<table>
<thead>
<tr>
<th>Title</th>
<th>Regenerative medicine for oesophageal reconstruction after cancer treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chian, Kerm Sin; Leong, Meng Fatt; Kono, Koji</td>
</tr>
<tr>
<td>Citation</td>
<td>Chian, K. S., Leong, M. F., & Kono, K. (2015). Regenerative medicine for oesophageal reconstruction after cancer treatment. The lancet oncology, 16(2), e84-e92.</td>
</tr>
<tr>
<td>Date</td>
<td>2015</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/25831</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2015 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by The Lancet Oncology, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/S1470-2045(14)70410-3].</td>
</tr>
</tbody>
</table>
Regenerative medicine for oesophageal reconstruction after cancer treatment

Kerm Sin Chian PhDa, Meng Fatt Leong PhDb, Koji Kono MDc,d

\textit{All authors contributed equally to this review.}

a School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798

b Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669.

c Department of Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore 119228

d Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599

Correspondence to:
Kerm Sin Chian PhD, School of Mechanical & Aerospace Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798

\textbf{Abstract}

Current surgical procedure of removing malignant tissue in oesophageal cancer and replacing the excised tissues with autologous grafts from the stomach and colon is not without its problems. The need to reduce stenosis and/or anastomotic leakage after oesophagectomy remains high priority. However recent developments in tissue engineering methods and cell sheet technology have enabled improved scaffold materials for oesophageal repair. Despite the large number of publications of successful animal studies, few tissue-engineering approaches have progressed to clinical trials. In this review we shall discuss the recent status of oesophagus reconstruction after surgery. In particular, two recent trials using decellularised constructs and epithelial cell sheets to replace excised tissues after ESD/EMR procedures will be highlighted. The clinical trials showed that both decellularised graft and epithelial cell sheets prevented stenosis after ESD/EMR. In contrast, animal studies have shown that the use of tissue engineered constructs after oesophagectomy remains a challenge.

\textbf{Introduction}

Oesophageal cancer is the sixth most frequent cause of cancer death worldwide and affects more than 450,000 people all over the world.1 Most patients with oesophageal cancer in Asia countries such as Japan and China have squamous cell carcinoma (SCC), while most of those in Western countries have adenocarcinoma.2,3 In particular, the incidence of oesophageal adenocarcinoma in UK is rapidly increasing, in which the age-adjusted incidence has risen by 39.6\% for men and 37.5\% for women every five years.3 Despite improvements in surgical techniques and periooperative management,4,5 and surgery combined with chemotherapy and/or radiotherapy,6,7 the prognosis of oesophageal cancer at advanced stage remains poor.
This is mainly due to the biologically aggressive behavior of the disease, with high incidence of lymph node and distant metastasis. The five year survival rates have been reported to be 15-25% and a majority of the patients died of disease progression or disease recurrence.1,8 Surgical interventions are broadly divided into two main categories, namely oesophagectomy and endoscopic treatments. It is generally accepted that there is a high incidence of anastomotic leakage with oesophago-gastrostomy and stricture with endoscopic treatments.

There is a need to reduce complications such as anastomotic leakage and stenosis resulting from oesophageal surgery. Addressing these challenges would require additional tissue and/or material for surgical reconstruction to provide structural continuity and integrity, tissue integration, and anastomosis of the surgical sites. Although autologous tissue grafts such as stomach and colon are available for surgical reconstruction, it is more desirable to have a readily available replacement without additional surgical procedures. In contrast, tissue engineering can potentially offer ready-to-use constructs. These constructs, which consist of cells and/or biomaterials organized appropriately in a three-dimensional manner, can be used for surgical reconstruction to replace the excised tissues. In recent years, tissue engineering constructs have successfully been used in clinical reconstruction of bladder,9 trachea,10 and cartilage defects.11

In this review, we shall highlight some of the recent developments in oesophageal reconstruction after cancer surgery, which include: (1) to discuss the possible complications from existing surgical treatments of oesophageal cancer, (2) to highlight the basic principles of engineering a tissue construct, and (3) to identify promising tissue engineering strategies that could improve the surgical outcomes based on recent clinical trials and animal studies.

