<table>
<thead>
<tr>
<th>Title</th>
<th>An area- and power-efficient FIFO with error-reduced data compression for image/video processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zeinolabedin, Seyed Mohammad Ali; Zhou, Jun; Liu, Xin; Kim, Tony T.</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/25887</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2015 Institute of Electrical and Electronics Engineers (IEEE).</td>
</tr>
</tbody>
</table>
An Area- and Power-Efficient FIFO with Error-Reduced Data Compression for Image/Video Processing

Seyed Mohammad Ali Zeinolabedin¹, Jun Zhou², Xin Liu² and Tony T. Kim¹
¹VIRTUS, School of EEE, Nanyang Technological University, Singapore 639798
²Institute of Microelectronics, A*STAR, Singapore 117685
Email: seyedmoh001@e.ntu.edu.sg

Abstract—Filtering is a key component of many digital image/video processing algorithms. It often requires FIFO to temporarily buffer the pixels data for later usage. The FIFO size is proportional to the length of the filters and input data width, causing large area and power consumption. This paper presents a technique named FIFO with error-reduced data compression (FERDC) to reduce the FIFO size for various filters. The proposed FERDC significantly reduces the area and power consumption while keeping the error metrics such as mean square error (MSE) and peak signal to noise ratio (PSNR) in the acceptable range. Simulation results of a two dimensional wavelet filter show that the proposed FERDC technique achieves the FIFO size reduction of up to 44.44% with PSNR values larger than 39 dB, which leads to the reduction of at least 31.6% in the dynamic power and 44.44% in the leakage power.

Keywords—image/video signal processing; FIFO; low power

I. INTRODUCTION

Rapid advancement in VLSI systems has enabled the real-time hardware implementation of high computational complexity image/video processing algorithms. Some recent works requiring fast hardware implementation are video codec [1], computational photography [2], wavelet transform [3], Laplacian pyramid [4] and biomedical applications [5]. Early image/video processors focused on improving the speed/throughput of the systems while the contemporary state-of-the-art image/video processors confront additional challenges such as low power consumption and real-time processing.

Many image/video processing algorithms require digital filtering like image enhancement, image restoration, image compression, image segmentation, and video coding [6], [7] in both spatial and frequency domains. Image processing algorithms such as edge detection algorithms manipulate image pixels in the spatial domain while frequency domain is employed in Fourier-transform-based algorithms. Regarding the hardware implementation of image/video signal processing algorithms, many filtering operations require storing part of input image or part of previous stage results temporarily. However, it has not been comprehensively investigated to reduce the size of the temporary pixel buffers (i.e. FIFO). The size of the FIFO significantly affects the total area and power of a design. It has been reported that FIFOs consume more than 75% of the route area and power in [8] and more than 80% of power consumption in [4]. Various approaches have been developed to reduce the power consumption of FIFOs. However, most of them are focusing on the circuit-level techniques and memory-splitting schemes along with power gating [8], [9]. In this paper, we propose a new architecture-level technique to reduce the size of FIFO only with negligible degradation in the error metrics such as mean square error (MSE) and peak signal to noise ratio (PSNR). The reduced FIFO size through the proposed method also improves the dynamic and leakage power consumptions.

II. FIFO FOR IMAGE/VIDEO SIGNAL PROCESSING

Filtering is an inevitable function of image/video processing algorithms, which can be generalized as:

\[g(x, y) = T_{xy} * f(x, y) \] \hspace{1cm} (1)

where \(f(x, y) \) is an input image, \(T_{xy} \) is the filter transfer function and \(g(x, y) \) is the output. The output is defined as the convolution of the pixel values located in a given filter window \(T \). The window is usually a square with \(W \times W \) pixels where \(W \) is an odd number to have an exact center pixel. Obviously, \(T \) is a two dimensional (2D) filter where \(T_{xy} \) represents the filter coefficient. The 2D filter can be converted into two one dimensional (1D) filters:

\[T_{xy} = t_{xy} \times (t_{xy})' \] \hspace{1cm} (2)

