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Abstract

For any given positive integer m, a necessary and sufficient condition
for the existence of Type-I m-adic constacyclic codes is given. Further,
for any given integer s, a necessary and sufficient condition for s to be
a multiplier of a Type-I polyadic constacyclic code is given. As an ap-
plication, some optimal codes from Type-I polyadic constacyclic codes,
including generalized Reed-Solomon codes and alternant MDS codes, are
constructed.

Keywords: Polyadic constacyclic code, p-adic valuation, general-
ized Reed-Solomon code, alternant code, Berlekamp-Welch decoding al-
gorithm.

1 Introduction

The class of duadic cyclic codes over finite fields, which includes the important
family of quadratic residue codes, was introduced by Leon et al. [15], and then
studied by several authors such as in [21], [25], [11], [10] and [13].

Motivated by the good properties of duadic cyclic codes, Pless and Rushanan
[22] moved on to study triadic cyclic codes. The class of polyadic cyclic codes (or
m-adic cyclic codes) was later introduced by Brualdi and Pless [7]. Subsequently,
Rushanan et al. generalized duadic cyclic codes to duadic abelian codes ([23],
[27]). Zhu et al. further studied duadic group algebra codes ([31], [30], [2]).
Results on the existence conditions of these codes have been obtained by these
authors. Ling and Xing [18] extended the definition of polyadic cyclic codes to
include noncyclic abelian codes, and obtained necessary and sufficient conditions
for the existence of nondegenerate polyadic codes; some interesting examples
arising from this family of codes were also given. Sharma et al. [24] removed the

Email addresses: bocong chen@yahoo.com (B. Chen), hdinh@kent.edu (H. Q. Dinh),
yfan@mail.ccnu.edu.cn (Y. Fan), lingsan@ntu.edu.sg (S. Ling).

1



“nondegenerate” condition considered by Ling and Xing in [18], and determined
necessary and sufficient conditions for the existence of polyadic cyclic codes of
prime power length.

Another direction of generalization for the notion of duadic cyclic codes is
the study of polyadic constacyclic codes over finite fields. Constacyclic codes
can be studied with tools which have been proved efficient for cyclic codes,
e.g., polynomial techniques, as well as encoding and decoding algorithms for
cyclic codes, can be easily modified to treat constacyclic codes. In practice,
constacyclic codes can also be implemented by feedback shift registers. In the
semisimple case, self-dual constacyclic codes do exist (see Blackford [5]), whereas
such a phenomenon is impossible for cyclic codes.

In [16], polyadic cyclic codes were generalized to polyadic consta-abelian
codes, and some sufficient conditions for the existence of this class of codes were
established. Duadic negacyclic codes, which is a special class of polyadic consta-
cyclic codes, were considered by Blackford [5]. Recently, Blackford [6] continued
to study Type-I duadic constacyclic codes (see Definition 2.1 for detail). Nec-
essary and sufficient conditions for the existence of Type-I duadic constacyclic
codes were given and, for a given integer s, equivalent conditions were also ob-
tained to determine whether or not s can be a multiplier for a Type-I duadic
code. However, to the best of our knowledge, there are no known solutions to
the following general questions: for n a positive integer and λ a nonzero element
of the underlying field,

1. For any given positive integer m, do Type-I m-adic λ-constacyclic codes
of length n exist?

2. For any given integer s, can s be a multiplier of a Type-I polyadic λ-
constacyclic code of length n?

In this paper, a necessary and sufficient condition for the existence of Type-I
m-adic λ-constacyclic codes is given. Further, a necessary and sufficient condi-
tion for s to be a multiplier of a Type-I polyadic λ-constacyclic code is obtained.
We also exhibit some optimal polyadic constacyclic codes, including generalized
Reed-Solomon codes and alternant MDS codes.

This paper is organized as follows. In Section 2, basic notations and the
main results of this paper are presented. In Section 3, we prove some lemmas
which play important roles in the proofs of the main results. In Section 4, the
proofs of the main results are given. In Section 5, several corollaries are derived
from the main results; some optimal codes from Type-I polyadic constacyclic
codes are constructed, including generalized Reed-Solomon codes and alternant
MDS codes, for which an efficient encoding and decoding method is illustrated
through an example.
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2 Notations and main results

We denote by Fq the finite field with cardinality |Fq| = q. Let λ ∈ F∗q , where F∗q
denotes the multiplicative group of units of Fq, and let n be a positive integer
coprime to q. Any ideal C of the quotient ring Fq[X]/〈Xn − λ〉 is said to be a
λ-constacyclic code over Fq of length n. In particular, it is just the usual cyclic
code when λ = 1; and it is called a negacyclic code if λ = −1. Let ordF∗q (λ) = r,
where ordF∗q (λ) denotes the order of λ in the multiplicative group F∗q ; then
r | (q − 1) since F∗q is a cyclic group of order q − 1. Thus a constacyclic code C
has three parameters q, n, r; in this case we say that C is a (q, n, r)-constacyclic
code. In this paper we always adopt the following notations:

• q, n, r with gcd(q, n) = 1 and r|(q − 1) are the parameters of the consta-
cyclic code C, where gcd(q, n) denotes the greatest common divisor;

• Zrn denotes the residue ring of the integer ring Z modulo rn;

• Z∗rn denotes the multiplicative group consisting of units of Zrn;

• 1 + rZrn = {1 + rk | k = 0, 1, · · · , n− 1} ⊆ Zrn;

• µh, where gcd(h, rn) = 1, denotes the permutation of the set Zrn given
by µh(x) = hx for x ∈ Zrn;

• s is an integer such that s ∈ Z∗rn ∩ (1 + rZrn), and m is a positive integer.

Let e be the multiplicative order of q modulo rn, i.e., rn | (qe − 1) but
rn - (qe−1− 1). Then, in the finite field Fqe , there is a primitive rn-th root ω of
unity such that ωn = λ. It is easy to check the following facts:

I ωi, i ∈ (1 + rZrn), are just all the roots of Xn − λ.

I For an integer h coprime to rn, the set 1 + rZrn is µh-invariant if and
only if h ∈ Z∗rn ∩ (1 + rZrn).

Since gcd(q, n) = 1 and r|(q−1), it follows that q ∈ Z∗rn∩(1+rZrn) and 1+rZrn
is µq-invariant. Let (1 + rZrn)/µq denote the set of µq-orbits within 1 + rZrn,
i.e., the set of q-cyclotomic cosets within 1+rZrn. For any q-cyclotomic coset Q
in Zrn, the polynomial MQ(X) =

∏
i∈Q(X − ωi) is irreducible in Fq[X]. Thus

Xn − λ =
∏

Q∈(1+rZrn)/µq

MQ(X)

is the monic irreducible decomposition of Xn − λ in Fq[X].

Definition 2.1. If 1 + rZrn has a partition 1 + rZrn = X0 ∪ · · · ∪ Xm−1 such
that, for some integer s, every Xj is µq-invariant and µs(Xj) = Xj+1 for j =
0, 1, · · · ,m− 1 (the subscripts are taken modulo m), then
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(i) the partition
{
X0,X1, · · · ,Xm−1

}
is called a Type-I m-adic splitting of

1 + rZrn, and µs is said to be a multiplier of the Type-I m-adic splitting;

(ii) the constacyclic codes CXj , with check polynomial
∏
Q∈Xj/µq MQ(X) for

j = 0, 1, · · · ,m − 1, are called Type-I m-adic constacyclic codes given by
the multiplier µs.

