<table>
<thead>
<tr>
<th><strong>Title</strong></th>
<th>Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Author(s)</strong></td>
<td>Zhou, Changjie; Yang, Weihuang; Zhu, Huili</td>
</tr>
<tr>
<td><strong>Date</strong></td>
<td>2015</td>
</tr>
<tr>
<td><strong>URL</strong></td>
<td><a href="http://hdl.handle.net/10220/26239">http://hdl.handle.net/10220/26239</a></td>
</tr>
<tr>
<td><strong>Rights</strong></td>
<td>© 2015 American Institute of Physics (AIP). This paper was published in The Journal of Chemical Physics and is made available as an electronic reprint (preprint) with permission of American Institute of Physics (AIP). The published version is available at: [<a href="http://dx.doi.org/10.1063/1.4922049">http://dx.doi.org/10.1063/1.4922049</a>]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS₂

Changjie Zhou, Weihuang Yang, and Huili Zhu

Citation: The Journal of Chemical Physics 142, 214704 (2015); doi: 10.1063/1.4922049
View online: http://dx.doi.org/10.1063/1.4922049
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/142/21?ver=pdftoc
Published by the AIP Publishing

Articles you may be interested in
Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts

Surface band-bending and Fermi-level pinning in doped Si observed by Kelvin force microscopy

Charge transfer interactions of a Ru(II) dye complex and related ligand molecules adsorbed on Au(111)

Adsorption of nitrogen oxides on graphene and graphene oxides: Insights from density functional calculations

The interaction between a monolayer of single-molecule magnets and a metal surface
J. Appl. Phys. 103, 07B907 (2008); 10.1063/1.2830014
Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS$_2$

Changjie Zhou,$^1$ Weihuang Yang,$^2$ and Huili Zhu$^{1,a)}$

$^1$Department of Physics, School of Science, Jimei University, Xiamen 361021, People’s Republic of China
$^2$Division of Physics and Applied Physics, School of Physical and Mathematical Science, Nanyang Technological University, Singapore 637371

(Received 1 March 2015; accepted 21 May 2015; published online 3 June 2015)

Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS$_2$ upon adsorption of various gas molecules (H$_2$, O$_2$, H$_2$O, NH$_3$, NO, NO$_2$, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS$_2$ with a low degree of charge transfer and accept charge from the monolayer, except for NH$_3$, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS$_2$ are not significantly altered upon adsorption of H$_2$, H$_2$O, NH$_3$, and CO, whereas the lowest unoccupied molecular orbitals of O$_2$, NO, and NO$_2$ are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS$_2$. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS$_2$. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922049]

I. INTRODUCTION

Detection of gas molecules, especially toxic or hazardous gases, is an important issue in various fields, such as industry, agriculture, and public health.$^1$ Metal oxides are utilized in conventional chemical-sensing materials because of their high sensitivity and relatively low cost.$^2$–$^4$ However, gas sensors based on metal oxides usually operate only at high temperatures in the range of 200–500 °C,$^5$ which leads to several attendant issues such as high power consumption and other safety problems. To resolve these issues, the development of highly sensitive gas sensors that can operate at room temperature has been actively pursued. In this respect, two-dimensional (2D) nanomaterials comprising graphene and transition-metal dichalcogenides (TMDCs) like MoS$_2$ and WS$_2$ have emerged as attractive prospectives.$^6$–$^13$ The majority of gas sensors fabricated with these 2D nanomaterials are field-effect transistor (FET)-based devices.$^{13}$ The basic operating principle involves a reversible change of the electrical conductivity caused by the interaction between the 2D nanomaterials and the adsorbed gaseous species.