Here, \(t_{xy} \) is the coefficient of the \(1 \times W \) filter, \(t \). In this scheme, \(t \) is first applied to the horizontal rows of the input, followed by the vertical columns or vice versa. In either case, hardware implementation of the filter needs to be done by stream processing. For the 2D \(W \times W \) filter, it requires \(W - 1 \) FIFOs to store \((W - 1) \) rows of \(N \) pixels (Fig. 1.(a)) where \(N \) is the input image width. So the number of reads is \(W \) pixels during each clock cycle. Otherwise, \(W \times W \) pixels have to be read every clock cycle to fill the filter window. Fig. 1 depicts the two general filter configurations where FIFOs are placed in parallel with the filters for implementing 2D filtering [10].

FIFOs have significant effects in the circuit area and power consumption, particularly when the size of the filter, \(W \), is large. Therefore, it is highly required to reduce the size of FIFOs. Several research works report FPGA cores whose
memories are configured as FIFOs to reduce the area and power cost. Dual-port RAMs have also been exploited to further improve area and power efficiency while achieving the same functionality [10]. However, as mentioned earlier there is still a gap in the literature to reduce the size of FIFO leading to area and power consumption reduction.

III. PROPOSED FIFO ARCHITECTURE

In this section, we propose a new technique that can be used to reduce the data width of FIFO in image/video processing compared to the conventional method shown in Fig. 1. Fig. 2 illustrates the proposed method named as FIFO with error-reduced data compression (FERDC). It employs a concept of pixel prediction where every pixel can be predicted utilizing adjacent pixels. For encoding, input data, \(x_i \) is given to a differential predictor which calculates the difference between the consecutive inputs denoted as \(y_i \). The differential predictor is to remove horizontal correlations between consecutive inputs. In that case, it ensures the energy of input correlated data, \(x_i \) (Fig. 3(a)), is compacted around zero, \(y_i \) (Fig. 3(b)) and only a few large numbers spread throughout the entire B-bit integer value range. Now the difference values (e.g. Fig. 3(b)) can be quantized to b-bit integer values to reduce the data width and thus the FIFO size significantly. Before sending \(y_i \) to quantizer, the energy-compacted difference is updated by the quantization error of previous difference (\(E_{i-1} \)) to prevent the quantization errors from being accumulated at the output, \(x_{iq} \). Eventually, b-bit output (\(y_{iq} \)) of the quantizer block (Q.) is stored in the FIFO. For decoding, the read data from the FIFO are sent to the inverse quantizer (I.Q.) to retrieve the b-bit data corresponding to the original input data. Finally, the inverse differential predictor generates the output \((x_{iq}) \) using the retrieved b-bit values. This proposed architecture reduces the FIFO width from B bits to b bits.

Two figure-of-merits (FOM) are employed to measure the distortion introduced by quantizers [11]. They are mean square error (MSE) and peak signal to noise ratio (PSNR). MSE represents the difference between an ideal output and the quantized one. PSNR shows how a reconstructed image differs from the original one. Following are the general expressions for MSE and PSNR.

\[
MSE = \frac{1}{n} \sum_{i=1}^{n} (P_i - Q_i)^2
\]

\[
PSNR = 10 \log_{10} \left(\frac{\text{max}(P_i)^2}{MSE} \right)
\]

Here, \(P_i \) is the original pixel value or ideal output coefficient \(Q_i \) is the reconstructed pixel value or quantized output coefficient and \(n \) is the number of total pixels or coefficients. In general cases, an acceptable PSNR value is larger than 35 resulting in MSE less than 20 [11]. Higher PSNR values indicate that reconstructed images are closer to original images.