Remark. In the case of Definition 2.1, the following map (denoted by µ̂s):

µ̂s : Fq[X]/〈Xn − λ〉 −→ Fq[X]/〈Xn − λ〉,
n−1∑
i=0

aiX
i 7−→

n−1∑
i=0

aiX
is,

is an isometry (i.e., µ̂s keeps both the algebraic structure and the weight struc-
ture, see [9, §3]) of the quotient algebra Fq[X]/〈Xn − λ〉 such that µ̂s(CXj ) =

CXj+1
for j = 0, 1, · · · ,m − 1 and Fq[X]/〈Xn − λ〉 =

⊕m−1
j=0 CXj . The map µ̂s

is also called a multiplier of the quotient algebra, e.g., see [14, Theorem 4.3.12].

Of course, the notion of an m-adic splitting makes sense in practice only for
m > 1. We allow that m = 1 since it is convenient for the statements of our
results. Note that, when m = 2, “2-adic” is usually said to be “duadic”.

Example 2.2. Taking q = 5, r = 2 (hence λ = −1), n = 6 and s = −1, we
have 1 + rZrn = 1 + 2Z12 = {1, 3, 5, 7, 9, 11}. Obviously, X0 = {1, 3, 5} and
X1 = {7, 9, 11} are µ5-invariant, and µ−1(X0) = X1, µ−1(X1) = X0. Hence,

• {X0,X1} is a Type-I duadic splitting of 1 + 2Z12 given by µ−1;

• the constacyclic codes CX0
and CX1

are Type-I duadic negacyclic codes with
check polynomials X3 +X2 + 3X + 2 and X3 + 4X2 + 3X + 3, respectively.
In fact, both CX0 and CX1 have nice theoretical and practical properties, see
Proposition 5.9 and Example 5.11 below.

Example 2.3. However, if we are given q = 3, r = 2 and n = 10, then there
are no Type-I polyadic splittings of 1 + 2Z20 = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19},
because {5, 15} is a 3-coset which is fixed by any multiplier µs. Thus, we have
to exclude it and look for duadic splittings of {1, 3, 7, 9, 11, 13, 17, 19}, which is
partitioned into µ3-invariant subsets X0 = {1, 3, 7, 9} and X1 = {11, 13, 17, 19}.
Obviously, µ−1(X0) = X1 and µ−1(X1) = X0. In [5], {X0,X1} is called a Type-II
duadic splitting of 1 + 2Z20 given by µ−1.

As mentioned in Section 1, there are two fundamental questions concerning
Type I m-adic constacyclic codes:

• Under what conditions do Type-I m-adic (q, n, r)-constacyclic codes exist?

• For a given integer s, is µs a multiplier of a Type-I m-adic splitting for
1 + rZrn?

We address these two questions in this paper.
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Let t be a non-zero integer. For any prime p, there is a unique non-negative
integer νp(t) such that pνp(t)‖t, i.e., pνp(t) is the largest power of p dividing
t. The function νp(t) is well known as the p-adic valuation of t. Of course,
t = ±

∏
p p

νp(t), where p runs over all primes, but νp(t) = 0 for all except finitely
many primes p. We adopt the convention that νp(0) = −∞ and |νp(0)| =∞.

The following two theorems are the main results of this paper.

Theorem 2.4. There is a unique integer M =
∏
p p

νp(M) such that Type-I m-
adic (q, n, r)-constacyclic codes exist if and only if m is a divisor of M , where
νp(M) is determined as follows: if p - r or p - n, then νp(M) = 0; otherwise:

(i) if p is odd or νp(r) ≥ 2, then νp(M) = min{νp(q − 1)− νp(r), νp(n)};

(ii) if p = 2 and ν2(r) = 1, there are two subcases:

(ii.1) if ν2(q−1) ≥ 2, then ν2(M) = max{min{ν2(q−1)−2, ν2(n)−1}, 1};
(ii.2) if ν2(q − 1) = 1, then ν2(M) = min{ν2(q + 1)− 1, ν2(n)− 1}.

Note that ν2(q − 1) = 1 if and only if q ≡ −1 (mod 4), which is equivalent
to ν2(q + 1) ≥ 2.

Theorem 2.5. There is a unique integer Ms =
∏
p p

νp(Ms) such that µs is a
Type-I m-adic splitting for 1 + rZrn if and only if m is a divisor of Ms, where
νp(Ms) is determined as follows: if p - r or p - n, then νp(Ms) = 0; otherwise:

(i) if p is odd or p = 2 and both νp(q − 1) ≥ 2 and νp(s− 1) ≥ 2 hold, then

νp(Ms) = max
{

min{νp(q − 1), νp(rn)} − |νp(s− 1)|, 0
}

;

(ii) if p = 2, ν2(q − 1) = 1 and ν2(s− 1) ≥ 2, then

ν2(Ms) = max
{

min{ν2(q + 1) + 1, ν2(rn)} − |ν2(s− 1)|, 0
}

;

(iii) if p = 2, ν2(q − 1) ≥ 2 and ν2(s− 1) = 1, then

ν2(Ms) = max
{

min{ν2(q − 1), ν2(rn)} − |ν2(s+ 1)|, 1
}

;

(iv) if p = 2, ν2(q − 1) = 1 and ν2(s− 1) = 1, then

ν2(Ms) =


max

{
min{ν2(q + 1) + 1, ν2(rn)} −min{|ν2(s+ 1)|, ν2(q + 1)}, 0

}
,

if ν2(s+ 1) 6= ν2(q + 1);

0, if ν2(s+ 1) = ν2(q + 1).
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3 Preparations

Let X be a finite set and let Sym(X ) be the symmetric group of X consisting
of all permutations of X . If µ ∈ Sym(X ), i.e., µ is a permutation of X , then
〈µ〉 = {µj | j ∈ Z} acts on X , and thus X is partitioned into a disjoint union of
〈µ〉-orbits (abbreviation: µ-orbits). The following result appeared previously in
[19, Lemma 3.1].

Lemma 3.1. Let µ be a permutation of a finite set X and let m be a positive
integer. Then the following statements are equivalent:

(i) There is a partition X = X0 ∪X1 ∪ · · · ∪Xm−1 such that µ(Xi) = Xi+1 for
i = 0, 1, · · · ,m− 1 (the subscripts are taken modulo m).

(ii) The length of every µ-orbit on X is divisible by m.

Let a finite group G act on a finite set X . As is well known, for x ∈ X ,
the length of the G-orbit containing x is equal to the index |G : Gx|, where Gx
is the stabilizer of x in G. The action of G on X is said to be free if, for any
x ∈ X , the stabilizer of x is Gx = {1}. An element µ ∈ G is said to be free on
X if the subgroup 〈µ〉 generated by µ acts on X freely; in that case the length
of any µ-orbit on X is equal to the order of µ (cf. [1, Ch.1]).

The proofs of the next two elementary facts are straightforward, so we omit
them here.

Lemma 3.2. Let G, H be finite groups, and let X , Y be a finite G-set and a
finite H-set, respectively. Then X × Y is a finite (G ×H)-set with the natural
action of G×H, and the following statements hold:

(i) For g ∈ G and h ∈ H, the order of (g, h) ∈ G × H is equal to the least
common multiple of the order of g in G and the order of h in H, i.e.,
lcm
(
ordG(g), ordH(h)

)
.