Gas sensors employing a graphene-based FET that is operative at room temperature have been successfully fabricated by Schedin et al. The sensing mechanism of the graphene-based sensor is derived from the doping behavior of the adsorbed molecules, that is donor or acceptor behavior, and is further due to change in the resistivity of the base materials. Sensitivity to NH$_3$, CO, and H$_2$O at concentrations as low as 1 ppb has been demonstrated, and the ultimate sensitivity for an individual NO$_2$ molecule has even been achieved.$^6$ Similar to graphene, single and few-layer MoS$_2$ sheets are found to be sensitive detectors for NO, NO$_2$, NH$_3$, and triethylamine gas.$^7$–$^{12}$ Most recently, the photoelectric properties of multilayer WS$_2$ nanoflakes, including their field-effect, photosensitivity, and gas sensitivity, have been empirically evaluated.$^{14}$ The photosresponsivity ($R_p$) and external quantum efficiency (EQE) of WS$_2$ are significantly enhanced by inclusion of molecular NH$_3$. Maximum $R_p$ and EQE values of 884 A/W and 1.7 × 10$^{-6}$% may, respectively, be achieved. In contrast, under O$_2$ or air atmosphere, the drain current of the device decreased compared to that under vacuum. Although the gas sensitivity and its effect on the photoreponse of the WS$_2$-FET sensor have been experimentally studied, the mechanism underlying the interaction of NH$_3$ and O$_2$ molecules with the WS$_2$ surface and the effect on the electronic properties remain undefined.

Moreover, the oxidizing or reducing characteristics of the adsorbed gas molecules, i.e., the charge transfer, depend largely on the interaction between the target gases and base materials and are not absolute. In the case of $n$-type metal oxides, the traditional reducing gases, such as CO, H$_2$O, H$_2$, NH$_3$, CH$_4$, and C$_2$H$_5$OH, donate electrons to the conduction band of the base material, whereas traditional oxidizing gases such as NO, Cl$_2$, O$_2$, and O$_3$ accept electrons.$^5$ In the case of $p$-type oxides, the reverse is the case.$^5$ However, H$_2$O molecules actually act as the oxidizing gas in the graphene- and MoS$_2$-based gas sensors,$^6$,$^{15,16}$ in contrast to...
the case of metal oxides. For certain WS$_2$-based gas sensors, H$_2$O molecules have been found to act as the oxidizing gas upon adsorption on the layered WS$_2$,\cite{14} whereas other studies show that H$_2$O is the reducing gas.\cite{17} Therefore, exploration of the interaction between the adsorbed molecules and the WS$_2$ monolayer and assessment of the distinctive characteristics of the adsorbate/adsorbent system from the theoretical perspective are worthwhile pursuits.

Herein, we evaluate the adsorption of various gas molecules (H$_2$, O$_2$, H$_2$O, NH$_3$, NO, NO$_2$, and CO) on the WS$_2$ monolayer using first-principles calculations. The preferential binding configurations of these gas molecules are first obtained by calculating the adsorption energies. Charge transfer between the adsorbed molecules and the monolayer WS$_2$ is then theoretically quantified to determine the doping behavior of these adsorbates. Furthermore, Fermi-level pinning phenomena for these adsorption systems are discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning are confirmed in the case of gas molecules adsorbed on monolayer WS$_2$.

It should be noted that at traditional metal-semiconductor junctions such as Al–Si junctions, there is usually a Schottky barrier with the Fermi-level pinned in the bandgap of the junctions such as Al–Si junctions, there is usually a Schottky barrier with the Fermi-level pinned in the bandgap of the junctions. Distinct from the case encountered in metal–semiconductor contacts, the concept of Fermi-level pinning in these situations. Distinct from the case encountered in metal–semiconductor contacts, the concept of Fermi-level pinning in the field of 2D nanomaterials discussed in this study indicates that the Fermi-level of the adsorbed gas/2D nanomaterial system is pinned around the lowest unoccupied molecular orbital (LUMO) or highest occupied molecular orbital (HOMO) of the adsorbed gas molecules. The phenomenon of Fermi-level pinning is associated with the energy level alignment and is further determined by the mechanism of charge transfer, i.e., the traditional and orbital mixing charge transfer theories.

Thus, the effect of Fermi-level pinning should be considered when fabricating new optoelectronic and gas sensing devices based on these 2D nanomaterials.

