<table>
<thead>
<tr>
<th>Title</th>
<th>Real time ship exhaust gas monitoring for compliance to SOx and NOx regulation and CO2 footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Wijaya, Tomi; Tjahjowidodo, Tegoeh; Thepsithar, Prapisala</td>
</tr>
<tr>
<td>Citation</td>
<td>Wijaya, T., Tjahjowidodo, T., & Thepsithar, P. (2015). Real time ship exhaust gas monitoring for compliance to SOx and NOx regulation and CO2 footprint. Maritime-port technology and development, 201-204.</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/25924</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2015 Taylor & Francis Group, London. This is the author created version of a work that has been peer reviewed and accepted for publication by Maritime-Port Technology and Development, Taylor & Francis Group, London. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1201/b17517-25].</td>
</tr>
</tbody>
</table>
Real Time Ship Exhaust Gas Monitoring for Compliance to SO\textsubscript{x} and NO\textsubscript{x} Regulation and CO\textsubscript{2} Footprint

T. Wijaya
Energy Research Institute at NTU (ERI@N), Singapore

T. Tjahjowidodo
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

P. Thepsithar
Energy Research Institute at NTU (ERI@N), Singapore

ABSTRACT: IMO MARPOL Annex VI regulation has been set for global application to reduce the negative consequences of ship gas emissions SO\textsubscript{x}, NO\textsubscript{x}, and CO\textsubscript{2}. To enforce the regulation, real time gas emission monitoring system is in need. The system in this paper consists of a microcontroller, gas analyzers, sensors and Iridium radio module. The data acquired from the sensors and gas analyzer is transmitted using a microcontroller over the Iridium satellite to the ground station for real-time compliance check. Real time monitoring system expedites the checks by the ground station in enforcing the regulation. Ultimately, this application enables engine manufacturers, ship-owners and Administrations to ensure in real time that all applicable marine diesel engines are in compliance with the limiting values determined by IMO MARPOL Annex VI.

1 INTRODUCTION

The increasing number of ships operating on the sea has increased the awareness of IMO (International Maritime Organization), the primary regulatory agency made of 170 Member States tasked with developing regulations for the control of pollution from international shipping activities. IMO created the IMO MARPOL Annex VI regulation to limit the emission of SO\textsubscript{x}, NO\textsubscript{x}, and CO\textsubscript{2} from the ships. Tier II of the regulation has been enforced since 1st January 2011. Since the regulation requires the ship owner to keep complying throughout the time, there is a need for IMO to have a tool to enforce the regulation. The tool must have the sensors performance compliance as have been detailed by IMO. The tool of such has been developed by many to cater the need of ship owners, but not for the enforcement by IMO. Therefore, IMO lacks of a system that enables it to monitor the ship gas emission in real time from distance. Furthermore, the ships to be monitored travel to many different parts of the world and this require wide data transmission coverage. That is why; satellite communication is suitable for this application.

In this paper, the monitoring of SO\textsubscript{x}, NO\textsubscript{x}, and CO\textsubscript{2} follows the 2009 Guidelines for Exhaust Gas Cleaning Systems, and Chapter 6.4 Direct Measurement and Monitoring Method of the NO\textsubscript{x} Technical Code (2008). Meanwhile, the limit value stated at IMO MARPOL Annex VI regulation 13 and regulation 14 are described in the figures below.

![Figure 1. SO\textsubscript{x}, NO\textsubscript{x}, and CO\textsubscript{2} emission limit](image-url)
This paper offers the solution of the lack of technology mentioned above. The illustration of this solution can be found in the Figure 2 below. Important parameters for compliance are measured by sensors that give electrical signal output of various types. After that, the data value from the sensors is collected by the microcontroller (data acquisition system). The microcontroller processes the data calculation and output the value useful for end-user such as \(\text{SO}_x, \text{NO}_x \) and \(\text{CO}_2 \) emission. This end-user data is stored in the local memory of the microcontroller. Thereafter, the end-user data is transmitted through the Iridium satellite, from the location of the marine diesel engine being monitored to the any place on earth. In this case, the ground station (headquarter in Figure 2.) of the country shall get the data for law enforcement. This end-user data obtained by the ground station is then stored and used accordingly for monitoring purposes. Ultimately, the aim of this solution is to be the standard for IMO to enforce the IMO MARPOL Annex VI.