(ii) For x ∈ X and y ∈ Y, the length of the (g, h)-orbit on X × Y containing
(x, y) is equal to the least common multiple of the length of the g-orbit on
X containing x and the length of the h-orbit on Y containing y.

Lemma 3.3. Let G act on a finite set X freely, and let N be a normal subgroup
of G. Let X/N be the set of N -orbits on X . Then the quotient G/N acts on
X/N freely; in particular, the length of any G/N -orbit on X/N is equal to the
index |G : N |.

Remark 3.4. Let t be a positive integer and u ∈ Z∗t .

(i) The action of µu on Zt is not free, e.g., 0 is always fixed by µu. However,
Z∗t is µu-invariant and the action of µu on Z∗t is always free.

(ii) If t = pa is an odd prime power, then Z∗pa is a cyclic group of order

pa−1(p − 1); the subset 1 + pbZpa with b ≥ 1 of Z∗pa is a cyclic subgroup

of order pmax{a−b, 0}, and 1 + pbd, with d coprime to p, is a generator of
the cyclic subgroup 1 + pbZpa .
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(iii) If t = 2a with a ≥ 2, then Z∗2a =

{
〈−1〉, a = 2;

〈−1〉 × 〈5〉, a > 2,
where the order of

〈5〉 is |〈5〉| = 2a−2. For the subgroup 1 + 2bZ2a with b ≥ 1 of Z∗2a , there
are two subcases:

(iii.1) if b ≥ 2, then 1 + 2bZ2a ⊆ 〈5〉 with order |1 + 2bZ2a | = 2max{a−b, 0},
and 1+2bd, with d coprime to 2, is a generator of the cyclic subgroup
1 + 2bZ2a .

(iii.2) if b = 1, then 1 + 2Z2a = Z∗2a .

The next two lemmas play important roles in the proofs of our main results.

Lemma 3.5. Let u 6= −1 be an odd integer. In the multiplicative group Z∗2a
(a ≥ 2), we have:

(i) If ν2(u − 1) ≥ 2, then 〈u〉 ⊆ 〈5〉, ord(u) = 2max{a−ν2(u−1), 0}, and the
quotient group Z∗2a/〈u〉 = 〈−1〉 × 〈5̄〉, where −1 and 5̄ denote the images
of −1 and 5 in the quotient group, respectively. In particular, |〈5̄〉| =
2min{ν2(u−1)−2, a−2} and |〈−1〉| = 2.

(ii) If ν2(u−1)=1, then 〈u〉∩〈5〉=〈u2〉, ord(u2)=2max{a−ν2(u+1)−1, 0}, and the
quotient group Z∗2a/〈u〉 = 〈5̄〉 is a cyclic group of order 2min{ν2(u+1)−1, a−2}.

Proof. Let u = 1 + 2bd, where b = ν2(u− 1) and d is odd.

(i). If b ≥ a, then u = 1 ∈ 〈5〉. Otherwise, 2 ≤ b < a, so (1 + 2bd)2
a−b

= 1

but (1 + 2bd)2
a−b−1 6= 1, which gives ord(u) = 2a−b. In other words, ord(u) =

2max{a−b, 0} (this is just an argument for Remark 3.4 (iii.1)
)
. Specifically, 〈5〉 =

1 + 22Z2a . Therefore, 〈u〉 ⊆ 〈5〉, Z∗2a/〈u〉 = 〈5̄〉 × 〈−1〉 and

|〈5̄〉| = 2a−2/ord(u) = 2min{b−2, a−2}.

(ii). In this case u+ 1 = 2(d+ 1), so ν2(u+ 1) = 1 + ν2(d+ 1) ≥ 2. Writing
d = 2ν2(u+1)−1(−u′)− 1 with u′ being odd, we get

u = 1 + 2d = (−1)(1 + 2ν2(u+1)u′) ∈ 〈−1〉 × 〈5〉, ν2(u+ 1) ≥ 2, 2 - u′. (3.1)

Note that u /∈ 〈5〉, but u2 = 1 + 2ν2(u+1)+1(u′ + 2ν2(u+1)−1u′2) ∈ 〈5〉 and

ord(u2) =

{
2a−ν2(u+1)−1, ν2(u+ 1) + 1 ≤ a;

1, ν2(u+ 1) + 1 > a.

In other words, ord(u2) = 2max{a−ν2(u+1)−1, 0}. Then Z∗2a = 〈5〉 · 〈u〉 and 〈u〉 ∩
〈5〉 = 〈u2〉, hence

Z∗2a/〈u〉 ∼= 〈5〉/ (〈u〉 ∩ 〈5〉) = 〈5〉/〈u2〉

is cyclic group. Recalling that |〈5〉| = 2a−2, we then have

|Z∗2a/〈u〉| = |〈5〉/〈u2〉| = 2min{ν2(u+1)−1, a−2}.

We are done.
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Lemma 3.6. Let h, u be odd integers with u 6= −1. We denote by h̄ the image
of h in the quotient group Z∗2a/〈u〉, where a ≥ 2. Let ord(h̄) = 2v. With the
convention that ν2(h+ 1) = −∞ and |ν2(h+ 1)| =∞ when h = −1, we have:

(i) If both ν2(u− 1) ≥ 2 and ν2(h− 1) ≥ 2, then

v = max
{

min{ν2(u− 1), a} − ν2(h− 1), 0
}
.

(ii) If ν2(u− 1) = 1 and ν2(h− 1) ≥ 2, then

v = max
{

min{ν2(u+ 1) + 1, a} − ν2(h− 1), 0
}
.

(iii) If ν2(u− 1) ≥ 2 and ν2(h− 1) = 1, then

v = max
{

min{ν2(u− 1), a} − |ν2(h+ 1)|, 1
}
.

(iv) If both ν2(u− 1) = 1 and ν2(h− 1) = 1, then

v =


max

{
min{ν2(u+ 1) + 1, a} −min{|ν2(h+ 1)|, ν2(u+ 1)}, 0

}
,

if ν2(h+ 1) 6= ν2(u+ 1);

0, if ν2(h+ 1) = ν2(u+ 1).

Proof. Let 〈h, u〉 be the subgroup of Z∗2a generated by h and u. Then 2v =∣∣〈h, u〉/〈u〉∣∣.
(i). By Lemma 3.5(i), both u and h are located in 〈5〉. Hence, 2v =

ord(h)/ord(u) if ord(h) > ord(u), and 2v = 1 otherwise. However, ord(h) =
2max{a−ν2(h−1), 0} and ord(u) = 2max{a−ν2(u−1), 0} by Lemma 3.5(i) again. We
get

ord(h) > ord(u) ⇐⇒ ν2(h− 1) < min{ν2(u− 1), a}.

Thus 2v = 2max{min{ν2(u−1), a}−ν2(h−1), 0}.

(ii). In this case, 〈h〉 ⊆ 〈5〉 but 〈u〉 ∩ 〈5〉 = 〈u2〉 (see Lemma 3.5(ii)). Then
〈h〉 ∩ 〈u〉 = 〈h〉 ∩ 〈5〉 ∩ 〈u〉 = 〈h〉 ∩ 〈u2〉, and hence

2v =
∣∣〈h, u〉/〈u〉∣∣ =

∣∣〈h〉/〈h〉 ∩ 〈u2〉∣∣,
which leads to computations in the cyclic group 〈5〉 similar to the ones in (i).
By Lemma 3.5(ii), ord(u2) = 2max{a−ν2(u+1)−1, 0}, so

2v = 2max{min{ν2(u+1)+1, a}−ν2(h−1), 0}.