II. CALCULATION DETAILS

We performed geometry relaxation, total energy, and electronic structure calculations using density functional theory (DFT), as implemented in the Vienna \textit{ab initio} simulation package (VASP).\cite{19,20} The most important parameter is the exchange-correlation functional. It is well known that the local density approximation (LDA) functional is more suitable than the generalized gradient approximation (GGA) functional for describing the interaction between molecules and graphene-like 2D materials.\cite{16,21,22,23} GGA overestimates the separation between the 2D nanomaterials and molecules while LDA yields acceptable separations.\cite{24,25} Therefore, the exchange-correlation interaction is treated herein by using LDA. The electron-ion interaction was approximated using the projector-augmented wave potential. The electron wavefunctions were expanded in plane waves with an energy cutoff of 500 eV. Supercells with 4 × 4 dimensions (16 W and 32 S atoms) were used to simulate individual monolayer WS$_2$. In order to avoid interlayer interactions, the distance between monolayers was set to more than 20 Å. The distance between two neighboring gas molecules was larger than 12 Å. The Brillouin-zone integrations were performed with a 5 × 5 × 1 Monkhorst-Pack grid for $k$-point sampling.\cite{26} Structural optimizations were carried out by relaxing all the atomic geometries using the conjugate gradient algorithm. The forces on all the atoms converged to within 0.02 eV/Å. The charge transfer between the WS$_2$ monolayer and the adsorbed gas molecules was also calculated using Bader analysis.\cite{27,27}

III. RESULTS AND DISCUSSION

In the relaxed structure of pristine monolayer WS$_2$ (Fig. 1(a)), the planar projection shows a perfect hexagonal...
The optimized lattice constant of monolayer WS$_2$ determined from the present calculation is about 3.13 Å, which agrees well with the experimental value of 3.15 Å. Since monolayer WS$_2$ belongs to the $P6\overline{3}m2$ space group, four adsorption sites were considered to determine the favorable adsorption configuration, including the center of a hexagon (H), the top of a W atom (Tw), the top of a S atom (Ts), and the center of a W–S bond (B), as indicated in Fig. 1(a). Moreover, two orientations of the NH$_3$ molecule were investigated for each anchoring position, one with the H atoms pointing away from the monolayer WS$_2$ surface and the other with the H atoms pointing towards the surface. For other gas molecules, such as H$_2$, O$_2$, H$_2$O, NO, NO$_2$, and CO, three orientations with respect to the WS$_2$ surface were examined. Taking H$_2$O as an example, the three involved orientations are the H–O bonds pointing up, down, or parallel to the surface. The adsorption energy, $E_{ads}$, is calculated as $E_{ads} = [E_{mol/WS_2} - E_{WS_2}]/N - E_{mol}$, where $E_{mol/WS_2}$, $E_{WS_2}$, and $E_{mol}$ are the total energies of the surface with N adsorbates, the clean surface, and an isolated molecule, respectively.

The calculated $E_{ads}$ and equilibrium height ($h$) obtained at different anchoring positions are listed in Table I. Negative adsorption energy means that the adsorption process is exothermic and energetically favored (stable). The equilibrium height is the space between the upper S-layer and the center of mass of the gas molecule. The structural relaxations show that the H$_2$, O$_2$, NH$_3$, and H$_2$O molecules fail to have a stable configuration at the B site, while NO$_2$ fails to localize at the Tw site because these molecules tend to migrate to other sites during the relaxations. From the results presented in Table I, it is apparent that the H$_2$, O$_2$, Tw site is the most favorable site with adsorption energies of $-75$ and $-213$ meV, respectively. Correspondingly, H$_2$ adsorbed on the Tw site has the minimum equilibrium height of 2.86 Å with respect to monolayer WS$_2$, which is about 1.47 Å longer than the total lengths of the S and H covalent radii. O$_2$ on the Tw site has the minimum equilibrium height of 2.49 Å, which is about 1.24 Å longer than the total lengths of the S and O covalent radii. H$_2$O, NH$_3$, NO$_2$, and CO are preferably adsorbed at the H site with adsorption energies of $-229$, $-216$, $-412$, and $-127$ meV, respectively. The minimum equilibrium heights for the four systems of adsorbed gas are about 1 Å longer than the total lengths of the covalent radii of the S atom and the lowest atom of the adsorbed molecules. In contrast, NO is preferably located at the B site with the adsorption energy of $-215$ meV. NO adsorbed on the B site has the minimum equilibrium height of 2.76 Å, which is about 0.99 Å longer than the total lengths of the S and N covalent radii. The low adsorption energy and large separation height indicate that all gas molecules examined in this study are physisorbed on the WS$_2$ surface. On the basis of the negative and low adsorption energies, monolayer WS$_2$ should be applicable for detection of all proposed gas molecules since the adsorption-desorption equilibrium of the adsorbed gas molecules on monolayer WS$_2$ can be easily established.

