<table>
<thead>
<tr>
<th>Title</th>
<th>Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhang, Xiajun; Zhao, Juan; Hao, Jin-Kao; Zhao, Xing-Ming; Chen, Luonan</td>
</tr>
<tr>
<td>Date</td>
<td>2014-12-24</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/39094</td>
</tr>
<tr>
<td>Rights</td>
<td>© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.</td>
</tr>
</tbody>
</table>
Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks

Xiujun Zhang¹,²,³, Juan Zhao¹, Jin-Kao Hao⁴, Xing-Ming Zhao⁵,* and Luonan Chen¹,⁶,*

¹Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, ²Department of Mathematics, Xinyang Normal University, Xinyang 464000, China, ³School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore, ⁴LERIA, Department of Computer Science, University of Angers, Angers 49045, France, ⁵Department of Computer Science, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China and ⁶Collaborative Research Center for Innovative Mathematical Modelling, Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan.

Received September 15, 2014; Revised December 03, 2014; Accepted December 05, 2014

ABSTRACT

Mutual information (MI), a quantity describing the nonlinear dependence between two random variables, has been widely used to construct gene regulatory networks (GRNs). Despite its good performance, MI cannot separate the direct regulations from indirect ones among genes. Although the conditional mutual information (CMI) is able to identify the direct regulations, it generally underestimates the regulation strength, i.e. it may result in false negatives when inferring gene regulations. In this work, to overcome the problems, we propose a novel concept, namely conditional mutual inclusive information (CMI2), to describe the regulations between genes. Furthermore, with CMI2, we develop a new approach, namely CMI2NI (CMI2-based network inference), for reverse-engineering GRNs. In CMI2NI, CMI2 is used to quantify the mutual information between two genes given a third one through calculating the Kullback–Leibler divergence between the postulated distributions of including and excluding the edge between the two genes. The benchmark results on the GRNs from DREAM challenge as well as the SOS DNA repair network in Escherichia coli demonstrate the superior performance of CMI2NI. CMI2NI was also used to reconstruct cancer-specific GRNs using gene expression data from The Cancer Genome Atlas (TCGA). CMI2NI is freely accessible at http://www.comp-sysbio.org/cmi2ni.

INTRODUCTION

Identifying the causal regulations between genes is the key to understand the biological processes within cells. Despite the great efforts from the community, such as ENCODE (1) and modENCOD (2), untangling the comprehensive gene regulation networks (GRNs) is still a challenging task (3). With the increasingly accumulated high throughput data, many computational approaches have recently been developed to reconstruct GRNs (4–6). In general, these GRN inference approaches fall into two categories, i.e. model-based and machine learning-based approaches (7,8). In model-based methods, the regulations between genes are described by different indexes (i.e. causal association) (17,18), including Pearson correlation coefficient (19,20), Bayesian network (21), information theory-based mutual information (MI) (22–26) and conditional mutual information (CMI) (27,28).

Among those popular methods, the mutual information (MI) has been widely used to construct GRNs due to its capability of characterizing the nonlinear dependency between genes (23,29). Recent study shows that comparing
with other approaches, MI is a natural way to equitably quantify statistical associations (30). Another advantage of the MI-based methods is their ability to deal with thousands of variables (genes) in the presence of the limited number of samples (14,31,32). Since MI describes the statistical dependencies between two variables, edge in GRN implies possible functional dependency between the two connected genes but not necessarily causal regulation. In other words, the edge detected by MI may be a functional or indirect regulation through one or more intermediaries instead of a direct (or physical) interaction between a transcription factor (TF) and a gene. Therefore, the mutual information overestimates the regulation relationships to some extent and fails to distinguish indirect regulators from direct ones, thereby leading to possible false positives during the inference of GRNs (28,33–35). Recently, the conditional mutual information (CMI) was proposed to infer the causal regulations between genes (36). As an extension of MI, CMI is able to separate the direct regulations from those indirect ones. CMI has also been used to detect the activity of TFs and miRNAs in transcriptional and post-transcriptional regulations (27,37). However, the theoretical analysis shows that CMI tends to underestimate the regulation strength in some cases due to its statistical feature (38–40).