(iii). We can write h = (−1)(1 + 2ν2(h+1)h′) with |ν2(h+ 1)| ≥ 2 (the case
ν2(h+ 1) = −∞, i.e., h = −1, is allowed) and h′ being odd (see Eqn (3.1)); set
h′′ = 1 + 2ν2(h+1)h′. By Lemma 3.5(i), it follows that Z∗2a/〈u〉 = 〈−1〉 × 〈5̄〉,
and h̄ = −1 · h′′ with h′′ ∈ 〈5̄〉. Then

2v = ord(h̄) = max{ord(−1), ord(h′′)}.
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We know that ord(h′′) = 2max{a−|ν2(h+1)|, 0} (see Lemma 3.5(i), but h = −1 is
allowed here). With the same argument as in (i), we have

ord(h′′) = 2max{min{ν2(u−1), a}−|ν2(h+1)|, 0}.

Recalling that ord(−1) = 2, we get that 2v = 2max{min{ν2(u−1), a}−|ν2(h+1)|, 1}.

(iv). Similar to the above, we can write

h = (−1)h′′, h′′ = 1 + 2ν2(h+1)h′, ν2(h+ 1) ≥ 2, 2 - h′;
u = (−1)u′′, u′′ = 1 + 2ν2(u+1)u′, ν2(u+ 1) ≥ 2, 2 - u′.

It is clear that 〈h, u〉 = 〈hu, u〉, so

2v = |〈h, u〉/〈u〉| = |〈hu, u〉/〈u〉|.

Since u /∈ 〈5〉, but u2 = 1 + 2ν2(u+1)+1(u′ + 2ν2(u+1)−1u′2) ∈ 〈5〉 and

hu = h′′u′′ = 1 + 2ν2(h+1)h′ + 2ν2(u+1)u′ + 2ν2(h+1)+ν(u+1)h′u′ ∈ 〈5〉;

this present case can be reduced to the case (ii) above (by replacing h in (ii)
with hu). If ν2(h + 1) = ν2(u + 1), then ν2(hu − 1) ≥ ν2(u + 1) + 1 (see the
above formulation of hu), hence 2v = 1 by the conclusion in (ii). Otherwise

ν2(hu− 1) =

{
min{ν2(h+ 1), ν2(u+ 1)}, h 6= −1;

ν2(u+ 1), h = −1,

i.e., ν2(hu− 1) = min{|ν2(h+ 1)|, ν2(u+ 1)}. By the conclusion in (ii) again,

2v = 2max{min{ν2(u+1)+1, a}−min{|ν2(h+1)|, ν2(u+1)}, 0}.

If ν2(h+ 1) > ν2(u+ 1) or h = −1, then min{|ν2(h+ 1)|, ν2(u+ 1)} = ν2(u+ 1),
and hence v can be simplified to:

v = max{min{ν2(u+ 1) + 1, a} − ν2(u+ 1), 0} =

{
1, ν2(u+ 1) < a;

0, ν2(u+ 1) ≥ a.

The proof is completed.

4 Proofs of the main results

We keep the notations of Section 2. Consider the surjective homomorphism

Zrn −→ Zr, x (mod rn) 7−→ x (mod r). (4.1)

Then 1 + rZrn is just the inverse image of 1 ∈ Zr.
Assume that p1, · · · , pk, p′1, · · · , p′k′ , p′′1 , · · · , p′′k′′ are distinct primes such that

n = pα1
1 · · · p

αk
k p′1

α′1 · · · p′k′
α′
k′ , with α1, · · · , αk, α′1, · · · , α′k′ all positive;

9



r = pβ1

1 · · · p
βk
k p
′′
1
β′′1 · · · p′′k′′

β′′
k′′ , with β1, · · · , βk, β′′1 , · · · , β′′k′′ all positive,

i.e., αi = νpi(n), βi = νpi(r), etc. Then

rn = pα1+β1

1 · · · pαk+βkk p′1
α′1 · · · p′k′

α′
k′p′′1

β′′1 · · · p′′k′′
β′′
k′′ .

Set n′ = p′1
α′1 · · · p′k′

α′
k′ and r′′ = p′′1

β′′1 · · · p′′k′′
β′′
k′′ . Applying the Chinese Re-

mainder Theorem, we rewrite Zrn as follows:

Zrn
CRT
= Z

p
α1+β1
1

× · · · × Z
p
αk+βk
k

× Zn′ × Zr′′ .

The surjective homomorphism (4.1) may be rewritten as

ρ : Z
p
α1+β1
1

× · · · × Z
p
αk+βk
k

× Zn′ × Zr′′ −→ Z
p
β1
1
× · · · × Z

p
βk
k

× Zr′′ , (4.2)

with kernel

Ker(ρ) = pβ1

1 Z
p
α1+β1
1

× · · · × pβkk Z
p
αk+βk
k

× Zn′ × {0},

where {0} is the zero ideal of Zr′′ . Thus, 1+rZrn = 1+Ker(ρ) can be rewritten
as

1 + rZrn
CRT
=
(
1 + pβ1

1 Z
p
α1+β1
1

)
× · · · ×

(
1 + pβkk Z

p
αk+βk
k

)
× Zn′ × {1}. (4.3)

Therefore

Z∗rn∩(1+rZrn)
CRT
=
(
1+pβ1

1 Z
p
α1+β1
1

)
×· · ·×

(
1+pβkk Z

p
αk+βk
k

)
×Z∗n′×{1}. (4.4)

Thus, any x ∈ (1 + rZrn) can be represented as

x
CRT
=
(
1 + pξ11 x1, · · · , 1 + pξkk xk, x

′, 1
)

(4.5)

with ξi = νpi(x− 1) ≥ βi, pi - xi for i = 1, · · · , k, and x′ ∈ Zn′ , and hence any
s ∈ Zrn∗ ∩ (1 + rZrn) can be represented as

s
CRT
=
(
1 + pσ1

1 s1, · · · , 1 + pσkk sk, s
′, 1
)

(4.6)

with σi = νpi(s−1) ≥ βi and pi - si for i = 1, · · · , k, and s′ ∈ Z∗n′ . In particular,
since q ∈ Z∗rn ∩ (1 + rZrn), we have

q
CRT
=
(
1 + pτ11 q1, · · · , 1 + pτkk qk, q

′, 1
)

(4.7)

where τi = νpi(q − 1) ≥ βi and pi - qi for i = 1, · · · , k, and q′ ∈ Z∗n′ .
We first need the following observation.

Lemma 4.1. Let p be a prime. If p /∈ {p1, · · · , pk}, then there is a µs-orbit in
1 + rZrn whose length is not divisible by p.
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Proof. Take x0 ∈ (1 + rZrn) such that (cf. Eqn (4.5)):

x0
CRT
=
(
1 + pξ11 x1, · · · , 1 + pξkk xk, 0, 1

)
.

Then the length of the µs-orbit in Zn′ containing 0 is 1, and the length of the
µs-orbit in 1 + pβii Z

p
αi+βi
i

containing 1 + pξii xi is a power of pi. By Lemmas 3.2

and 3.3, we see that the length of the µs-orbit in (1 + rZrn)/µq containing the
q-cyclotomic coset x0〈q〉 is not divisible by p.

Recall that, for any pi, 1 ≤ i ≤ k, both q and s (mod pαi+βii ) are contained

in the multiplicative group 1 + pβii Z
p
αi+βi
i

; we denote by 〈q, s〉i the subgroup of

1 + pβii Z
p
αi+βi
i

generated by q and s.