The top and side views of the most favorable configurations for H$_2$, O$_2$, H$_2$O, NH$_3$, NO, NO$_2$, and CO adsorbed on monolayer WS$_2$ are shown in Figs. 1(b)-1(h), respectively. The configurations of the H$_2$ and O$_2$ molecules show that H$_2$ and O$_2$ are both adsorbed directly on top of the Tw site. H$_2$ has an axis perpendicular to the WS$_2$ surface, while O$_2$ is nearly parallel to the WS$_2$ surface with its center of mass on top of the Tw site. The configurations of the H$_2$O, NH$_3$, NO$_2$, and CO molecules show that these four molecules are adsorbed on top of the hexagon formed by the W and S atoms. The O atom of the H$_2$O molecule occupies the center of the hexagon. The O–H bonds point towards the S atoms and adopt a tilted orientation with the two H atoms pointing towards the WS$_2$ surface. In contrast, the NH$_3$ molecule adopts a configuration in which the N atom occupies the center of the hexagon. The N–H bonds point towards the W atoms and adopt a tilted orientation with all the H atoms pointing away from the WS$_2$ surface. In contrast with the configurations of H$_2$O and NH$_3$, the NO$_2$ and CO molecules stretch across the hexagon along the plane from the center of the hexagon to the W atom. NO$_2$ is bonded in a configuration whereby the O atoms are positioned close to the WS$_2$ surface, whereas CO is bonded with the C atom positioned close to the WS$_2$ surface. In contrast to the other gas molecules, NO is preferentially localized at the B site. N–O is bonded parallel to W–S and adopts a tilted orientation with the N atom pointed toward the surface. The different adsorption orientations of these gas molecules on the WS$_2$ surface exert a significant influence on the electronic properties of the adsorption systems, as discussed below. The ensuing results for these gas molecules were obtained based on the most favorable configurations presented above.

To gain insight into the charge redistribution in real space and the interaction between the adsorbates and the underlying...
WS$_2$ monolayer, the differential charge densities (DCD) of the adsorbed configurations were calculated by using the formula: 
\[ \Delta \rho_{\text{mol}}/WS_2 = \rho_{\text{mol}}/WS_2 - \rho_{\text{mol}} - \rho_{WS_2}, \]
where $\rho_{\text{mol}}/WS_2$, $\rho_{\text{mol}}$, and $\rho_{WS_2}$ are the charge density of the molecule-adsorbed system, the monolayer WS$_2$, and an isolated molecule, respectively. The values of $\rho_{WS_2}$ and $\rho_{\text{mol}}$ were obtained by using the optimized structures of the molecules adsorbed on monolayer WS$_2$. The calculated side views of the DCD isosurface are shown in Fig. 2. The region of electron accumulation (depletion) on the DCD isosurface is indicated by yellow (blue). The WS$_2$ monolayer and the gas molecules are both considerably polarized due to the charge redistribution in real space. Consequently, electrostatic interactions play a role in the attractive interaction. Based on careful comparison of the DCD isosurfaces shown in Fig. 2, polarization is found to be stronger in the case of O$_2$, H$_2$O, NH$_3$, NO, and NO$_2$ than in the case of H$_2$ and CO. The stronger polarization is expected to give rise to larger interaction energy, which is consistent with the trends in the adsorption energies observed above. The calculated side views of the DCD isosurface show that NH$_3$ atom using first-principles calculations. Bader analysis (Fig. 2) shows that NH$_3$ contributes 0.061 $e$ to the WS$_2$ monolayer and is an electron donor, whereas the other gas molecules are charge acceptors that receive 0.002–0.178 $e$ from the WS$_2$ monolayer. The charge transfer values are similar to those presented in previous reports for the adsorption of gas molecules on graphene$^{15}$ and monolayer MoS$_2$. It may be difficult to detect H$_2$, CO, and NO on the basis of charge transfer given that the charge transfer contributions of these molecules are quite small. However, O$_2$, H$_2$O, NO$_2$, and NH$_3$ can be physically adsorbed on monolayer WS$_2$ with moderate adsorption energies, accompanying non-negligible charge transfer. Therefore, monolayer WS$_2$ may be a promising candidate as a sensor for O$_2$, H$_2$O, NO$_2$, and NH$_3$.