Table 1. Independent parameters for compliance calculation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{mw}</td>
<td>Intake air mass flow rate on wet basis</td>
<td>kg/h</td>
</tr>
<tr>
<td>q_{md}</td>
<td>Intake air mass flow rate on dry basis</td>
<td>kg/h</td>
</tr>
<tr>
<td>q_{mf}</td>
<td>Fuel mass flow rate</td>
<td>kg/h</td>
</tr>
<tr>
<td>c_{SO2d}</td>
<td>Concentration of (\text{SO}_2) in the exhaust</td>
<td>ppm</td>
</tr>
<tr>
<td>c_{NO}d</td>
<td>Concentration of NO in the exhaust gas</td>
<td>ppm</td>
</tr>
<tr>
<td>c_{NO2d}</td>
<td>Concentration of NO(_2) in the exhaust gas</td>
<td>ppm</td>
</tr>
<tr>
<td>c_{CO2d}</td>
<td>Concentration of CO(_2) in the exhaust gas</td>
<td>ppm</td>
</tr>
<tr>
<td>c_{COd}</td>
<td>Concentration of CO in the exhaust gas</td>
<td>ppm</td>
</tr>
<tr>
<td>p_{b}</td>
<td>Total barometric pressure</td>
<td>kPa</td>
</tr>
<tr>
<td>R_{a}</td>
<td>Relative humidity of the intake air</td>
<td>%</td>
</tr>
<tr>
<td>T_{a}</td>
<td>Intake air temperature determined at the engine intake</td>
<td>K</td>
</tr>
<tr>
<td>T_{SC}</td>
<td>Charge air temperature</td>
<td>K</td>
</tr>
<tr>
<td>PAH_{w}</td>
<td>Polycyclic Aromatic Hydrocarbon concentration of wash water</td>
<td>μg/L</td>
</tr>
<tr>
<td>Turbidity_{w}</td>
<td>Turbidity of the wash water</td>
<td>FNU or NTU</td>
</tr>
<tr>
<td>pH_{w}</td>
<td>pH of the wash water</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 1. \(\text{SO}_x, \text{NO}_x, \) and \(\text{CO}_2 \) emission limit (continued)

![Figure 1](image1.png)

2 PARAMETERS MEASUREMENT

The parameters required for compliance refer to the independent variables identified in the 2009 Guidelines for Exhaust Gas Cleaning Systems, and Chapter 6.4 Direct Measurement and Monitoring Method of the NO\(_x \) Technical Code (2008). These independent parameters are listed in Table 1 as follows.

![Figure 2. Overview of the System](image2.png)
The parameters above will be used for calculation using the following formulas below which are adjusted specifically for incomplete combustion and compression ignition engines with intermediate air coolers. Calculating gas, in equation (1) is our goal.

\[
g_{\text{gas}}(x) = \frac{\sum_{i=1}^{n} (q_{\text{mgas}} \cdot w_i)}{\sum_{i=1}^{n} (p_i \cdot w_i)}
\] (1)

\[
P = P_m + P_{\text{aux}}
\] (2)

\[
q_{\text{mgas}} = u_{\text{gas}} \cdot c_{\text{gas}} \cdot q_{\text{mew}} \cdot k_{\text{hd}} \quad \text{(for NOx)}
\] (3)

\[
q_{\text{mgas}} = u_{\text{gas}} \cdot c_{\text{gas}} \cdot q_{\text{mew}} \quad \text{(for others)}
\] (4)

\[
q_{\text{mew}} = q_{\text{maw}} + q_{\text{mf}}
\] (5)

\[
c_{\text{gas}} = c_w = k_{wr2} \cdot c_d
\] (6)

\[
k_{wr2} = \frac{1}{1 + \alpha \cdot 0.005 \cdot (c_{\text{CO2}} + c_{\text{CO2}}) - 0.01 \cdot c_{\text{H2O}} + k_{2} \cdot \frac{p_{w}}{p_{a}}}
\] (7)

\[
\alpha = 11.9614 \cdot \frac{W_{\text{ALF}}}{W_{\text{BET}}}
\] (8)

\[
c_{\text{H2d}} = \frac{0.5 \cdot \alpha \cdot c_{\text{COD}} \cdot (c_{\text{CO2}} + c_{\text{CO2}})}{c_{\text{COD}} + 3 \cdot c_{\text{CO2}}}
\] (9)

\[
k_{w2} = \frac{1.608 H_a}{1000 + (1.608 H_a)}
\] (10)

\[
H_a = \frac{6.22 p_{a} R_{a}}{p_b - 0.01 R_{a} p_{a}}
\] (11)

\[
p_a = (4.856684 + 0.2660089 \cdot t_4 + 0.01668919 \cdot t_4^2) \cdot \frac{10132}{760}
\] (12)

\[
k_{hd} = \frac{1}{1 - 0.012 \cdot (H_a - 10.71) - 0.00275 \cdot (T_{\text{sec}} - 298) + 0.00285 \cdot (T_{\text{sec}} - T_{\text{SCRef}})}
\] (13)

The table below lists the information for parameters in the equations above that is not found in Table 1.