Theorem 4.2. Let Ms =
k∏
i=1

|〈q, s〉i : 〈q〉i| be the order of s in the quotient group

k∏
i=1

(
1 + pβii Z

p
αi+βi
i

)
/〈q〉i. Then µs is a Type-I m-adic splitting for 1 + rZrn if

and only if m|Ms.

Proof. For any x ∈ (1 + rZrn) as in Eqn (4.5), by Lemma 3.3, the length of

the µs-orbit in the quotient set
(
1 + pβii Z

p
αi+βi
i

)
/µq containing (1 + pξii xi)〈q〉

is equal to |〈q, s〉i : 〈q〉i|. By Lemmas 3.1, 3.2 and 4.1, the theorem follows at
once.

Now we are ready to prove our main results.

Proof of Theorem 2.4. Take an ŝ ∈ Z∗rn ∩ (1 + rZrn) as follows
(
cf. Eqn (4.6)

)
:

ŝ
CRT
= (1 + pσ̂1

1 , · · · , 1 + pσ̂kk , 1, 1)

such that each component 1 + pσ̂ii ∈ 1 + pβii Z
p
αi+βi
i

of ŝ becomes an element of

maximal order in the quotient group
(
1 + pβii Z

p
αi+βi
i

)
/〈q〉i for i = 1, · · · , k. Set

M = Mŝ as in Theorem 4.2. Then, for any s ∈ Z∗rn∩(1+rZrn), by Theorem 4.2
we have Ms |M . Thus, for an integer m, an m-adic (q, n, r)-constacyclic code
of Type-I exists if and only if m is a divisor of M . It remains to determine M
by its p-adic valuations νp(M), for all primes p. If p /∈ {p1, · · · , pk}, then we
have seen from Theorem 4.2 that νp(M) = 0. For 1 ≤ i ≤ k, by Theorem 4.2

and the choice of ŝ, we see that p
νpi (M)

i is the maximal order of elements of the

quotient group
(
1 + pβii Z

p
αi+βi
i

)
/〈q〉i; we determine it in the following cases.

Case 1: pi is odd or βi = νpi(r) ≥ 2. Then the group 1 + pβii Z
p
αi+βi
i

is a

cyclic group of order pαii , and the order of q is p
max{αi+βi−νpi (q−1), 0}
i

(
recall

that νpi(q − 1) ≥ βi and the order of q is 1 when αi + βi ≤ νpi(q − 1)
)
. Thus,
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the maximal order of the elements of the quotient group
(
1 + pβii Z

p
αi+βi
i

)
/〈q〉i

is p
min{νpi (q−1)−βi, αi}
i ; hence νpi(M) = min{νpi(q − 1)− νpi(r), νpi(n)}.
Case 2: pi = 2 and ν2(r) = 1. Then the group 1 + 2Z2αi+1 = Z∗

2αi+1 =
〈−1〉 × 〈5〉 and |〈5〉| = 2αi−1. There are two subcases:

Subcase 2.1: ν2(q− 1) ≥ 2. By Lemma 3.5(i), the quotient group Z∗
2αi+1/〈q〉

is the direct product of a cyclic group of order 2min{ν2(q−1)−2, αi−1} and a group
of order 2. Thus

ν2(M) = max{min{ν2(q − 1)− 2, ν2(n)− 1}, 1}.

Subcase 2.2: ν2(q−1) = 1. By Lemma 3.5(ii), the quotient group Z∗
2αi+1/〈q〉

is a cyclic group of order 2min{ν2(q+1)−1, αi−1}. Thus

ν2(M) = min{ν2(q + 1)− 1, ν2(n)− 1}.

Proof of Theorem 2.5. For i = 1, · · · , k, from Theorem 4.2, in the quotient
group

(
1 + pβii Z

p
αi+βi
i

)
/〈q〉i, we have seen that

νpi(Ms) = |〈q, s〉i : 〈q〉i|.

If pi is odd, then 1 + pβii Z
p
αi+βi
i

is a cyclic group of order p
νpi (rn)−νpi (r)
i . By

Remark 3.4(ii), we get immediately that

|〈q, s〉i : 〈q〉i| = p
max{min{νpi (q−1), νpi (rn)}−|νpi (s−1)|, 0}
i .

Otherwise, pi = 2 and all of the conclusions follow from Lemma 3.6 at once.

5 Corollaries and examples

Most results on the existence of Type-I polyadic constacyclic codes can follow
as consequences from the main theorems immediately. Moreover, with the help
of the main results and the arguments, some interesting examples can be con-
structed from Type-I polyadic constacyclic codes. Here we describe the case
when m = p is a prime, which is an interesting case.

5.1 p-adic constacyclic codes

Corollary 5.1. Let m = p be a prime. Then Type-I p-adic (q, n, r)-constacyclic
codes exist if and only if one of the following two conditions holds:

(i) νp(n) ≥ 1 and νp(q − 1) > νp(r) ≥ 1 (the case p = 2 is allowed);

(ii) p = 2, ν2(r) = 1 and min{ν2(q + 1), ν2(n)} ≥ 2.

12



Proof. Taking m = p in Theorem 2.4, we obtain the desired result.

Remark 5.2. The case of p = 2 in Corollary 5.1, i.e., the necessary and suf-
ficient conditions for the existence of duadic constacyclic codes, was treated in
[6, Corollary 17] and stated in different notations.

On the other hand, if the prime p is odd, then (ii) of Corollary 5.1 is not
applicable, hence the statement can be shortened; for example, for p = 3, the
statement can read as

“Type-I triadic (q, n, r)-constacyclic codes exist if and only if ν3(n) ≥ 1 and
ν3(q − 1) > ν3(r) ≥ 1.”

This result has been obtained in [19].

Inspired by the conditions of Corollary 5.1, we construct a class of p-adic
constacyclic generalized Reed-Solomon codes. For nonzero v0, v1, · · · , vn−1 ∈ F∗q
and distinct α0, α1, · · · , αn−1 ∈ Fq, the following [n, k, n− k + 1] code{(

v0f(α0), v1f(α1), · · · , vn−1f(αn−1)
) ∣∣∣ f(X) ∈ Fq[X], deg f(X) < k

}
is called a generalized Reed-Solomon code, abbreviated by GRS code, with loca-
tor α = (α0, α1, · · · , αn−1); it is an [n, k, n− k + 1] MDS code. We denote this
GRS code by GRSk(α; v), where v = (v0, v1, · · · , vn−1), cf. [17, Ch.9].

Proposition 5.3. Assume that m = p is a prime, q is a prime power with
νp(q − 1) ≥ 2, and rn | (q − 1) such that νp(r) ≥ 1 and νp(n) ≥ 1 (then
Corollary 5.1(i) is satisfied). Let ω ∈ Fq be a primitive rn-th root of unity and
λ = ωn. Set

Xj =
{

1 + ir
∣∣∣ jnp ≤ i < (j+1)n

p

}
, j = 0, 1, · · · , p− 1.

Then

(i) CXj , for j = 0, 1, · · · , p − 1, are Type-I p-adic λ-constacyclic codes given
by µ1+ rn

p
;

(ii) for any 0 < k < p, the constacyclic code C = CX0
⊕CX1

⊕· · ·⊕CXk−1
is the

[n, knp ,
(p−k)n

p +1] GRS code GRS kn
p

(ω; v) with ω = (1, ω−r, · · · , ω−(n−1)r)
and v = (1, ω−1, · · · , ω−(n−1)).