The mechanism by which the WS$_2$-FET gas sensor$^{14}$ detects O$_2$ and NH$_3$ can thus be understood as follows. Because layered WS$_2$ has $n$-type conductivity in the experiment,$^{14}$ some electrons are present in the channel of the WS$_2$-FET gas sensor. When exposed to an NH$_3$ atmosphere, the $n$-type WS$_2$ channel obtains more electrons from the adsorbed gas molecules, thereby enhancing the total conduction electron density and resulting in a significant increase of $R_n$ and EQE. In contrast, O$_2$ molecules trap electrons from the $n$-type WS$_2$ channel and quench the source-drain current of the WS$_2$-FET gas sensor.

For comparison with real WS$_2$-FET devices and to evaluate the different responses under NH$_3$ and O$_2$ atmosphere, the differential saturation source-drain current ($\Delta I_{\text{DSat}}$) at zero gate voltage was estimated as $\Delta I_{\text{DSat}} = q\Delta N_{2D} \frac{L}{W} (-V_T)$, where $W$ is the channel width (15 $\mu$m), $L$ is the channel length (20 $\mu$m), and $\Delta N_{2D}$ is the 2D carrier concentration increment; $\mu$ and $V_T$ are the field-effect carrier mobility (12 cm$^2$/V$\cdot$s)$^{14,29}$ and threshold voltage ($-3.5$ V)$^{14}$ of WS$_2$, respectively. The 2D electron density increased by $3.8 \times 10^{12}$ cm$^{-2}$ after adsorption of one NH$_3$ molecule on the 4 $\times$ 4 WS$_2$ supercell. Thus, the saturation source-drain current, $I_{\text{DSat}}$, increased by $9.6 \times 10^{-10}$ A as compared to that under vacuum, which is consistent with the experimentally observed significant increase of the dark current ratio ($V_{GS} = 1$ V) by $\sim 6.9 \times 10^{-7}$ A in response to NH$_3$.$^{14}$ When one O$_2$ molecule was adsorbed, the decrease in the 2D electron density was quantified as 0.002 $e$ for O$_2$, H$_2$O, NO, and NO$_2$ interacting with monolayer WS$_2$. The isosurface for O$_2$, H$_2$O, NO, NO$_2$, and CO is taken as $3.0 \times 10^{-4}$ e/Å$^3$; while that for H$_2$ and CO is taken as $3.0 \times 10^{-4}$ e/Å$^3$. The electron accumulation (depletion) region on the DCD isosurface is indicated by yellow (blue). The direction (indicated by an arrow) and value of the charge transfer are shown. Insets (i) and (ii) in (a)–(g), respectively, show the HOMO and LUMO of a single gas molecule.

![Fig. 2. Side views of the DCD for (a) H$_2$, (b) O$_2$, (c) H$_2$O, (d) NH$_3$, (e) NO, (f) NO$_2$, and (g) CO interacting with monolayer WS$_2$. The isosurface for O$_2$, H$_2$O, NO, NO$_2$, and CO is taken as $6.0 \times 10^{-4}$ e/Å$^3$, while that for H$_2$ and CO is taken as $3.0 \times 10^{-4}$ e/Å$^3$. The electron accumulation (depletion) region on the DCD isosurface is indicated by yellow (blue). The direction (indicated by an arrow) and value of the charge transfer are shown. Insets (i) and (ii) in (a)–(g), respectively, show the HOMO and LUMO of a single gas molecule.](image-url)
in the valence band, which further splits the valence band and reduces the bandgap of monolayer WS₂, as shown in Fig. 3(d). Moreover, no impurity states were formed in the bandgap of monolayer WS₂ during adsorption of the four aforementioned gases. In contrast, some flat impurity states are clearly observed in the bandgap of the host monolayer when O₂, NO, and NO₂ are adsorbed. These flat impurity states induced by introduction of O₂, NO, and NO₂ are mostly distributed near the Fermi-level. That is, the impurity states of these adsorbates are pinned around the Fermi-level upon adsorption of the gases on monolayer WS₂. The phenomenon of Fermi-level pinning in the case of gas molecules (H₂, O₂, H₂O, NH₃, NO, NO₂, and CO) adsorbed on two-dimensional materials has not previously been systematically evaluated. Notably, although adsorption of O₂, NO, and NO₂ induced formation of flat impurity states in the bandgap of monolayer WS₂, it should be emphasized that these impurity states in the projected energy band structures, as shown in Figs. 3(c), 3(f), and 3(g), have almost no influence on the bandgap energy of pristine WS₂ due to the weak physisorption interaction. Moreover, these impurity states are all localized around the adsorbed gas molecules because there is no hybridization between these impurity states and the base monolayer WS₂.

