<table>
<thead>
<tr>
<th>Title</th>
<th>Particle Classification by the Tandem Differential Mobility Analyzer–Particle Mass Analyzer System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kuwata, Mikinori</td>
</tr>
<tr>
<td>Citation</td>
<td>Kuwata, M. (2015). Particle Classification by the Tandem Differential Mobility Analyzer–Particle Mass Analyzer System. Aerosol Science and Technology, 49(7), 508-520.</td>
</tr>
<tr>
<td>Date</td>
<td>2015</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/38824</td>
</tr>
</tbody>
</table>

© 2015 American Association for Aerosol Research. This is the author created version of a work that has been peer reviewed and accepted for publication in Aerosol Science and Technology, published by Taylor & Francis on behalf of American Association for Aerosol Research. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1080/02786826.2015.1045058].
Supplemental Information

Particle Classification by the Tandem Differential Mobility Analyzer – Particle Mass Analyzer System

by

Mikinori Kuwata*

Division of Earth Science and Earth Observatory of Singapore,
Nanyang Technological University, Singapore

E-mail: kuwata@ntu.edu.sg

Submitted: October 21, 2015
Submitted to
Aerosol Science and Technology

*To Whom Correspondence Should be Addressed
S1. APM transfer function for the parabolic flow model

In the case of the parabolic flow model, \(s_i \) are provided by numerically solving the following equation (Ehara et al. 1996)

\[
\lambda (s_i) = \frac{3}{2} \left[1 - \rho^2 (s_i) \right] \ln \left[\frac{\rho (s_i) + 1}{\rho (s_i) - 1} \right] + 3 \rho (s_i) \tag{S1}.
\]

In this equation, \(\rho(s) \) is defined as

\[
\rho (s) = \frac{1}{\delta} \sqrt{\frac{V_{APM}}{s \omega^2 \ln (r_{z,APM} / r_{z,APM}) - r_{z,APM}}} \tag{S2}.
\]

The APM transfer function \(\Omega (s) \) is represented by

\[
\Omega (s) = \left(\rho^h - \rho^l \right) \frac{3 - \left(\rho^h \right)^2 - \rho^h \rho^l - \left(\rho^l \right)^2}{4} \tag{S3}.
\]

\(\rho^l \) and \(\rho^h \) are calculated using the following equation

\[
\zeta = \frac{3}{2 \lambda} \left[1 - \rho^2 (s) \right] \ln \left[\frac{\rho - \rho (s)}{\rho^l (\rho, \zeta) - \rho (s)} \right] - \frac{3}{4 \lambda} \left[\left(\rho + \rho (s) \right)^2 - \left(\rho^l (\rho, \zeta) + \rho (s) \right)^2 \right] \tag{S4}.
\]

For the regions B and C, \(\rho^l \) is calculated using equation S4 by substituting \(\{ \rho, \zeta \} = \{-1, 1\} \). \(\rho^h \) for the regions C and D are similarly obtained using a parameter set of \(\{ \rho, \zeta \} = \{1, 1\} \). \(\rho^l \) for the region B is 1, and \(\rho^l \) is equal to -1 for the region D.
Figure S1. Examples of locations for multiple charged particles. The integers in the figure indicate the number of particle charges. The specific mass s and electrical mobility Z_p were fixed at 3.04 kg C$^{-1}$ and 2.69×10^{-8} m2 V$^{-1}$ s$^{-1}$, respectively. For single charged particles (+1), these values correspond to $\{m_p, d_c\} = \{0.49 \text{ fg}, 100 \text{ nm}\}$. The corresponding value of ρ_{eff} for such single charged particles is 930 kg m$^{-3}$. The distance between the line for $\rho_{\text{eff}} = 930$ kg m$^{-3}$ and the positions of the multiple charged particles tends to be far for highly charged particles. When particles have a narrow population around the line for $\rho_{\text{eff}} = 930$ kg m$^{-3}$, highly charged particles have a lower chance of being selected by the DMA-APM system due to the longer distance in the $\log(m_p)$-$\log(d_m)$ space.