Proof. (i). Let s = 1 + rn
p . Noting that p | r, we have

µs(1 + ir) =
(

1 +
rn

p

)
(1 + ir) ≡ 1 + r

(n
p

+ i
)

(mod rn).

Hence µs(Xj) = Xj+1 for j = 0, · · · , p − 2, and µs(Xp−1) = X0. Thus X0, X1,
· · · , Xp−1 form a Type-I p-adic splitting of 1 + rZrn given by µs.

(ii). Since ω−r is a primitive n-th root of unity, ω is a locator and

GRSkn/p(ω; v) is a GRS [n, knp ,
(p−k)n

p + 1] code. We need to show that C =

GRSkn/p(ω; v). Since dimC = kn
p , it suffices to show that GRSkn/p(ω; v) ⊆ C.
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Set K = X0 ∪ · · · ∪ Xk−1 and K′ = Xk ∪ · · · ∪ Xp−1. Then
∏
Q∈K/µq MQ(X)

is a check polynomial of C, hence {ωt | t ∈ K′} = {ω1+ir | knp ≤ i < n} is the
set of zeros of the code C.

For f(X) =
∑ kn

p −1
j=0 fjX

j with fi ∈ Fq, the codeword of GRSkn/p(ω; v),

c′f =
(
f(1), ω−1f(ω−r), · · · , ω−(n−1)f(ω−r(n−1))

)
,

corresponds to the polynomial c′f (X) =
∑n−1
t=0 ω

−tf(ω−rt)Xt in the polynomial
representation of codewords. To prove that c′f ∈ C, it is enough to show that

c′f (ω1+ir) = 0 for kn
p ≤ i < n. We compute c′f (ω1+ir) as follows:

c′f (ω1+ir) =
n−1∑
t=0

ω−t

 kn
p −1∑
j=0

fjω
−rtj

ω(1+ir)t =

kn
p −1∑
j=0

fj

n−1∑
t=0

ωr(i−j)t.

Since kn
p ≤ i < n and 0 ≤ j < kn

p , we see that 0 < i− j < n, hence ωr(i−j) 6= 1
as ωr is a primitive n-th root of unity. Then

n−1∑
t=0

ωr(i−j)t =
ωr(i−j)n − 1

ωr(i−j) − 1
= 0, for

kn

p
≤ i < n, 0 ≤ j < kn

p
.

Therefore, c′f (ω1+ir) = 0 for all 1 + ir ∈ K′; we are done.

Some GRS codes from Proposition 5.3 are exhibited in Table 5.1.

No m q r n k d GRS code GRSk(α;v)

(i) 3 19 3 6 4 3 α = (1, ω−3, · · · , ω−15), v = (1, ω−1, · · · , ω−5)

(ii) 3 26 3 21 7 15 α = (1, ω−3, · · · , ω−60), v = (1, ω−1, · · · , ω−20)

(iii) 2 17 2 8 4 5 α = (1, ω−2, · · · , ω−14), v = (1, ω−1, · · · , ω−7)

(iv) 2 34 2 40 20 21 α = (1, ω−2, · · · , ω−78), v = (1, ω−1, · · · , ω−39)

(v) 2 52 2 12 6 7 α = (1, ω−2, · · · , ω−22), v = (1, ω−1, · · · , ω−11)

(vi) 2 72 2 24 12 13 α = (1, ω−2, · · · , ω−46), v = (1, ω−1, · · · , ω−23)

Table 5.1: GRS codes from Type-I polyadic constacyclic codes

Example 5.4. An interesting particular case of Proposition 5.3 is as follows:
m = r = 2, n is an even divisor of q−1

2 , and the splitting of 1 + 2Z2n is

X0 = {1, 3, · · · , n− 1}, X1 = {n+ 1, n+ 3, · · · , 2n− 1}, (5.1)

(e.g., the codes (iii)-(vi) in Table 5.1 where n = q−1
2 ). It is a Type-I duadic

splitting of 1 + 2Z2n given by µ1+ rn
2

= µn+1. However, it is easy to check that
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X0,X1 also form a splitting of 1 + 2Z2n given by µ−1. In other words, both CX0

and CX1 are self-dual duadic negacyclic GRS codes with parameters [n, n2 ,
n
2 +1].

The biggest choice of n is n = q−1
2 and, in this case, the self-dual duadic

negacyclic GRS code CX0
has parameters [ q−12 , q−14 , q+3

4 ].

Before further analyzing this example, we discuss the particular case of The-
orem 2.5 where m = p is a prime.

5.2 p-adic constacyclic codes given by µs

When m = p is an odd prime in Theorem 2.5, the case is easy, as shown in the
following.

Corollary 5.5. Assume that m = p is an odd prime, s ∈ Z∗rn ∩ (1 + rZrn) and
s 6= 1. Then Type-I p-adic splittings of 1 + rZrn given by µs exist if and only if
p
∣∣ gcd(n, r) and νp(s− 1) < min{νp(q − 1), νp(rn)}.

For the remaining case of m = p = 2 in Theorem 2.5, we obtain the following
consequence.

Corollary 5.6. Assume that s ∈ Z∗rn∩(1+rZrn). Then Type-I duadic splittings
for 1 + rZrn given by µs exist if and only if both n and r are even and one of
the following four conditions holds:

(i) ν2(q − 1) > |ν2(s− 1)| and ν2(rn) > |ν2(s− 1)|;

(ii) ν2(q − 1) = 1, ν2(s − 1) > 1, ν2(q + 1) + 1 > |ν2(s − 1)| and ν2(rn) >
|ν2(s− 1)|;

(iii) ν2(q− 1) = ν2(s− 1) = 1, |ν2(s+ 1)| > ν2(q+ 1) and ν2(rn) > ν2(q+ 1);

(iv) ν2(q−1) = ν2(s−1) = 1, |ν2(s+ 1)| < ν2(q+ 1) and |ν2(s+ 1)| < ν2(rn).

Proof. By Theorem 2.5, we need to look for a condition such that ν2(Ms) ≥ 1.
If ν2(q− 1) ≥ 2, by (i) and (iii) of Theorem 2.5, we arrive at (i) of the corollary.
Furthermore, (ii) of the corollary follows from (ii) of Theorem 2.5, while (iii)
and (iv) of the corollary follow from (iv) of Theorem 2.5.

Remark 5.7. Note that, if s ∈ Z∗rn∩(1+rZrn) and r is even, then s is odd, i.e.,
|ν2(s− 1)| ≥ 1; hence Condition (i) of Corollary 5.6 implies that ν2(q − 1) ≥ 2,
or equivalently, q ≡ 1 (mod 4). Hence, Corollary 5.6(i) yields again, but in
different notations, the result [6, Theorem 20] for the case when q ≡ 1 (mod 4).
Moreover, a special case of Corollary 5.6 (iii) and (iv) was also described in [6,
Theorem 20], which, however, contains some inaccuracies. A correction to [6,
Theorem 20] has been shown in [8, Theorem 1.3] as follows:

Assume q ≡ 3 ( mod 4), with q = −1+2cd for some c ≥ 2 and some
odd d. Let r = 2r′, n = 2bn′ and s = 1 + 2r′n′, with r′, n′ odd and
b ≥ 2.
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(A) µs is a Type-I duadic splitting for 1 + rZrn if and only if one
of the following conditions holds: (1) c > b > ν2(1 + r′n′);
(2) b ≥ c > ν2(1 + r′n′).