Oesophagectomy

During oesophagectomy, a gastric tube made by whole or subtotal stomach is commonly used as the reconstructed organ. Since oesophagectomy is extensive and invasive, it had been reported that there was a high mortality (23%) and morbidity (26-41%) in the past,12 even if the tumor was curatively resected. Recent advances in surgical techniques and perioperative intensive care has reduced the mortality rate to 1.7%.13 In particular, there is a relatively high incidence (3%–24%) of anastomotic leakage with oesophago-gastrostomy, which causes stricture after spontaneous healing or leads to fatal septic complications such as pyothorax.14 Furthermore, dysfunctions of the reconstructed organ, such as stricture or regurgitation of enteral contents can lead to dysphasia, heartburn, and even fatal complication such as aspiration pneumonia.

Traditionally, surgical options for resection of oesophageal carcinoma include transhiatal and transthoracic approaches.8 After oesophagectomy, a gastric tube pull-up made by whole or subtotal stomach is the preferred choice as the reconstructed organ, and colon conduit or supercharged jejunal flap are considered when the gastric tube is not available. However, the oesophagectomy procedure is complex and invasive and is often associated with high mortality and morbidity. Therefore, treatment in high-volume centres with experienced surgeons and the availability of critical-care support is associated with improved outcomes.12
In order to reduce complications of oesophagectomy and improve patient’s quality of life, minimal invasive oesophagectomy has been introduced. A randomized trial of minimally invasive oesophagectomy compared with open oesophagectomy showed a decrease in the frequency of pulmonary complications in the minimally invasive group. In this trial, minimally invasive oesophagectomy resulted in a lower incidence of pulmonary infections, a shorter hospital stay, and better short-term quality of life than did open oesophagectomy, with no compromise in the quality of the resected specimen. However, even though the minimally invasive group showed the shorter hospital stay, there was still a high incident of anastomotic leakage with 12% in the group, suggesting that incidence of anastomotic leakage after oesophagectomy has not been improved in spite of lesser invasive approach.

It has been proposed that the reasons for anastomotic leakage of oesophago-gastrostomy after oesophagectomy include poor arterial inflow, insufficient venous drainage, high mechanical tension from over stretching of the stomach tube, technical problems in the suturing of the anastomosis, and poor nutritional status. In order to reduce anastomotic leakage technically, several surgical options have been proposed including the use of a slender gastric tube, the supercharge technique, which involves additional vascular anastomosis of the gastric tube by microsurgical techniques and the use of auto-suturing techniques using a stapler device. There is, however, no definite solution to overcome the anastomotic leakage, for example, meta-analysis of RCTs that compared hand-sewn anastomosis versus mechanical anastomosis using a circular stapler concluded that the use of a stapler contributed to reducing the length of the operation, but was associated with an increased risk of anastomotic strictures.

Endoscopic treatments
Endoscopic submucosal dissection (ESD) or endoscopic mucosal resection (EMR) has been considered as the standard treatment for superficial oesophageal cancer and Barrett’s oesophagus with dysplasia. Endoscopic resection for these early malignant and premalignant lesions is considered as a minimally invasive curative treatment with low morbidity. However, in most endoscopic resection treatments, there is still high incidence of stenosis, leading to dysphagia. Of note, postoperative stricture in the oesophagus is frequently seen after resection of nearly circumferential lesions, in which the stricture rate after ESD was reported to be 18% and those after stepwise EMR were 52-67%. At present, several medical interventions are proposed as the prophylactic options for the stricture after ESD or EMR; intraluminal steroid injection, self-expandable metal stenting, and preventive balloon dilatation. However, there are a number of debates regarding the advantages and disadvantages of the options, and the clinical outcomes were inconsistent. Patch reconstruction with tissue engineered constructs could provide a more viable solution after ESD or EMR.
Tissue engineering approach

The term “Tissue Engineering” is often used to describe, “an interdisciplinary field that applies the principles of biology and engineering toward the development of biological substitutes that restore, maintain, or improve tissue function”. Tissue engineering has been used synonymously with tissue regeneration because of its potential for restoring organ structure and functions. The history of tissue engineering dates back to the 1980s when the first tissue engineered skin was successfully used clinically. The idea of growing and regenerating tissues and organs with the host’s cells is clinically attractive.