To elucidate the origin of the flat impurity states in the case of O₂, NO, and NO₂ adsorbed on monolayer WS₂ as shown in Fig. 3, the partial charge densities of the adsorption systems in the energy window (±0.1 eV) around the flat
impurity states were simulated, as shown in Fig. 4. For comparison, the LUMO and HOMO of the single gas molecule are shown in insets (i) and (ii), respectively. The partial charge densities originating from the flat impurity states exhibit the typical features of the LUMO of the adsorbed gas molecules. Therefore, the flat impurity states pinned to the Fermi-level are associated with the molecular LUMO of the gas molecules. In other words, the LUMO of O₂, NO, and NO₂ is pinned around the Fermi-level upon adsorption on monolayer WS₂. However, the other molecules H₂, H₂O, NH₃, and CO do not exhibit Fermi-level pinning.

In order to elucidate the impact of charge transfer on the Fermi-level pinning, the charge transfer mechanism of gas molecules adsorbed on monolayer WS₂ was investigated. The traditional charge transfer theory holds that if the molecular LUMO is lower than the WS₂ Fermi-level, the electron density drifts from WS₂ to the adsorbate; similarly, if the molecular HOMO is higher than the WS₂ Fermi-level, electron density is transferred from the adsorbate to WS₂. However, if the WS₂ Fermi-level lies between the HOMO and LUMO of the adsorbed molecule, no electron density is transferred between the adsorbate and the underlying WS₂. Figure 5(a) presents a schematic summary of the energies of the molecular HOMO, LUMO, and the Fermi-level of the adsorbate-adsorbent systems and a comparison of these energies with the Fermi-level of monolayer WS₂. The molecular LUMO of O₂, NO, and NO₂ is found to be lower than the WS₂ Fermi-level; therefore, electron density drifts from WS₂ to the adsorbed molecules, which is consistent with the aforementioned results of the Bader analysis. However, for H₂, H₂O, NH₃, and CO, the WS₂ Fermi-level lies between the molecular HOMO and LUMO of these adsorbed molecules. Based on the traditional charge transfer theory, there is no charge transfer between the gas molecule and the underlying WS₂, which is apparently contrary to the results of the Bader analysis. Therefore, in the case of H₂, H₂O, NH₃, and CO adsorbed on monolayer WS₂, the charge transfer mechanism cannot be accounted for based on the traditional theory, as described above.

Recently, research by Leenaerts demonstrated that the mechanism of charge transfer between an adsorbate and substrate is also partially determined by mixing of the molecular HOMO and LUMO with the substrate orbitals. To depict the charge transfer mechanism, the HOMO and LUMO of the single gas molecule are simulated and shown in the insets of Fig. 2. The HOMO and LUMO of a single gas molecule are found to show different distributions. When the most favorable configurations of the molecules adsorbed on monolayer WS₂ are considered, as shown in Fig. 1, the interaction between the molecular HOMO and the underlying WS₂ orbitals is expected to be different from that of the molecular LUMO. Thus, orbital mixing would have a significant effect on the charge transfer for these adsorbed systems. Taking H₂O as an example, the HOMO is completely localized on the O atom. The LUMO is localized primarily on the H atoms and may be slightly delocalized unto the O atom. Considering the most favorable

![FIG. 4. Side views of the 0.005 e/Å³ partial charge density isosurface of (a) O₂, (b) NO, and (c) NO₂ adsorbed on monolayer WS₂, calculated in an energy window (±0.1 eV) around the flat impurity states as shown in Fig. 3. Insets (i) and (ii) in (a)-(c), respectively, show the HOMO and LUMO of a single gas molecule.](image)

