) and air dried for 15 min.

Mounted slides were scanned using a confocal laser scanning microscope (CLSM) (Axio Imager.Z2, LSM710 CLSM; Zeiss) and the accompanying software (Zen 2010, version 6.0; Zeiss, Germany). Extremely high resolution and color depth are required for precise quantification. Therefore, fluorescence images were recorded at an emission wavelength of 615 nm with a resolution of 6,144 by 6,144 pixels and at a color depth of 16 bits with a 63 × 1.4 (numerical aperture) oil objective using laser excitation at 594 nm. Each pixel was scanned twice. Images were stored in 16-bit TIF format. Fluorescence in individual cells was quantified using the freeware program ImageJ (National Institutes of Health, Bethesda, MD, USA). The background signal was defined by a threshold value using the automated MultiThresholder macro for ImageJ (K. Baler, G. Landini, and W. Rasband, NIH, Bethesda, MD). For quantification, the ImageJ function “analyze particles” was used. The fluorescence intensity was calculated in fluorescence units (FU) as the mean of gray-scale units over a range from 0 to 255. The correlation between FU and growth rate was used to estimate the growth rate (see Fig. 2; see also Supplemental Materials and Methods in the supplemental material). Using a correlation can result in the prediction of a negative growth rate. Growth rates cannot be less than zero; therefore, in these cases, the growth rate was considered to be slow.

The length, width, and cross-sectional area of biofilm aggregates in lung tissue samples from CF patients, as well as the distances from individual biofilms to the edge of their mucus clumps in the lung tissue, were measured using Zeiss Zen 2010, version 6.0. A proxy for the level of inflammation and PMN activity around each biofilm aggregate was obtained by counting all PMNs stained with DAPI within a distance of 20 μm from the edge of the biofilm using Zeiss Zen 2010, version 6.0.

PMNs on P. aeruginosa in vitro. One hundred milliliters of Krebs-Ringer buffer (KRB) (Panum Institute, Denmark) supplemented with 1% glucose was inoculated with 100 μl of PAO1 and incubated overnight at 37°C in a shaker. When the culture reached an optical density at 450 nm (OD450) of 0.2, it was diluted to an OD450 of 0.1 using KRB containing glucose at 37°C, after which 500 μl was added to the airtight lower chamber of a 0.2-μm single-step filter vial (Thomson, USA) (see Fig. 7). Human blood was collected from healthy volunteers with the approval (H-3-2011-117) of the Danish Scientific Ethical Board. PMNs were isolated as described elsewhere (23). Extracted PMNs were resuspended in KRB con-
containing glucose at 37°C to a final density of 2.5×10^7 PMNs/ml. In total, 200 µl of the PMN suspension was added to the chamber above the filter, while the chamber below the filter received 200 µl of KRB containing glucose. Half of both the PMN-treated and untreated vials was supplemented with 10 mM KNO$_3$, and the vials were incubated at 37°C. After 0, 2, and 4 h, 20 µl of bacterial suspension from the airtight chamber was fixed on Super Frost Plus slides (Thermo Scientific, USA) with GN Fixation Solution (AdvantDx, USA) at 65°C for 20 min. Slides were analyzed by quantitative PNA-FISH as described above.

O$_2$ levels in the lower, airtight chamber containing the bacteria and in the upper chamber containing the PMNs were measured using O$_2$-sensitive sensor spots mounted inside the vials and monitored with a fiber-optic O$_2$ meter (Fibox 3; PreSens, Germany) equipped with a 2-mm fiber-optic cable (24, 25). PMN activation was induced by 10 M phorbol 12-myristate 13-acetate (PMA) (Sigma-Aldrich, USA).

Statistical analysis. Statistical significance was evaluated using a Mann-Whitney test. Multiple regressions were used to evaluate multivariable models of data. To evaluate relationships without parametric assumptions, Spearman’s rank correlation was used. P values of <0.05 were considered to be significant. All tests were performed using GraphPad Prism, version 5 (GraphPad Software, USA) and InStat, version 3 (GraphPad Software).