In order to reduce the overhead circuitry, a B-bit subtractor and adder along with a B-bit register is used for both differential predictor and inverse differential predictor as shown in Fig. 4. Besides the error update block is a (B+1)-bit subtractor. To implement a power- and complexity-effective quantizer, a non-uniformly distributed symmetric quantizer is proposed following the same distribution of its input data (Fig. 3(b)). The quantizer comprises two parts named as \(Q_p \) and \(Q_n \) which are applied to positive and negative numbers. \(Q_p \) and \(Q_n \) have four segments determined by \(fL \), \(sL \) and \(tL \) as depicted in Fig. 5. The first three segments have the step sizes of 1, 2 and 4 respectively while the last segment has a constant value. For example, the positive number, \(i \), between zero and \(fL \) are quantized into \([i] + 0.5\), the positive number between \(fL \) and \(sL \) are quantized into \(2((i - fL)/2) + 1 + fL \) and the positive number between \(sL \) and \(tL \) are quantized into \(4((i - sL)/4) + 2 + sL \) and finally all other positive numbers are quantized into a constant value, \(tL + 13 \). The same quantization happens for the negative numbers.
We developed two wavelet transform architectures for comparison. First, an ideal wavelet transform is implemented by 9/7 biorthogonal filters in MATLAB and examined to estimate the size of FIFOs for filtering, which are indicated by BL and BH in Fig. 7. All the standard test images summarized in Fig. 8 have BL of 10 bits and BH of 9 bits except “Peppers” and “Lena” that have BH of 8 bits. MSEs of LL (Low-Low), LH (Low-High), HL (High-Low) and HH (High-High) sub-bands are 0.09, 0.08, 0.09 and 0.08 respectively. For all the images, PSNR is larger than 58 dB.

Second, the FIFOs in Fig. 7 are replaced by the proposed FERDC-based FIFOs. The quantization parameters, f_L, s_L and t_L, can be obtained by (5) for a certain value of L. We chose the values of f_L, s_L and t_L leading to MSEs less than 20 and PSNRs greater than 35 dB as general accepted values [11]. In this work, we select $L = 128$ and $L = 64$ (corresponding to 7- and 6-bit FIFO cell) for the upper and lower parts for investigating f_L, s_L and t_L. The results are shown in Fig. 8. In this case, the FIFO sizes are reduced by 30 % and 33.33% in the upper and lower parts, respectively. Further area reduction can be achieved by lowering L in the upper and lower parts (corresponding to 6- and 5-bit FIFO cell), whose results are summarized in Fig. 9. By lowering L to 64 and 32, the proposed technique accomplishes the FIFO size reduction of 40 % and 44.44% in the upper and lower parts, respectively. This maintains MSEs less than 13.74 and PSNRs larger than 39 dB. The same simulations with Daubechies D4 filters (db4) are invoked and the results are illustrated in Fig. 8 and Fig. 9 as well. In Fig. 8, the worst case MSE is 9.29 with PSNR of 42.30 (Fig. 10) from ‘Barbara’ due to relatively large errors introduced by the quantizer. In Fig. 9, ‘Peppers’ shows the worst case MSE of 16.28 with PSNR of 39.52 (Fig. 9). Notice that the same quantizer parameters, f_L, s_L and t_L, are employed for both filters.

Two main components of dynamic power are an activity factor, α, and load capacitance, C as described in (8). Considering the transitions of data and the load capacitance reduction in the FIFO, which is shown in (9), the dynamic power improvement of the FIFO is illustrated in Fig. 11. It shows that the dynamic power reduction related to activity factor and load capacitance is at least 54.6% and 31.6% for upper and lower parts respectively. Also the leakage power reduction of 30 to 44.44 % is expectable because total leakage is proportional to a circuit size [13].

$$P_{\text{dynamic}} = \alpha CV^2 f$$ \hspace{1cm} (8)

$$C_{\text{new design}} = 0.6C_{\text{original design}} \text{ for } L = 64, 32$$ \hspace{1cm} (9)
V. CONCLUSION

We have presented an architectural-level technique to reduce the FIFO size leading to dynamic and leakage power reduction significantly. It utilizes the spatial correlation between neighboring pixels and performs error-reduced data compression together with quantization to keep MSEs and PSNRs minimized. The proposed method has been implemented in a 2D wavelet with 9/7 biorthogonal filters as well as Daubechies D4 filters for demonstration. The experimental results show that up to 44.44% reduction in FIFO size is achieved, which leads to at least 31.6% reduction in dynamic power and 44.44% reduction in leakage power. The proposed FIFO architecture can be directly employed in other image/video processing algorithms.

REFERENCES