In many cases, the real regulations between nodes in a GRN are obscured by the noise in the data. Therefore, most network inference methods perform poorly with a high false positive rate. To address this issue, Brazzel et al. (33) and Feizi et al. (35) described easily implemented methods for identifying and removing erroneous links, thereby producing more accurate networks. However, it turns out that both of the two methods are related with the method of partial correlation, which is the correlation between two variables predicted linearly from all other variables (34). Both of the two approaches need to inverse the correlation matrix to achieve the result and they are only different in scaling the inverse correlation matrix. Well known to us, it is difficult to process the inverse of correlation matrix when large scale variables but with small samples are given (41). Hence, approximate methods used by the two approaches to achieve the inverse of correlation matrix will destroy the performance of network inference in many cases.

In this work, to overcome those problems, we propose a concept based on a new measure of causal strength (36), i.e. CM2 (conditional mutual inclusive information), to quantify the causal associations between variables. To infer GRNs, a new algorithm, namely CM2NI, is developed by combining CM2 with path consistency (PC) algorithm. CM2NI, which alleviates both the overestimation problem of MI and the underestimation problem of CMI based on information theory, gives a quantitative measurement of causal associations between two genes. With the hypothesis of Gaussian distribution for gene expression data, CM2 can be calculated by a concise formula involving the covariance matrices of the related gene expression profiles. The proposed network inference method CM2NI can not only accurately quantify causal associations but also reconstruct the correct topological structures of biological networks even with a small number of samples. The experimental results on the benchmark GRNs from DREAM challenge and the widely used SOS DNA repair network in Escherichia coli demonstrated the effectiveness of our CM2NI. As a case study, CM2NI was applied to reconstruct cancer-specific GRNs based on gene expression data from The Cancer Genome Atlas (TCGA), where the GRNs provide a global view of the regulatory circuit of the cancer genes.

MATERIALS AND METHODS

(Conditional) mutual information

Recently, MI and CMI have been widely used to reconstruct GRNs due to their advantages in measuring dependency between variables. In general, the gene expression data can be described as vectors, in which the elements denote the expression values of genes under different conditions. MI can be calculated by a concise formula involving the covariance matrices of the related gene expression profiles. Hence, approximate methods used by the two approaches need to inverse the correlation matrix. Well known to us, it is difficult to process the inverse of correlation matrix when large scale variables but with small samples are given (41).

In a directed acyclic graph (DAG), if variable \(Y \) is regulated by variable \(X \), there exists a directed edge from \(X \) to \(Y \). Therefore, a directed acyclic graph \((X_1, X_2, \ldots, X_n) \) determines a partial ordering among variables, where \(X_i \) is an ancestor of \(X_j \) if \(i < j \). The causal structure of a directed acyclic graph \((X_1, X_2, \ldots, X_n) \) is determined by the ordered pairs \((X_1, X_2), (X_2, X_3), \ldots, (X_{n-1}, X_n)\), where \(X_i \) is a parent of \(X_j \) if \((X_i, X_j)\) holds.

Kullback–Leibler divergence-based causal strength measure

Recently, to accurately measure the causal strength between two genes, a measure based on Kullback–Leibler (KL) divergence was proposed (39). Before giving the definition of the measure, the interventional probability is described firstly. In a directed acyclic graph (DAG), if variable \(Y \) is regulated by variable \(X \) both directly and indirectly through
Figure 1. Quantification of association (ASS) by CMI. (A) The association between two variables (genes) X and Y in a two-node network measured by CMI2 is equal to MI and CMI. (B) The association between two variables (genes) X and Y in a triple-node network measured by CMI2 is equal to CMI. (C) CMI can exclude the indirect information from direct information, but it underestimates the association between X and Y when the expression level of Z is near or equal to the expression level of X or Y. In this case, CMI2 can accurately measure the association prior to both MI and CMI.

variable Z, the interventional probability of moving the link from X to Y is defined as

\[P_{X \rightarrow Y}(x, y, z) = P(x, z) \sum_y P(y|z, x) P(x), \]

where \(P(y|z, x) \) is a conditional probability distribution of Y given Z and X.