RESULTS

Schaechter et al. defined a proportional relationship between the rate of growth and the ribosomal content in *Salmonella enterica* serovar Typhimurium cells (26), enabling estimates of the bacterial growth rate from the number of ribosomes. Fluorescently conjugated PNA was hybridized to the RNA of intact ribosomes in *P. aeruginosa* cells, and the fluorescent signal was correlated to the growth rate of the bacteria. Based on the use of quantitative PNA-FISH and real-time PCR (RT-PCR) specific for *P. aeruginosa* 16S rRNA, the ribosomal content of *in vitro* pure culture samples taken at different growth phases was determined. The specific growth rate was calculated at the exact sampling time based on optical density (OD) measurements. For each sample, the average number of fluorescence intensity units (FU) emitted by the PNA-FISH-treated cells was quantified. Between 10 and 200 cells were measured at each time point, and the number of rRNA molecules per rRNA gene molecule (i.e., the number of ribosomes per ribosome/protein-encoding gene, or the number of ribosomes) was quantified by RT-PCR. Fluorescence microscopy showed a clear difference in the fluorescence intensity of cells sampled at different growth rates (Fig. 1).

Correlating fluorescence to growth rate. The mean number of FU emitted in pixels, within a threshold that discriminates background fluorescence, was plotted as a function of the number of ribosomes in *P. aeruginosa* cells and the number of rRNA molecules per rRNA gene molecule, as measured by RT-PCR. The black line shows the calculated correlation, and the two dotted lines show the 95% confidence interval. The correlation has an R^2 fit at 0.7222. The relationship is described by $y = 0.0447 \times x + 46.3$. (B) Correlation between the average measured fluorescence intensity (FU) in *P. aeruginosa* and the growth rate determined from OD measurements of bacterial culture samples as a function of time. The black line shows the calculated correlation, and the two dotted lines show the 95% confidence interval. The correlation has an R^2 fit at 0.7627. The relationship is described by $y = (1.146 \times 10^{-5}) \times x - 1.031$.

FIG 1 *Pseudomonas aeruginosa* at different growth rates. The cells were treated with PNA-FISH probes targeting *P. aeruginosa* 16S rRNA. The specific growth rates, in divisions (div) per hour, are indicated on the panels.

FIG 2 Correlations between fluorescence intensity and RNA or growth rate. (A) Correlation between the average fluorescence intensity in *P. aeruginosa* cells and the number of rRNA molecules per rRNA gene molecule, as measured by RT-PCR. The black line shows the calculated correlation, and the two dotted lines show the 95% confidence interval. The correlation has an R^2 fit at 0.7222. The relationship is described by $y = 0.0447 \times x + 46.3$. (B) Correlation between the average measured fluorescence intensity (FU) in *P. aeruginosa* and the growth rate determined from OD measurements of bacterial culture samples as a function of time. The black line shows the calculated correlation, and the two dotted lines show the 95% confidence interval. The correlation has an R^2 fit at 0.7627. The relationship is described by $y = (1.146 \times 10^{-5}) \times x - 1.031$.

PMNs Restrict *P. aeruginosa* Growth in CF Lungs

November 2014 Volume 82 Number 11 iai.asm.org

4479

on May 26, 2015 by guest

Downloaded from http://iai.asm.org on May 26, 2015 by guest
There was a significant \((P < 0.0001)\) linear correlation between FU values and rRNA: number of rRNA molecules per rRNA gene molecule \(= 0.0447 \times \text{FU} + 46.3\) \((R^2 = 0.722)\) (Fig. 2A). The lack of a linear relationship and normally distributed residuals for low levels of FU does not invalidate our conclusion of a significantly positive relationship, as shown by the computed Spearman’s correlation \((\rho = 0.7936, \, P < 0.0001)\). As the specific growth rates were known for each sample, the fluorescence intensity and the rRNA content could be expressed as a function of the growth rate and vice versa. There was also a significant \((P < 0.0001)\) linear correlation between FU and the specific growth rate: growth rate \(= (1.146 \times 10^{-4}) \times \text{FU} - 1.031\) \((R^2 = 0.763)\) (Fig. 2B). These relationships enabled us to estimate the growth rate based on fluorescence intensity measurements. The few outliers that prevent a normal distribution of the data did not alter the statistically significant positive relationship \((\text{Spearman’s correlation}, \rho = 0.9104; \, P < 0.0001)\).