Central to the tissue engineering approach is the role of the scaffold material. With the exception of the blood cells, all mammalian cells are anchorage dependent and therefore requiring scaffold support. In the human body, the extracellular matrices (ECM) are the native scaffolds. There are many types of ECM found in tissues and organs, and these include the vast family of collagens, elastic fibres, glycosaminoglycans, proteoglycans and adhesive glycoproteins. The composition of the ECM varies depending on the type and function of the tissue or organ. In order to tissue-engineer a scaffold, a good understanding of the structure and functions of these ECM in the human tissues is essential.

ECM are naturally biodegradable macromolecules that provide a variety of biologically significant functions and some of these include (i) a three-dimensional (3D) environment for cell-cell and cell-matrix interaction necessary for cell attachment, migration, and proliferation, (ii) provision of a stable and yet degradable structure that allows tissue remodeling in response to physiological and pathological needs, (iii) a storage place for a range of growth factors for tissue development and functions, and (iv) an environment for neovascularisation to ensure exchange of nutrients and metabolic wastes from the cells and tissues can take place. A more detailed discussion on extracellular matrices can be found elsewhere.

Likewise, tissue-engineered scaffolds must have properties similar to the ECM. Some of these important scaffold properties are: (i) highly interconnecting porous structures with well-controlled pore size, (ii) provision of a 3D environment that supports cellular interactions that controls cell adhesion, migration, and proliferation, and (iii) degradable structure that provides initial structural and mechanical support during tissue development but is completely resorbable during tissue remodeling.

Porosity of the scaffold is important for cell infiltration into the scaffold necessary for tissue formation. The interconnectivity of the pores is necessary for the formation of capillaries that carry nutrients to the cells and remove metabolic wastes. Studies have shown that cells must be within 100 – 200 microns from the capillaries to remain viable. Recent studies have also shown that the extent of inflammation response by macrophages and angiogenesis in scaffold are influenced by the size of the pores. Scaffolds with pore size between 30 – 40 microns promote angiogenesis and reduce fibrotic response.
Adhesion of cells on the scaffolds is the crucial step towards cell migration and proliferation. Hence, most synthetic polymer scaffolds such as poly(lactide-co-glycolide), poly(caprolactone), and fumarate-based polymers need to be modified with adhesion proteins for cell attachment. Incorporation of growth factors on synthetic polymer scaffolds to promote cell growth and proliferation is also a common practice in tissue engineering.

Scaffold materials must be biodegradable and tissue compatible. The degradation product(s) of scaffold must be non-toxic and readily removed by the cells or resorbed. However, all scaffold materials, even collagen obtained from animal sources, are recognized by the host immune system as foreign bodies. Inflammatory reaction persists until all the foreign body is removed. Chronic inflammation due to foreign body invariably leads to fibrous capsule formation surrounding the scaffold. In addition, the rate of scaffold degradation must also be comparable to the regeneration rate of the extracellular matrices. The degradation profile of scaffold materials can differ based on different implant sites, pore structure and surface chemistry. Studies have shown that the optimal degradation half-life of scaffolds for repairing skin and peripheral nerve wounds should be around 2-3 weeks. Further material modifications, such as crosslinking of scaffolds to achieve mechanical and structural stability, may be carried out to alter their degradation rates.

Tissue engineered constructs for oesophageal reconstruction

Tissue engineered constructs can be used in the form of a patch or tubular grafts for oesophageal reconstruction (figure 1). The goal is to initially provide physical closure, and ultimately regenerate a functional oesophageal tissue. Often, long lengths of the oesophagus are removed thus requiring a long tissue engineered replacement constructs. The applications of both acellular and cellular grafts have demonstrated reasonable success in post-operative tissue replacement in animal models and pre-clinical studies. Table 1 summarises the use of tissue engineered patch or tubular constructs that have been used in oesophageal reconstruction after ESD/ EMR or oesophagectomy.

Acellular grafts

There are two kinds of acellular grafts that are used for oesophageal reconstruction research and trials. Acellular grafts can either be made from synthetic degradable polymers, and natural sources such as collagen and decellularised tissues or organs obtained from animals.