![FIG. 5. (a) Molecular HOMO and LUMO levels and Fermi-levels of the adsorbed systems. The dashed line indicates the Fermi-level of monolayer WS₂ with the vacuum level shifted to zero. (b) Schematic plots of the relationship between charge transfer and Fermi-level pinning for gas molecules adsorbed on monolayer WS₂.](image)
configuration of adsorbed H₂O (Fig. 1(d)) in which the H atoms point towards the monolayer, interaction with the WS₂ surface occurs primarily via the LUMO and the HOMO will provide a minor interaction due to the tilted configuration. Based on the 6.0 × 10⁻⁴ e/Å² DCD isosurface of adsorbed H₂O shown in Fig. 2(d), the increased DCD distribution is located on the H and O atoms, similar to the LUMO of isolated H₂O. Furthermore, a smaller decrease of the DCD distribution is also observed on the O atom, similar to that observed for the HOMO of isolated H₂O. Therefore, a large amount of charge is transferred from WS₂ to the LUMO of H₂O, while a smaller amount of charge is transferred from the HOMO of H₂O to monolayer WS₂. As a consequence, a small amount of charge will be transferred from WS₂ to H₂O. The acceptor character of H₂O adsorbed on WS₂ is consistent with the experimental results. Therefore, charge transfer between the molecules (H₂, H₂O, NH₃, and CO) and substrate is governed by the orbital mixing theory rather than the traditional theory.

Based on the traditional and orbital mixing charge transfer theories discussed above, the mechanism of Fermi-level pinning can be distinguished for various gas molecules adsorbed on monolayer WS₂, as shown in Fig. 5(b). Case (i): if the WS₂ Fermi-level lies between the molecular HOMO and LUMO, then charge transfer is mainly governed by the orbital mixing theory and no Fermi-level pinning is observed as in the case of H₂, H₂O, NH₃, and CO upon adsorption on monolayer WS₂. Case (ii): if the molecular LUMO is lower than the WS₂ Fermi-level, electron density drifts from WS₂ to the adsorbed molecule and the molecular LUMO is pinned around the Fermi-level upon adsorption on WS₂, as in the cases of O₂, NO, and NO₂ adsorbed on monolayer WS₂. Case (iii): if the molecular HOMO is higher than the WS₂ Fermi-level, then electron density is transferred from the adsorbed molecule to WS₂ and the molecular HOMO is pinned around the Fermi-level upon adsorption on WS₂. Thus, Fermi-level pinning is evidently governed by the charge transfer mechanism. In fact, in one recent theoretical study, Fermi-level pinning was observed for gas molecules adsorbed on monolayer MoS₂, where the adsorption of NO, NO₂, and O₂ also induced the generation of flat impurity states around the Fermi-level of the adsorbed system. The phenomenon of Fermi-level pinning has also been observed for a monolayer of electro-active conjugated molecules on graphene. Therefore, the proposed mechanism governing the Fermi-level pinning is also applicable to the system of adsorbates on recently developed two-dimensional materials, such as graphene and TMDCs.

IV. CONCLUSIONS

In summary, the structural and electronic properties of monolayer WS₂ upon adsorption of various gas molecules (H₂, O₂, H₂O, NH₃, NO, NO₂, and CO) were evaluated. The exact orientations and the favorable binding sites on the monolayer WS₂ surface were determined by calculating the adsorption energy. Bader analysis demonstrates that all physisorbed gas molecules act as charge acceptors, except for NH₃ which is a charge donor. In contrast with H₂, CO, and NO for which the degree of charge transfer is low, O₂, H₂O, NO₂, and NH₃ can be physically adsorbed on the monolayer WS₂ with moderate adsorption energies, accompanying a moderate degree of charge transfer. Therefore, monolayer WS₂ may be a promising candidate as a sensor for O₂, H₂O, NO₂, and NH₃. These theoretical results for adsorption of NH₃ and O₂ on monolayer WS₂ are consistent with the most recent experimental data and suggest that WS₂ is a prospective material for gas sensing applications.

Furthermore, band structure calculations show that the valence and conduction bands of monolayer WS₂ are not significantly altered upon adsorption of H₂, H₂O, NH₃, and CO, whereas the molecular LUMO of O₂, NO, and NO₂ is pinned around the Fermi-level upon adsorption on the WS₂ surface. The charge transfer mechanism and its impacts on Fermi-level pinning were further examined based on the traditional and orbital mixing charge transfer theories. The mechanism of Fermi-level pinning is proposed to be governed by the charge transfer mechanism; this mechanism is also applicable for the system of adsorbates on recently developed two-dimensional materials.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support from the Natural Science Foundation of Fujian Province of China (Grant Nos. 2011J05006 and 2009J05149), the financial support from Department of Education of Fujian Province (Grant No. JA09146), Huang Hui Zhen Foundation of Jimei University (Grant No. ZC2011004), and the Scientific Research Foundation of Jimei University (Grant Nos. ZQ2011008 and ZQ2009004).