Environmental regulation of ribosomal activity. Quantitative PNA-FISH was used in two starvation experiments to investigate ribosomal content in *P. aeruginosa* in response to sudden carbon/nitrate starvation and O\(_2\) depletion. When the exponentially growing culture was deprived of all carbon or nitrogen sources, a decline in the FU value was observed that could be described as a mono-exponential decay (see Fig. S1A in the supplemental material) \((R^2 = 0.93)\), with an FU decay constant of 58.9\% h\(^{-1}\), which reached an asymptotic value of 8,558 FU after 6 to 7 h. This correlated well with findings from the growth phase study showing a baseline of 8,800 \pm 932 FU (mean \pm standard deviation [SD]) in cells from a very late stationary phase (\(\geq 24\) h after inoculation). When cells were exposed to a sudden shift from oxic to anoxic conditions, resulting in O\(_2\) depletion, a similar exponential decay of FU \((R^2 = 0.91)\) and FU decay constant of 51.4\% h\(^{-1}\) was observed, which reached an asymptotic level of 8,267 FU after 7 h of anoxia (see Fig. S1B).

Growth rates in clinical samples. To directly estimate the growth of *P. aeruginosa* in the lungs of end-stage CF patients, the quantitative PNA-FISH method was used on explanted lungs from three CF patients. Tissue samples \((n = 20)\) were collected to represent all regions of the infected lungs. Many biofilm aggregates were embedded in mucus in the conducting zone and were surrounded by PMNs, consistent with earlier observations \((4)\) (Fig. 3). Using quantitative PNA-FISH, the mean specific growth rate was estimated in each of the biofilm aggregates \((n = 59)\). A high variability in growth rate was found among the samples from all three patients, ranging from 0 to 0.90 divisions per hour (Fig. 4). Similar heterogeneity was also observed within each tissue section. In a 1-cm\(^2\) section, growth rates ranging from 0 to 0.65 divisions per hour were observed. Interestingly, bacteria isolated just prior to lung transplantation were not growth limited in vivo as the median growth rate was estimated to be 1.2 divisions per hour (range, 1.15 to 1.60), which is significantly \((P \leq 0.0058)\) higher than the in situ growth rate of 0.217 divisions per hour (range, –0.10 to 0.67).

Effects of biofilm aggregate size, depth, and diameter on growth rate. The size, depth within the mucus, and diameter of each biofilm aggregate in the CF lung samples were measured, and possible synergistic correlations to the in vivo growth rates of *P. aeruginosa* were investigated by multiple regression analysis. No significant synergistic interactions were found that could explain the observed heterogeneity of the bacterial growth rates, such as size, depth, and diameter \((P \leq 0.3665)\), size and depth \((P \leq 0.2413)\), size and diameter \((P \leq 0.4513)\), or depth and diameter \((P \leq 0.6841)\). The average size of the biofilm aggregates was 520...
μm² (range, 4 to 3,227 μm²). The lack of correlation between growth rate and size is depicted in Fig. 5.

PMN counts and effects on *P. aeruginosa* growth. While aggregate size and location do not affect growth rate in the CF lung, an alternative explanation is that slower-growing aggregates may be limited for an important nutrient. Previous observations show that PMNs increase their O₂ consumption upon contact with bacteria in *vitro* (11, 27); we hypothesized that slow-growing aggregates may be surrounded by significantly higher levels of PMNs than aggregates with a higher growth rate. The number of PMNs was counted within 20 μm around each biofilm aggregate, and a significant inverse correlation was found (ρ = −0.4471, *P* < 0.0004) between the PMN count and the *in vivo* growth rate of *P. aeruginosa* (Fig. 6).