During surgical reconstruction, acellular grafts are used to replace the length of oesophagus removed during surgery. The success of the oesophageal reconstruction is determined by the ability of the acellular graft to regenerate a functional tissue without leakage and/or stenosis. Several graft properties that are crucial to the regeneration process include the following: (1) the ability to attract host oesophageal epithelial and smooth muscle cells into the graft, (2) the graft material must be non-toxic to the cells (3) the degradation profile of the graft must be comparable to the rate of tissue remodeling, and (4) the graft must modulate tissue integration processes such as vascularisation, scarring, wound contraction, and innervation.
Synthetic acellular polymeric grafts have the advantages of being xeno-free, readily available and reproducible. Although synthetic polymers lack bioactive molecules, the grafts can be surface modified with bioactive molecules such as collagen, laminin and fibronectin to attract and enhance cell attachment. Early success was reported with the use of silicone and collagen hybrid tubes in canine models. These hybrid tubes were used to bridge 5cm oesophageal defects in the animals for up to 24 months. The silicone tubing served as a stent and was endoscopically removed at various periods for up to 4 weeks. Those animals with the silicone stents removed at 4 weeks had regenerated stratified epithelium and formation of striated muscle tissue. However in animals where the silicone stents were removed before 4 weeks, stenosis, graft shrinkage, and incomplete epithelialisation and muscle cells in-growth were observed.

In a recent porcine study, porous surgical meshes made from biodegradable polyester were used for oesophageal reconstruction. A temporary synthetic stent was also used to keep the lumen open and stabilize the implant. At 12 weeks after surgery, the epithelium and muscle tissues resembling the native oesophagus were found on the replacement graft. These initial evidences demonstrated that these temporary acellular grafts have promising potentials for oesophageal defect reconstruction and regeneration.

Despite the satisfactory results in the use of synthetic acellular grafts in animal models, no clinical trials have been conducted to evaluate their performance. In contrast, acellular matrices from decellularised tissues have been evaluated clinically. These acellular matrices are produced by removing all the cellular and nucleus components whilst preserving the native collagenous environment, which contains physical and biochemical components of the native ECM. Various methods of decellularisation have been discussed elsewhere. These decellularised matrices can be resorbed in vivo, with the degradation profile and tissue remodeling outcomes depending upon the anatomic site. The degradation profiles of porcine decellularised small intestinal submucosa (SIS) were studied by labeling the ECM with radioactive isotopes. These labeled ECM were used in repairing urinary bladder and Achilles tendon in canine models. In both studies, the SIS degraded by 40-60% in 4 weeks. Complete degradation of the SIS was observed by 60 days and 90 days in the Achilles tendon and urinary bladder studies respectively.

In a separate study involving the use of porcine SIS and urinary bladder matrix (UBM) for oesophageal patch repair, complete degradation of the decellularised matrices were observed within 30 to 60 days. In addition, during degradation, these decellularised matrices also release biochemical components known to promote angiogenesis, cell migration, and proliferation. Decellularised UBM implanted after circumferential EMR was shown to prevent stenosis, which is a common surgical outcome, for up to 2 months. Histological analysis of the oesophageal replacement at 2 months also showed a lack of inflammation and scar tissues.

Since 2011, two clinical trials and two clinical practices to reconstruct oesophageal tissues using commercial decellularised matrices, such as porcine small intestinal submucosa (SIS,
In one of the clinical practices, a 8-layer UBM mesh was used in a patch oesophagoplasty procedure to repair the oesophageal defects in 4 patients. All the patients had severely diseased oesophagi and had received varying forms of surgical augmentations but suffered from oesophageal stenosis prior to patch oesophagoplasty. The UBM mesh was layered such that its basement membrane formed the luminal surface of the patch so as to enhance the recruitment and attachment of the host epithelial cells. After the procedure all 4 patients had partially restored oesophageal functions and improved quality of life.

In the other clinical practice, SIS was used to replace excised oesophageal tissue after circumferential ESD/EMR. All 3 patients with oesophageal high-grade dysplasia and superficial adenocarcinoma, but with no disease invasion to the lymph nodes, were selected for the treatment. The SIS was used with a temporary intraluminal stent that was removed between Day 9 – 19. Post-operatively, stricture occurred due to stent movement or incomplete coverage of the resected area with the SIS matrix. However, after oesophageal dilatation procedure, all 3 patients remained disease-free and without dysphagia for up to 21 months. Despite the small number of patients treated with acellular decellularised matrices, the preliminary results are nonetheless promising and offer good potential for oesophageal reconstruction and regeneration.