For the three variables mentioned above, the casual strength, i.e. regulation strength of the arrow from X to Y is defined (39) as

\[C_{X \rightarrow Y}(X; Y|Z) = D_{KL}(P(X, Y, Z)||P_{X \rightarrow Y}(X, Y, Z)), \]

where \(P(X, Y, Z) \) is the joint probability distribution of \(X, Y \) and \(Z \), \(P_{X \rightarrow Y}(X, Y, Z) \) is the interventional probability distribution of \(X \) and \(Y \) for removing arrow \(X \rightarrow Y \), and \(D_{KL}(P||P_{X \rightarrow Y}) \) is KL-divergence from \(P(X, Y, Z) \) to \(P_{X \rightarrow Y}(X, Y, Z) \). With above definition, measure \(C_{X \rightarrow Y}(X; Y|Z) \) is unsymmetrical.

Conditional mutual inclusive information for association measure

Among the most popular association measures, MI tends to overestimate the regulation strengths between genes (false-positive problem), while CMI tends to underestimate the strengths (false-negative problem). As shown in Figure 1, MI can correctly quantify the regulation strength between genes X and Y for the case of Figure 1A but fails to quantify the association between genes X and Y for the case in Figure 1B due to the indirect regulation mediated by gene Z, i.e. overestimate the strength. Although CMI can successfully quantify the indirect regulation, it fails when the expression level of gene Z is equal to that of either X or Y, where the Pearson correlation coefficient between Z and X (or Y) is near or equal to 1. In that case as shown in Figure 1C, CMI will underestimate the regulation strength because the CMI value between genes X and Y given Z is near or equal to zero, which is actually incorrect. The newly proposed measure \(C_{X \rightarrow Y}(X; Y|Z) \) tried to address this issue by calculating the relative entropy distance. However, it can only partially address the issue (see Supplementary Data). In addition, it is difficult to put it into practice for large-scale network inference because of the prior information requirement of network directions (38,39,44).

In this work, to overcome the problems discussed above, we proposed an effective unbiased measure based on the causal strength (39), named CMI2, to quantify causal associations between genes. CMI2 is an association measure using the inclusive information, i.e. entropy relative distance between the postulated edge-existence distribution and edge-non-existence distribution. Next, we describe the definitions of CMI2.

In a DAG, if variable Y is regulated by variable X both directly and indirectly through variable Z, the association between X and Y is defined as

\[CMI2(X, Y|Z) = (D_{KL}(P||P_{X \rightarrow Y}) + D_{KL}(P||P_{Y \rightarrow X}))/2, \]

where \(P = P(X, Y, Z) \) is the joint probability distribution of \(X, Y \) and \(Z \), \(P_{X \rightarrow Y} = P_{X \rightarrow Y}(X, Y, Z) \) and \(P_{Y \rightarrow X} = P_{Y \rightarrow X}(X, Y, Z) \) are the interventional probability distributions of \(X, Y \) and \(Z \) for removing edges \(X \rightarrow Y \) and \(Y \rightarrow X \), respectively. \(D_{KL}(P||P_{X \rightarrow Y}) \) and \(D_{KL}(P||P_{Y \rightarrow X}) \) are KL-divergences from \(P \) to \(P_{X \rightarrow Y} \) and \(P_{Y \rightarrow X} \). Similar to CMI, CMI2 has an order number \(|Z|\), i.e. the number of conditional variables, Z, and MI can be regarded as zero-order CMI2.

The above quantity can be decomposed into three terms. One of them is CMI and another two are non-negative terms. The decomposition can be derived from the theoretical result as follows. For the three variables defined above, CMI2(X; Y|Z) between variables X and Y given Z can be decomposed into

\[CMI2(X; Y|Z) = CMI(X; Y|Z) + \frac{1}{2} D_{KL}(P(Y|Z)||P_{X \rightarrow Y}(Y|Z)) + \frac{1}{2} D_{KL}(P(Y|Z)||P_{Y \rightarrow X}(Y|X)). \]

The proof of the above result can be found in the Supplementary Data. Equation (8) states that CMI2 is equal to CMI if the second and third terms of Equation (8) are zero, i.e. both \(X \) and \(Y \) are independent with \(Z \). Since the KL-divergence is non-negative, CMI2 between \(X \) and \(Y \) given \(Z \) is no less than CMI between \(X \) and \(Y \) given \(Z \).