In vitro confirmation of a biostatic function of PMNs. To test whether PMNs can limit the growth of *P. aeruginosa*, bacterial growth rates measured in lung tissue and peak growth rate achieved by isolates. The specific growth rate of *Pseudomonas aeruginosa* was estimated by quantitative PNA-FISH in 59 biofilm aggregates in 20 tissue sections from explanted lungs from three CF patients (solid symbols). The highest exponential (exp) growth measurements from isolates are shown as open symbols. The horizontal line represents the median rate in each patient. Dates of sampling are indicated. pr, patient; **, *P* ≤ 0.01; ***, *P* ≤ 0.001.

![FIG 4](image_url) Growth rates measured in lung tissue and peak growth rate achieved by isolates. The specific growth rate of *Pseudomonas aeruginosa* was estimated by quantitative PNA-FISH in 59 biofilm aggregates in 20 tissue sections from explanted lungs from three CF patients (solid symbols). The highest exponential (exp) growth measurements from isolates are shown as open symbols. The horizontal line represents the median rate in each patient. Dates of sampling are indicated. pr, patient; **, *P* ≤ 0.01; ***, *P* ≤ 0.001.

![FIG 5](image_url) Growth rates versus biofilm aggregate size. Growth rates measured in biofilm clusters in *ex vivo* CF lung tissue are shown as a function of size. There was no significant correlation between size and growth (*P* = 0.1891).

![FIG 6](image_url) Growth rates measured in lung tissue as a function of the number of surrounding PMNs. The specific *in vivo* growth rate of *Pseudomonas aeruginosa* was estimated by quantitative PNA-FISH as a function of the total number of PMNs within a 20-μm radius from the edge of the 59 measured biofilm aggregates in 20 tissue sections of explanted lungs from three CF patients. There was a significant negative Spearman’s correlation (ρ = −0.4471, *P* ≤ 0.0004) between the specific growth rate and the number of PMNs in the surrounding mucus.
growth was examined in vials with filters that physically separated PMNs and bacteria within the same chemical environment. Growth rates in the absence or presence of PMNs were determined after 0, 2, and 4 h. O$_2$ was rapidly depleted in the vials when PMNs were stimulated by PMA (Fig. 7). Quantitative FISH analysis showed significantly lower growth rates of *P. aeruginosa* in the presence of PMNs than in the absence of PMNs after 2 h (P < 0.0001) and 4 h (P < 0.0001) (Fig. 8A and B). To evaluate whether the PMNs restricted the growth of *P. aeruginosa* by O$_2$ limitation, the medium was supplemented with an alternative electron acceptor, NO$_3^-$, which is not affected by PMN metabolism. The growth rate of *P. aeruginosa* in the presence of PMNs and NO$_3^-$ was comparable to that observed without PMNs at both 2 h and 4 h (Fig. 4). The addition of NO$_3^-$ to *P. aeruginosa* in the absence of PMNs did not have any effect on the growth rate.

Growth of *P. aeruginosa* in infected mouse lungs. A pulmonary infection mouse model (21, 28) was used to further elucidate the effect of O$_2$ partial pressure on the *P. aeruginosa* growth rate. By controlling the size of alginate-embedded *P. aeruginosa* micro-
colonies, installation of *P. aeruginosa* was predominantly directed to either the conducting zone (large alginate beads) or the respiratory zone (small alginate beads) of mouse lungs. As is known from human physiology, the respiratory zone is oxygenated due to continuous O$_2$ supply from the venous blood passing alveoli (28). Conversely, the infectious mucus in the bronchi of the conducting zone is anoxic (9). Mice infected with small aggregates showed infection in both the respiratory and conducting airways. In contrast, mice infected with large aggregates showed infection only in the conducting airways. Quantitative PNA-FISH was applied to 34 single aggregates in eight mouse lungs. The *P. aeruginosa* growth rate was significantly higher (P < 0.008) in the respiratory airways than in the conducting airways (Fig. 9). To further characterize the effect of aggregate size on the growth rate of immobilized *P. aeruginosa*, the size of each aggregate was measured and correlated to the estimated growth rate. There was no correlation (P < 0.6) between the size of the aggregate and the bacterial growth rate.