Cellular grafts

In contrast to acellular grafts, cellular grafts are tissue engineered constructs that are pre-seeded with host cells (figure 2). Biologically it would be ideal if the replacement cellular graft closely resembles the native anatomy of the human oesophagus. Using tissue engineering methods, oesophageal grafts with luminal epithelial cells and abluminal layers with smooth muscle, endothelial, and other stromal cells have been achieved. Successful strategies for vascularising this full thickness cellular graft include the use of omentum or latissimus dorsi to provide vascular supply to the transplanted cells.

Several studies have shown that cell seeded constructs performed better than acellular scaffolds in promoting earlier tissue remodeling, reducing inflammatory response and preventing stricture in oesophageal reconstruction. Patch replacement for porcine oesophageal defects using decellularised porcine oesophageal matrix seeded with autologous smooth muscle cells resulted in earlier tissue remodeling and less inflammatory response. In a canine study, the role of the epithelial cells in promoting tissue integration and preventing stricture was also observed. A tissue engineered oesophageal tissue was constructed containing oral keratinocytes, fibroblasts, and stomach smooth muscle tissue. Keratinocytes and fibroblasts were cultured on the luminal side of the basement membrane of a human amniotic membrane. The cellular membrane was then wrapped on the outside with a polyglycolic (PGA) mesh, which contains autologous smooth muscle tissues, forming a tube. A two-stage surgical procedure on dogs was used to develop the full thickness oesophageal graft. The tubular construct was first wrapped with omentum and then implanted in the abdomen of a dog for 3 weeks to establish a squamous epithelium and vascularised thick
muscle tissue. In a second surgery, the implanted cellular construct was used to replace an oesophageal defect created on the same dog. 66% of the dogs receiving constructs with regenerated epithelium did not develop stricture. In contrast, all dogs receiving the control constructs without regenerated epithelium developed stricture. These animal studies show that clinical success in oesophageal regeneration depends on the replacement graft ability to recapitulate the native anatomical structure and maintaining tissue viability.

Besides seeding oesophageal cells on 3D scaffolds, cell sheets have been used to repair oesophageal ulcerations and to prevent stricture after ESD in dogs and clinical studies. Oral mucosal epithelial cells were cultured on thermo-responsive surfaces for 2 weeks. The cells were harvested as cell sheets, and introduced to the defect sites endoscopically in a single operation. Lateral contacts between the epithelial cells in the cell sheets were ensured and coverage of the excised submucosa was achieved immediately. Details of the clinical trial will be elaborated in a later section.

In another tissue engineering strategy, freshly harvested oesophageal organoid units were used to populate a poly(glycolic acid) tubular construct. These organoids were harvested from healthy oesophagus tissues that consist of a mixture of cells, with the epithelial cells on the periphery of a mesenchymal core. Similar to the previous method, the tubular construct was first implanted with the omentum, and subsequently removed after 4 weeks for oesophageal reconstruction. The tissue-seeded constructs were used as patch and interposition grafts in rats for up to 42 days. Histological sections showed formation of a neo-oesophageal tissue that resembled the native oesophagus. Stenosis was observed in interposition grafts. Importantly, organoid units harvested from two out of three adult rats were able to reorganize into the tissue-engineered oesophagus.