Table 2. Parameters information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>gas,x</td>
<td>Specific emission of gas</td>
<td>g/kWh</td>
</tr>
<tr>
<td>P_i</td>
<td>Uncorrected brake power on individual</td>
<td>kW</td>
</tr>
</tbody>
</table>

3 GAS ANALYZER AND SENSORS SELECTION

The gas analyzer is prescribed in Appendix 3 of NOX Technical Code (2008) and also point 6 Emission Testing of 2009 Guidelines for Exhaust Gas Cleaning Systems. CO, CO2, and SO2, should be measured by non-dispersive infrared (NDIR) absorption type. NO, NO2 should be measured by chemiluminescent detector (CLD) or heated chemiluminescent detector (HCLD). Appendix 8 point 2.1.1 of the NOX Technical Code (2008) however, mentions that other systems or analyzers can be used as long as it is approved by the Administration and yield equivalent results to the advised equipment. The specification and arrangement of the gas analyzers shall follow the Appendix 3 and Appendix 4 of the NOX Technical Code (2008).

In measuring exhaust gas concentration; there are two types of gas analyzer, dry basis and wet basis. The dry basis gas analyzer requires the removal of water molecule H2O from the sample gas before entering the gas analyzer. The removal or gas conditioning cools the sample gas temperature to less than 4°C. Depending on the gas conditioning method, the dry basis gas analyzer often removes small part of NO2, SO2, and some hydrocarbon. Thus the reading will be less accurate.

The wet basis gas analyzer on the other hand, measures the sample gas in high temperature of 180-200°C and does not require removal of H2O. Thus it has higher accuracy compared to the dry basis side.

The suffix w in c_w and c_d in the equation (6) and other equations for gas concentration denote this diff-
ference. The suffix w is meant for wet basis gas analyzer while the suffix d is meant for dry basis gas analyzer. Since the concentration that we need is in wet basis, therefore there is a correction factor that we shall calculate for dry basis gas analyzer.

In order to maximize the cost efficiency for end-users while maintaining the performance of the gas analyzer, this paper uses NDIR dry basis gas analyzer to measure \(\text{SO}_2, \text{CO}_2 \) and including the NO, and \(\text{NO}_2 \).

The sensors selection refers to the parameters listed in Table 1. The sensors specification shall follow the Appendix 4 of the \(\text{NO}_x \) Technical Code (2008) for compliance.

The differences that come in the sensor selection are from the marine diesel engine performance to be measured. Different marine diesel engine gives different requirement for the sensors. This paper refers to Daihatsu 6DK-26 for the sensors selection. This Daihatsu 6DK-26 has 6 cylinders, 1570kW with exhaust turbo charger and intermediate air cooler. Therefore, readers are advised to adjust the sensors according to the marine diesel engine that is used.

4 IRIDIUM RADIO MODULE SELECTION

Iridium is selected mainly because of its widest coverage compared to the same service that other offers. It is applicable to this project which requires this level of coverage. Iridium has 66 active satellites in its constellation and it covers most of the area on earth including the North and South poles.

Iridium offers voice and data messages in different application. The Iridium module used in this paper is Iridium 9602 Short Burst Data (SBD) transceiver. The data is sent to email for testing purposes. Iridium 9602 does not come with the data transfer hardware interfacing, and therefore third party ready interface product is used.

5 EQUIPMENT SETUP

This setup considers vast variety of engine, where different engine requires different kind of sensors to serve the engine performance. Hence, the setup is so much flexible such that when the sensors are replaced to adjust to the engine, the same data acquisition and transmission system can still be used.

The schematics to describe the equipment setup can be found in Figure 3 below. The equipment is arranged utilizing several slave microcontrollers (slave MC) and one master microcontroller (master MC). The slaves collect the data from various sensors and a gas analyzer and store it in its local microSD memory card. Thereafter, this data is sent for calculation to the master by using XBee radio communication module. After the calculation is done, the data is stored in the master microSD memory card. The data is also displayed on the screen attached to the slave and master microcontrollers. This data is then transmitted by the master microcontroller to the Iridium 9602 which will be forwarded to the Iridium Gateway, the gateway for data transceiving at Iridium satellite. In the next step the data is sent from Iridium Gateway to end user application.

Programming of the software is done on the Arduino platform, the Arduino Web IDE. The language for Arduino Web IDE programming is C++

6 CONCLUSIONS AND DISCUSSION

The development of the system has gone through detailed analysis of the parameters required for measurement in order to fulfill the compliance. It is to be noted that for engine owner or engineers responsible for the engine compliance shall understand each of the parameters mentioned in Table 1 and 2. The selection of equipment such as sensors and gas analyzer requires detailed analysis of their performance as well.

The system developed in this paper provides the flexibility for IMO to install to ships for law enforcement. On the other side, this flexibility also gives the ship owner the advantage to monitor the exhaust gas on their ships. Through the future application of Tier III and also awareness on the global
warming effect, this system is expected to come in place to make everything easier for many parties.

7 ACKNOWLEDGEMENT

The authors wish to acknowledge the funding support for this project from Marine Port Authority Singapore and the collaboration partners from VTT Finland in giving very precious insight to the project. Furthermore, the authors also wish to thank Daihatsu in engine consultation matters. Lastly, the authors also wish to thank vendors of various sensors and gas analyzer in providing valuable insight to the selection of the equipment.

8 REFERENCES