DISCUSSION

Bacterial biofilm aggregates persist in the conducting zone of the lungs of CF patients despite high-dose antibiotic treatment (4). It has long been speculated that the slow growth rates of bacterial cells within chronically infected lungs of CF patients contribute to their tolerance toward antibiotic treatment (29–31), but experimental evidence has been lacking.

In the present study, we demonstrated extremely slow *in vivo* growth of *P. aeruginosa* in the mucus of chronically infected CF lungs. These findings are consistent with the slow growth of *P. aeruginosa* in expectorated CF sputum (18). For the first time, the *in vivo* growth rate of *P. aeruginosa* was directly estimated in a large number of mucus-embedded biofilm aggregates in the lumens of the conducting airways of explanted lungs from three CF patients. These biofilm aggregates had a diameter of 10 to 80 μm and were mostly surrounded by PMNs, in accordance with earlier observations (32). The growth rates among biofilm aggregates in these samples were highly variable, and we could not identify any sub-populations of differentiated growth patterns within the individual biofilm aggregates. Such differential growth patterns of *P. aeruginosa* were previously observed *in vitro* (33–35). Our finding of an undifferentiated growth rate of *P. aeruginosa* aggregates *in vivo* is in accordance with a previous report that calculated a modest (~25%) decrease in the *P. aeruginosa* growth rate for biofilm depths of 40 μm using a continuous-flow biofilm reactor (36). The majority of biofilm aggregates observed in the examined lung samples rarely exceeded 40 μm in diameter. Furthermore, no correlation was found between the size or position of biofilm clusters within the endobronchial mucus in the CF lung tissue and the *P. aeruginosa* growth rate.

The apparent lack of a limiting effect of biofilm aggregate size on *P. aeruginosa* growth *in vivo*, an effect that is typically seen *in vitro*, may be explained by the limited amount of O$_2$ reaching *P. aeruginosa* biofilm aggregates within mucus plugs, where rapid depletion of O$_2$ limits aerobic respiration. Worlitzsch et al. (9) demonstrated anoxic conditions in the endobronchial mucus of infected CF patients, and O$_2$ consumption during the respiratory burst of activated PMNs was proposed as the main cause of the accelerated O$_2$ depletion in infected mucus (15).

P. aeruginosa growth rates in the biofilm aggregates *in vivo* were compared to the numbers of PMNs surrounding the biofilms. Interestingly, the growth rates in the biofilm aggregates decreased...
with an increase in the number of PMNs surrounding the biofilm aggregates. The reduction in growth rate may be owing to PMN consumption of O_2, which reduces aerobic respiration in $P. \text{aeruginosa}$ (37). Growth rates of $P. \text{aeruginosa}$ are decreased under low-O_2 conditions (17), possibly because O_2 is an essential electron acceptor for ATP generation during aerobic respiration. By supplying $P. \text{aeruginosa}$ with $\text{NO}_3^-/\text{H}_2\text{O}_2$ as an alternative electron acceptor for anaerobic respiration (38), the limitation of aerobic respiratory metabolism was alleviated, and $P. \text{aeruginosa}$ growth rates increased significantly, even in the presence of PMNs. We speculate that such conditions are representative of the anoxic environment of $P. \text{aeruginosa}$ in the endobronchial mucus of CF lungs, where high concentrations of PMNs surround the biofilm aggregates and where the concentration of $\text{NO}_3^-/\text{H}_2\text{O}_2$ is sufficiently high to support growth by anaerobic respiration (10, 39).