(B) For 2 ≤ i < 1 + b, µ1+2ir′n′ is a Type-I duadic splitting for
1 + rZrn if and only if i ≤ c.

One can see that statement (B) follows from (ii) of Corollary 5.6, while statement
(A) follows from (iii) and (iv) of the corollary. Moreover, (ii), (iii) and (iv) of
Corollary 5.6 are more extensive than the result of [8] stated above, e.g., the case
“s = −1” does not appear in [8, Theorem 1.3] but is included in Corollary 5.6:
since ν2((−1) − 1) = 1 and |ν2((−1) + 1)| = ∞, the following corollary follows
at once.

Corollary 5.8. Type-I duadic splittings for 1 + rZrn given by µ−1 exist if and
only if n is even, r = 2 and one of the following two conditions holds:

(i) ν2(q − 1) ≥ 2 (i.e., q ≡ 1 (mod 4));

(ii) ν2(q − 1) = 1 (i.e., q ≡ 3 (mod 4)) and ν2(q + 1) < ν2(rn).

As mentioned in [5], Euclidean self-dual negacyclic codes are just Type-I
duadic negacyclic codes given by µ−1. In this sense, Corollary 5.8 is just [5,
Theorem 3].

5.3 Alternant constacyclic MDS codes

By an alternant code, we mean a subfield subcode of a GRS code GRSk(α; v)
over a large field Fqe , i.e., the code over the ground field Fq, denoted by
GRSk(α; v)|Fq , obtained by restricting the GRS code GRSk(α; v) over Fqe to
Fq (cf. [17, Ch. 9]).

For the case (i) of Corollary 5.8, we have shown in Example 5.4 a family of
self-dual negacyclic GRS codes with parameters [ q−12 , q−14 , q+3

4 ]. On the other
hand, it is easy to see that there are no self-dual negacyclic GRS codes for
the case (ii) of Corollary 5.8: since 2n - (q − 1), there are no primitive 2n-
th roots of unity in Fq. However, Proposition 5.3 and Example 5.4 provide a
way to construct self-dual negacyclic alternant MDS codes for both the cases
of Corollary 5.8. An easy modification of the Berlekamp-Welch algorithm can
then be applied to carry out decoding for such codes.

Proposition 5.9. Assume that q is a power of an odd prime. Let n = q+1
` with

` being an odd divisor of q + 1, let ω ∈ Fq2 be a primitive 2n-th root of unity,
and let

X0 = {1, 3, · · · , n− 1}, X1 = {n+ 1, n+ 3, · · · , 2n− 1},

as in Eqn (5.1). Then
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(i) X0 and X1 form a Type-I duadic splitting of 1 + 2Z2n over Fq given by
µ−1;

(ii) the duadic negacyclic codes CX0
, CX1

over Fq are self-dual duadic nega-
cyclic MDS [n, n2 ,

n
2 + 1] codes;

(iii) CX0 = GRSn/2(ω; v)|Fq is an alternant code restricted from GRSn/2(ω; v),

which is the GRS code over Fq2 with ω = (1, ω−2, · · · , ω−2(n−1)) and

v = (1, ω−1, · · · , ω−(n−1)).

Proof. Note that, for any odd integer t, we have tn ≡ n (mod 2n). Since
q = `n− 1 with ` being odd, we have q ≡ n− 1 (mod 2n). For any i ∈ X0, since
i is odd, we have

qi ≡ (n− 1)i = ni− i ≡ n− i (mod 2n).

Thus µq(X0) = X0, i.e., both X0 and X1 are µq-invariant, which proves the
conclusion (i).

By Proposition 5.3 and Example 5.4, the duadic negacyclic code C̃X0 over
Fq2 is a self-dual negacyclic GRS code as follows:

C̃X0 = GRSn/2(ω;v)

=
{(

f(1), ω−1f(ω−2), · · · , ω−(n−1)f(ω−2(n−1))
) ∣∣∣ f(X) ∈ Fq2 [X], deg f(X) < n

2

}
.

Note that CX0
⊆ C̃X0

, ωCX0
⊆ C̃X0

, and that dimFq C̃X0
= 2 dimFq2 C̃X0

= n.

We have the direct sum C̃X0
= CX0

⊕ ωCX0
. Therefore, CX0

= C̃X0
|Fq is the

desired subfield subcode of the code C̃X0 . Both the conclusions (ii) and (iii)
now follow easily.

The biggest choice of n in Proposition 5.9 is n = q + 1. For this choice,
the self-dual duadic negacyclic alternant MDS code CX0

has parameters [q +
1, q+1

2 , q+3
2 ]. Blackford [5, Corollary 5] has constructed this self-dual negacyclic

[q+1, q+1
2 , q+3

2 ] code, but did not show it to be an alternant code. The additional
knowledge of the alternant structure of this code implies that, for example, a
slight modification of the Berlekamp-Welch algorithm (cf. [28]) can now be used
for decoding for this code.

Remark 5.10. The alternant structure of CX0
= GRSn

2
(ω; v)|Fq in Proposi-

tion 5.9 is helpful, e.g., the Berlekamp-Welch decoding algorithm can be adapted
to decode CX0 .

Let e = bn−k2 c (note that k = n
2 for CX0

). Assume that a codeword c =
(c0, c1, · · · , cn−1) ∈ CX0 is transmitted and the word y = (y0, y1, · · · , yn−1) is
received. To recover the polynomial f(X) ∈ Fq2 [X] with deg f(X) < k such
that ci = ω−if(ω−2i), i = 0, 1, · · · , n− 1, we proceed in two steps.
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S1. Find a polynomial E(X) = Xe + ηe−1X
e−1 + · · · + η0 ∈ Fq2 [X] and a

polynomial Q(X) = ξe+k−1X
e+k−1 + ξe+k−2X

e+k−2 + · · · + ξ0 ∈ Fq2 [X]
such that

ωiyiE(ω−2i) = Q(ω−2i), i = 0, 1, · · · , n− 1, (5.2)

which is a system of n linear equations and 2e+ k unknowns (recall that
2e+ k ≤ n). If the system of linear equations (5.2) has no solution, then
output Fail; otherwise go to S2.

S2. If E(X) divides Q(X), then output f(X) = Q(X)/E(X); otherwise, out-
put Fail.

It is known that, if the Hamming distance d(y, c) ≤ e, then a unique f(X) is
output. S1 is implemented by solving the system of linear equations, and S2
is implemented by long division of polynomials. Thus the complexity of the
algorithm is O(n3).

The following example is a continuation of Example 2.2.

Example 5.11. Let q = 5, r = 2 (hence λ = −1 = 4), n = 6 and s = −1.
Take a primitive third root θ of unity (in F25), i.e., θ 6∈ F5 and θ2 + θ + 1 = 0.
Thus any element of F25 is represented uniquely as aθ + b with a, b ∈ F5. Then
ω = 3θ is a primitive 12-th root of unity such that ω3 = 2 and ω6 = −1. By
Proposition 5.9, 1 + 2Z12 = {1, 3, 5, 7, 9, 11} and

• X0 = {1, 3, 5}, X1 = {7, 9, 11} form a Type-I duadic splitting of 1 + 2Z12

given by µ−1;

• CX0 and CX1 are Type-I self-dual negacyclic codes with check polynomials
X3 +X2 + 3X + 2 and X3 + 4X2 + 3X + 3, respectively.