The use of a decellularised matrix seeded with bone marrow-derived mesenchymal stromal cells (BMSCs) to facilitate regeneration of oesophageal tissues was reported. Clinically, BMSCs have been used to repair cartilage defects and they have been shown to be non-tumourigenic. Compared to other autologous sources such as oesophageal cells or iPSC-derived cells, BMSCs are more readily available and could be harvested from bone marrow aspirates. Decellularised tissue matrices seeded with BMSCs have been shown to promote tissue remodeling, vascularization, and recruitment of epithelial and muscle cells in patch oesophagoplasty in canine model. In a recent study, allogeneic rat BMSCs were observed to spontaneously differentiate into epithelial and muscle-like cells when cultured for 3 weeks on the adluminal and abluminal sides of decellularised rat oesophageal matrices respectively. It was reported that spontaneous differentiation was induced by the presence of appropriate biochemical cues on the decellularised oesophageal matrices. The cell seeded constructs were used to replace the entire cervical oesophagus. Histological analysis of the explanted grafts after 14 days showed functional epithelium, regenerated muscle, nerve and vascular tissue structures. These studies demonstrate a new strategy involving the use of BMSCs with decellularised matrices could enhance the regeneration of the oesophagus.
Cell source
Before an engineered cellular graft can be realized, there is a need to establish reliable, readily available and clinically relevant sources of oesophageal cells. Several reports have demonstrated the feasibility of isolating and expanding two major oesophageal cell types, epithelial cells and smooth muscle cells, in vitro. These oesophageal cells were isolated from human, rat, porcine, and canine sources. Typically, cell isolation protocols involve firstly dislodging the epithelium from the basement membrane and then harvesting the epithelial cells. For harvesting smooth muscle cells, the extracellular matrices are treated with enzymes such as collagenase and elastase to free the muscles cells. Although it is possible to obtain cells from healthy autologous oesophageal tissues, it is often challenging as the process of obtaining biopsy samples could lead to scarring and is highly dependent on the extent of the cancer. There are also problems associated with expanding these highly differentiated adult cells consistently and rapidly for cell seeding purposes.

Recent advances in cellular reprogramming technology have made it possible to create patient-specific induced pluripotent stem cell (iPSC). iPSCs are generated by treating adult cells with a cocktail of 4 specific genes for reprogramming. This technology has enabled a self-renewal human cell source, which can be further differentiated into the required oesophageal cell types. However, there is currently no established protocol to differentiate iPSCs to both oesophageal epithelial and smooth muscle cells. There are other challenges in the use of iPSCs-derived oesophageal cells and these include the purity of the cell population, their potential tumourigenicity, and the re-acceptance of the newly derived cells by the host despite their autologous origin.

Clinical trials of regenerative medicine after resection of the oesophageal cancer
Two clinical trials on the prevention of oesophageal stenosis have recently been reported. In 2011, Badylak et al. utilized the decellularised matrix (ECM, SurgiSis®) and in 2012, Ohki et al. used engineered cell sheets for post- EMR and ESD treatments respectively.

In one trial, Badylak et al. utilized the decellularised matrix on the ulcer after multiple EMR for Barrett’s oesophagus in 5 patients, followed by stents concurrently and removed later on. Four months after the treatment, a nearly complete mature epithelium was positively identified by histological analysis with cytokeratin staining. Postoperative complications included small perforations and stent migration (Table 2).

Clinical trial conducted by Ohki et al. showed an approach in 9 patients using cell sheets cultured from autologous oral mucosal epithelial cells after ESD for superficial oesophageal cancer. Cell sheets were transplanted to the mucosal defects after ESD, and a beneficial healing effect was observed in the follow-up, notably with only 1 patient experiencing stenosis (Table 2).

In the case of oesophagectomy, there has been no clinical trial and most treatments in animal models resulted in stenosis (Table 1). However, observations from recent clinical trials involving patch replacement seem to suggest that stricture can be reduced when the
A tissue engineered construct has complete intact layers of epithelium and smooth muscle tissues. Such a viable construct would consist of a decellularised matrix supporting the epithelium and muscle tissue, as demonstrated in a rat model presented in a recent study. More developmental work needs to be done for the replacement tissue after oesophagectomy.

Conclusions

Tissue engineered constructs have been shown to be a promising and viable replacement in oesophageal reconstruction and regeneration. Two recent clinical trials and similar animal studies have shown that decellularised matrices and cell sheets tissue engineering approaches are able to reduce the incidences of stricture and to improve the outcome after ESD/EMR. However, the number of patients involved in these clinical trials is relatively small and a more extensive clinical study is needed to establish the efficacy of these approaches. Full thickness tissue replacement after oesophagectomy remains a challenge. It is hoped that advances in stem cell and cell sheet technologies could provide the ultimate solution to the current complications encountered after oesophagectomy.

Conflict of interest

The authors declared no conflict of interest.

Search strategy and selection criteria

References for this review were identified by searches of PubMed and Web of Science databases. Search criteria includes the terms “oesophageal tissue engineering”, “decellularised matrix”, “oesophageal cell”, “cell sheet engineering”, “oesophageal reconstruction”, “oesophageal cancer”, and “oesophageal surgery”. The focus of the search is on the use of tissue engineering solutions for oesophageal reconstruction in animal models or clinical trials since Year 2000. Only papers published in English were reviewed.