The PMN-induced inhibition of $P. \text{aeruginosa}$ growth was greatest in biofilms surrounded by approximately 30 PMNs. The growth-inhibitory effect was lower in biofilms surrounded by a higher number of PMNs, perhaps because there is a critical mass of PMNs at which the strong hypoxia approaches complete anoxia. At this point, the absence of O_2 would presumably prevent any further O_2-dependent growth delay by the additional accumulation of PMNs. The slight increase in the $P. \text{aeruginosa}$ growth rate observed at very high PMN concentrations could be owing to the increased availability of NO_2^- and NO_3^-. PMNs can produce both nitrite and nitrate in the CF lung (40), and this may enable the growth of $P. \text{aeruginosa}$ through anaerobic respiration by denitrification (39). It was also recently shown that PMN production of nitric oxide, which is an intermediate produced during denitrification in infected CF sputum, leads to oxygen consumption (10).

FIG 8 Effects of PMNs on $P. \text{aeruginosa}$ growth *in vitro*. Changes in the growth rate of $P. \text{aeruginosa}$ in the absence (Bac alone) or presence (Bac + PMN) of PMNs, untreated or supplemented with $\text{NO}_3^-/\text{H}_2\text{O}_2$, were determined. (A) Growth after 2 h of treatment. (B) Growth after 4 h of treatment. The growth rate was lower in $P. \text{aeruginosa}$ samples with PMNs than in samples of $P. \text{aeruginosa}$ alone. The effect of the PMNs could be alleviated by the addition of $\text{NO}_3^-/\text{H}_2\text{O}_2$. The horizontal line represents the median growth rate. ***, $P < 0.001$.

FIG 9 Growth rates of $P. \text{aeruginosa}$ observed in mouse model. The specific *in vivo* growth rate of *Pseudomonas aeruginosa* was measured in the conducting or respiratory airways of seven mice by quantitative PNA-FISH ($n = 34$ single observations). The growth rate was significantly higher ($P \leq 0.0077$) in respiratory airways than in conducting airways. The horizontal line represents the median growth rate. **, $P \leq 0.01$. ** PMNs Restrict $P. \text{aeruginosa}$ Growth in CF Lungs

November 2014 Volume 82 Number 11 iai.asm.org

Downloaded from http://iai.asm.org on May 26, 2015 by guest
The observed relationship between the _P. aeruginosa_ growth rate and the assumed availability of _O_2 in CF lungs was confirmed by our findings in a mouse model, where immobilized _P. aeruginosa_ grew faster in respiratory airways than in conducting airways. The biofilm aggregates in the alveoli are provided with a continuous supply of _O_2 due to their close proximity to the arterial blood supply, in contrast to biofilm aggregates in the conducting airways, where the _O_2 availability is lower (28, 41).

Therefore, _O_2 availability is a key factor regulating _P. aeruginosa_ growth in the lungs of CF patients, and PMNs in infected mucus can inhibit the growth of _P. aeruginosa_ by _O_2 depletion through their respiratory burst. The aerobic _in vitro_ growth of _P. aeruginosa_ isolates from CF patients is 2- to 3-fold slower than that of laboratory reference strains, probably owing to genetic adaptation to low-oxygen conditions _in vivo_. Besides such adaptations, our data point to an active _growth-limiting_ effect caused by the persisting metabolic state of inflammatory cells that respond to the biofilm aggregates. Therefore, in addition to the decreased lung function associated with endobronchial PMN accumulation (42), bacterial proliferation is also dependent on PMN activity in infected CF lungs.