Thus X3 + 4X2 + 3X + 3 is a generator polynomial of CX0 , and

G =

3 3 4 1
3 3 4 1

3 3 4 1


is a generator matrix of CX0

. Since CX0
is self-dual, G is also a check matrix

with which we can do systematic encoding by using feedback shift registers:
a message (m0,m1,m2) is encoded into a codeword c = (c0, c1, c2, c3, c4, c5),
where c0 = m0, c1 = m1, c2 = m2, and

3 3 4 1
3 3 4 1

3 3 4 1



c0
c1
c2
c3
c4
c5

 =

0
0
0

 ,

i.e.,

c3 = −4c2 − 3c1 − 3c0, c4 = −4c3 − 3c2 − 3c1, c5 = −4c4 − 3c3 − 3c2.
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Assume that a message m = (1, 0, 0) is being transmitted. It is encoded into
the codeword c = (1, 0, 0, 2, 2, 1).

Suppose that the received word is y = (y0, y1, y2, y3, y4, y5) = (1, 1, 0, 2, 2, 1).
then d(y, c) = 1 ≤ e = b 6−32 c = 1. By the algorithm in Remark 5.10, solving
the linear system (5.2) (note that ω−1 = 2θ2) yields

E(X) = X + θ, Q(X) = (θ − 2)X3 + 2θX2 + 2X + (3θ − 1).

Next, by long division of polynomials, we obtain

Q(X) = (X + θ)
(
(θ − 2)X2 +X − (θ − 2)

)
,

from which it follows that f(X) = (θ − 2)X2 +X − (θ − 2). Thus

c0 = f(1) = 1, c1 = 2θ2f(−θ) = 0, c2 = −θf(θ2) = 0,

c3 = 3f(−1) = 2, c4 = θ2f(θ) = 2, c5 = 2θf(−θ2) = 1.

Proposition 5.12. Let q be an odd prime power such that ν2(q − 1) ≥ 3. Let

r = q−1
2 , s = 1 + q2−1

4 , n = q+ 1, let ω ∈ Fq2 be a primitive rn-th root of unity
and let

X0 =
{

1 +
q − 1

2
j
∣∣∣ − q − 1

4
< j ≤ q − 1

4
+ 1
}
, X1 = (1 + rZrn) \ X0.

Then

(i) X0 and X1 form a Type-I duadic splitting of 1 + rZrn over Fq given by µs;

(ii) the duadic constacyclic codes CX0 and CX1 over Fq are MDS [n, n2 ,
n
2 + 1]

codes;

(iii) CX1
= GRSn/2(ω; v)|Fq is an alternant code, where GRSn/2(ω; v) is the

GRS code over the field Fq2 with ω =
(
1, ωr, · · · , ω(n−1)r) and v =(

1, ω
q−1
4 r−1, ω

q−1
4 2r−2, · · · , ω

q−1
4 (n−1)r−(n−1)).

Proof. It is clear that s ∈ Z∗rn ∩ (1 + rZrn). To prove (i), it is enough to show
that X0 is a union of some q-cyclotomic cosets modulo rn with |X0| = q+1

2

and sX0

⋂
X0 = ∅. Clearly, |X0| = q+1

2 . To show that X0 is a union of some

q-cyclotomic cosets, it suffices to prove that q(1 + q−1
2 j) ∈ X0 for any − q−14 <

j ≤ q−1
4 + 1. This is straightforward: q(1 + q−1

2 j) ≡ 1 + q−1
2 (2− j) (mod rn)

and − q−14 + 1 ≤ 2 − j < q−1
4 + 2. We are left to show that sX0

⋂
X0 = ∅.

Assuming otherwise, then two integers j, j′ with − q−14 < j, j′ ≤ q−1
4 + 1 can

be found such that 1 + q−1
2 j ≡ 1 + q−1

2 (j′ + q+1
2 ) (mod q2−1

2 ). We then have

j − j′ ≡ q+1
2 (mod q + 1), which is impossible. Thus {X0, X1} is a splitting of

1 + rZrn given by µs, proving (i).

Observe that ordrn(q) = 2. Let C̃X1
be the constacyclic code of length q+ 1

over Fq2 with check polynomial
∏
Q∈X1/µq

MQ(X). Hence, {ωj | j ∈ X0} is the

19



set of zeros of the code C̃X1 . Using reasoning similar to that in the proof of
Proposition 5.3, one gets

C̃X1
=
{(
f(1), ω

q−1
4 r−1f(ωr), · · · , ω

q−1
4 (n−1)r−(n−1)f(ω(n−1)r)

)∣∣∣ f(X) ∈ Fq2 [X], deg f(X) < n
2

}
.

It is easy to see that C̃X1

⋂
Fnq = CX1

. We are done.

We list some examples in Table 5.2. The alternant codes (i)-(iii) correspond
to the codes (iv)-(vi) of Table 5.1, respectively, using Proposition 5.9, whereas
the alternant codes (iv)-(v) are derived from Proposition 5.12.

No m q r n k d Alternant code GRSk(α;v)|Fq

(i) 2 32 2 10 5 6 α = (1, ω−2, · · · , ω−18), v = (1, ω−1, · · · , ω−9)

(ii) 2 5 2 6 3 4 α = (1, ω−2, · · · , ω−10), v = (1, ω−1, · · · , ω−5)

(iii) 2 7 2 8 4 5 α = (1, ω−2, · · · , ω−14), v = (1, ω−1, · · · , ω−7)

(iv) 2 32 4 10 5 6 α = (1, ω4, · · · , ω36), v = (1, ω7, · · · , ω63)

(v) 2 17 8 18 9 10 α = (1, ω8, · · · , ω136), v = (1, ω33, · · · , ω527)

Table 5.2: Alternant MDS codes from Type-I duadic constacyclic codes

We present a tweak of Example 2.3 that leads to the existence of a Type-I
polyadic splitting.

Example 5.13. Take q = 3, r = 2 (hence λ = −1) and n = 20. Unlike
in Example 2.3, using Corollary 5.8(ii) in this case, there is a Type-I duadic
splitting of

1 + 2Z40 = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39}

given by µ−1 as follows:

X0 = {1, 3, 5, 7, 9, 15, 21, 23, 27, 29}, X1 = {11, 13, 17, 19, 25, 31, 33, 35, 37, 39}.

We obtain self-dual duadic negacyclic ternary codes CX0
and CX1

of parameters
[20, 10, d]. Since X0 contains 5 consecutive elements, we see that the minimum
distance d ≥ 6 by the BCH bound. For any self-dual ternary code of length n,
by [20, Corollary 3], the minimum distance is bounded from above by 3

⌊
n
12

⌋
+3;

and the code is said to be extremal when this upper bound is attained. Thus, it
follows that both CX0

and CX1
are extremal self-dual ternary [20, 10, 6] codes.

The following example consists of another pair of extremal self-dual ternary
constacyclic codes. With respect to the table in [12], they have the same mini-
mum distance as the best known one to date.
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Example 5.14. Take q = 3, r = 2 and n = 28. We have that

1 + 2Z56 = Q1

⋃
Q5

⋃
Q7

⋃
Q11

⋃
Q29

⋃
Q35,

where Qi are the 3-cyclotomic cosets modulo 56, for i = 1, 5, 7, 11, 29, 35. Let

X0 = Q1

⋃
Q5

⋃
Q35 and X1 = Q29

⋃
Q11

⋃
Q7.

Then we obtain self-dual duadic negacyclic codes CX0
and CX1

, which are
[28, 14, 9] codes.
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