Acknowledgements

K.S. Chian would like to acknowledge the generous support from the Nanyang Technological University (Singapore) and the Singapore Agency for Science, Technology and Research (A*STAR) for the research funding (BMRC Grant No: 07/1/22/19/541). M.F. Leong is supported by the Institute of Bioengineering and Nanotechnology (Biomedical Research Council, Agency for Science, Technology and Research, Singapore). K. Kono is supported by a Clinician Scientist Award (CSA) and Clinician Scientist-Individual Research Grant (CS-IGR) from the National Medical Research Council of Singapore.
References

40. Soller EC, Tzeranis DS, Miu K, So PTC, Yannas IV. Common features of optimal collagen scaffolds that disrupt wound contraction and enhance regeneration both in peripheral nerves and in skin. Biomaterials 2012;33(19):4783-91.

Figure 1 Tissue engineering solutions for endoscopic resections (ESD/EMR) and oesophagectomy.
Figure 2 Tissue engineering approach in constructing a cellular oesophageal construct.
<table>
<thead>
<tr>
<th>ESD / EMR</th>
<th>2000 – 2009</th>
<th>2010 - present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acellular</td>
<td>Synthetic materials</td>
<td>Jansen et al. (2004) 42 †</td>
</tr>
<tr>
<td></td>
<td>Decellularised matrices</td>
<td>Badyläk et al. (2000) 46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Badylak et al. (2005) 74 †</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marzaro et al. (2006) 52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lopes et al. (2006) 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nieponie et al. (2009) 57</td>
</tr>
<tr>
<td></td>
<td>Synthetic materials</td>
<td>Grikscheit et al. (2003) 61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decellularised matrices</td>
<td>Marzaro et al. (2006) 52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wei et al. (2009) 71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cell sheet</td>
<td>Ohki et al. (2008) 65</td>
</tr>
<tr>
<td></td>
<td>Synthetic materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decellularised matrices</td>
<td>Badylak et al. (2000) 46 †</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Badylak et al. (2005) 74 †</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lopes et al. (2006) 75 †</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doede et al. (2006) 76 †</td>
</tr>
<tr>
<td></td>
<td>Synthetic materials</td>
<td>Grikscheit et al. (2003) 61 †</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decellularised matrices</td>
<td>Nakase et al. (2008) 63 †</td>
</tr>
</tbody>
</table>

In vivo models: Human, Rat, Dog, Pig, Rabbit
Problems: † Leakeage, † Stenosis, † Construct dislocation / migration
Table 2 Clinical trials of regenerative medicine after oesophageal cancer treatment.

<table>
<thead>
<tr>
<th></th>
<th>Badylak et al. (2011)</th>
<th>Ohki et al. (2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of patients</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Age</td>
<td>62.2 y.o. (54-68)</td>
<td>68.7 y.o. (55-80)</td>
</tr>
<tr>
<td>Pathology</td>
<td>Barrett’s Eso with HGD</td>
<td>ESCC</td>
</tr>
<tr>
<td>Endoscopic treatment</td>
<td>Multiple EMR/RFA/PDT</td>
<td>ESD</td>
</tr>
<tr>
<td>Resection size</td>
<td>8-13 cm in length</td>
<td>38.8 x 32.8 mm</td>
</tr>
<tr>
<td>Biological materials</td>
<td>Biological scaffold materials composed of xenogeneic extracellular matrix</td>
<td>Autologous cell sheet</td>
</tr>
<tr>
<td>Concurrent treatment</td>
<td>stenting</td>
<td>No</td>
</tr>
<tr>
<td>Postoperative stricture</td>
<td>No case for applied lesion</td>
<td>1 stricture</td>
</tr>
<tr>
<td></td>
<td>5 cases for not applied lesion</td>
<td></td>
</tr>
<tr>
<td>Major complications</td>
<td>1 muscle tear</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1 perforation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 stent migration</td>
<td></td>
</tr>
</tbody>
</table>

Eso, oesophagus; HGD, high grade dysplasia; EMR, endoscopic mucosal resection; RFA, radiofrequency ablation; PDF, photodynamic therapy; ESCC, oesophageal squamous cell carcinoma; ESD, endoscopic submucosal dissection