The increasing growth rate of _P. aeruginosa_ in response to _NO_3⁻ supplementation demonstrates that _P. aeruginosa_ may be able to continue growing under PMN-induced _O_2 depletion by employing anaerobic respiration by denitrification in the infected endobronchial mucus in CF patients. Denitrification by _P. aeruginosa_ during chronic lung infection in CF is evidenced by a denitrification biomarker, the porin OprF, in CF sputum (11) and the upregulation of genes for denitrification in CF isolates (13, 14). Furthermore, we recently demonstrated active denitrification in freshly expectorated sputum from CF patients with chronic _P. aeruginosa_ infection following measurements of _N_2O production (a key intermediate in denitrification) and simultaneous nitrate depletion followed by nitrite depletion (10). Denitrification during chronic lung infection in CF may also be used by other CF pathogens because we recently demonstrated the genetic setup for denitrification as well as anaerobic _N_2O production in _Achromobacter xylosoxidans_ (43), an emerging CF pathogen that induces an inflammatory response resembling the response induced by _P. aeruginosa_ (44). Consumption of glucose by activated PMNs (43, 46) may lead to a reduction in available glucose, which may also limit the growth of _P. aeruginosa_ (47, 48). However, the high levels of glucose (2 to 4 mM) in CF airway fluids (49) suggest that bacterial growth in infected mucus is not limited by available glucose. The extent to which the ability of _P. aeruginosa_ to grow anaerobically on _l-_arginine, by substrate-level phosphorylation (50), is affected by the consumption of _l-_arginine by activated PMNs (51) in CF sputum remains to be firmly established. However, the reportedly high levels (approximately 300 mM) of _l-_arginine in infected CF sputum (52) do not support growth limitation by _l-_arginine depletion.

The bactericidal effects of most antibiotics rely on metabolically active, growing bacteria (53). Therefore, our results offer a new possible explanation for why antibiotic treatment can clear bacteria in the respiratory zone but not in the conducting zone of CF lungs (4). Higher _P. aeruginosa_ growth rates observed in the respiratory airways of mice with higher _O_2 availability may correspond to an infected untreated CF patient. However, when patients are undergoing intravenous administration of antibiotics, the higher growth rate in the respiratory airways, combined with proximity to alveolar capillaries, would result in the improved clearance of _P. aeruginosa_ infecting the respiratory zone. In contrast, the low growth rate in the conducting airways protects bacterial cells from antibiotic treatment, and these areas can serve as a reservoir for future recolonization of respiratory airways (2, 4, 18).

In conclusion, our results suggest that PMNs control the growth of _P. aeruginosa_ in chronically infected CF lungs. Our demonstration of PMN-related restriction of bacterial growth suggests, for the first time, that a bacteriostatic effect due to intensive _O_2 depletion contributes to the antibacterial activity of activated PMNs. However, _P. aeruginosa_ seems well adapted to life under constant _O_2 depletion by PMNs because the bacteria in the biofilm aggregates can employ anaerobic respiration by denitrification to exploit alternative electron acceptors such as _NO_3⁻, albeit with a lower energy yield. Such long-term persistence of _P. aeruginosa_ under low, but stable, energy conditions may explain its low susceptibility to antibiotic treatment and enable it to adapt to the biofilms of chronically infected CF lungs.

ACKNOWLEDGMENTS

We thank Anne Kirstine Nielsen for excellent technical assistance, Pia Bach Jakobsen for help with DNA/RNA purification, Heidi Marie Paulsen and Lise Strange for cutting CF lung tissue samples, and Bodil Bojesen, Sys Jørgensen, and Anett Wollesen for cutting mouse lung samples. AdvanDx generously supplied the PNA-FISH probes.

Financial support was provided by grants from the Gerda og Aage Haenschs Fond to T.B., the Human Frontier Science Program to T.B., the Lundbeck Foundation to T.B., and the Danish Council for Independent Research to M.K.

We declare that we have no conflicts of interests.

REFERENCES

10. Kolpen M, Kuhl M, Bjarnsholt T, Moser C, Hansen CR, Lienggaard L,

Downloaded from http://iai.asm.org on May 26, 2015 by guest

Kragh et al.