Equation (8) also states that CMI and \(C_{X \rightarrow Y}(X; Y|Z) \) is CMI(X; Y|Z) + \(D_{KL}(P(Y|Z)||P_{X \rightarrow Y}(Y|Z)) \) underestimates the association strength. For instance, given that \(Y \) and \(Z \) are almost identical, we can get CMI(X; Y|Z) \(\approx 0 \) and \(D_{KL}(P(Y|Z)||P_{X \rightarrow Y}(Y|Z)) \approx 0 \). In other words, strong dependency between \(X \) and \(Z \) makes the influence of \(Z \) almost invisible when looking at CMI2(X; Y|Z) and \(D_{KL}(P(Y|Z)||P_{X \rightarrow Y}(Y|Z)) \). Therefore, The third term in Equation (8) corrects the underestimation. Similarly, if \(X \) and \(Z \) are similar, The second term in Equation (8) will correct the underestimation.

Computation of CMI2

As described above, CMI2 can be determined by computing the (joint) probabilities of genes X, Y, and Z, which can be estimated with kernel density estimator to construct the probability density functions based on gene expression data (23,27,45). In this work, to efficiently estimate CMI2, we assumed that the gene expression profiles follow a multivariate Gaussian distribution, which has been widely accepted and
proved to be reasonable (43,46). Here, to approximate the Gaussian distribution, the log-transformation of gene expression data was adopted. According to the definition of KL-divergence, CM12(X; Y|Z) can be rewritten as

$$CM12(X; Y|Z) = \sum_{x,y,z} P(x,y,z) \ln \frac{P(x,y,z)}{P(x|y,z)P(y|z)P(z)}$$

where $P(y|z, x)$ and $P(x|z, y)$ are the conditional probabilities.

With the hypothesis of Gaussian distribution, CM12 can be calculated based on the following result.

Theorem 1. Let X and Y be 1-dimension variables, Z is a n_z-dimension variable, and X, Y and Z follow Gaussian distribution. Then

$$CM12(X; Y|Z) = \frac{1}{4} (\text{tr}(C^{-1}\Sigma) + \text{tr}(\hat{C}^{-1}\hat{\Sigma}) + \ln C_0 + \ln \hat{C}_0 - 2n),$$

where

$$n = n_z + 2, C_0 = \rho_{xx}\left((\Sigma^{-1})_{xx} - (\Sigma_1^{-1})_{xx} + \rho_{xx}^{-1} \right),$$

$$\hat{C}_0 = \rho_{yy}\left((\hat{\Sigma}^{-1})_{yy} - (\hat{\Sigma}_1^{-1})_{yy} + \rho_{yy}^{-1} \right),$$

$$C = \begin{pmatrix} C_{xx} & C_{xy} & C_{xz} \\ C_{yx} & C_{yy} & C_{yz} \\ C_{zx} & C_{zy} & C_{zz} \end{pmatrix}^{-1}, \quad \hat{C} = \begin{pmatrix} \hat{C}_{yy} & \hat{C}_{yx} & \hat{C}_{yz} \\ \hat{C}_{xy} & \hat{C}_{xx} & \hat{C}_{xz} \\ \hat{C}_{xz} & \hat{C}_{zy} & \hat{C}_{zz} \end{pmatrix}^{-1},$$

$$\tilde{C}_{yy} = (\Sigma^{-1})_{yy}, \quad C_{yy} = 0, \quad \tilde{C}_{xx} = (\Sigma^{-1})_{xx},$$

$$\tilde{C}_{yy} = (\hat{\Sigma}^{-1})_{yy}, \quad \tilde{\Sigma}_{yy} = 0, \quad \tilde{C}_{xx} = (\hat{\Sigma}^{-1})_{xx},$$

$$C_{xx} = (\Sigma_1^{-1})_{xx}, \quad C_{yy} = 0, \quad \tilde{C}_{xx} = (\hat{\Sigma}_1^{-1})_{xx},$$

$$C = \begin{pmatrix} \rho_{xx} & \rho_{xz} \\ \rho_{zx} & \rho_{zz} \end{pmatrix}, \quad \tilde{\Sigma}_1 = \begin{pmatrix} \rho_{yy} & \rho_{yz} \\ \rho_{zy} & \rho_{zz} \end{pmatrix},$$

$$\tilde{\Sigma}_1 = \begin{pmatrix} \rho_{yy} & \rho_{yz} \\ \rho_{zy} & \rho_{zz} \end{pmatrix}.$$

The proof of Theorem 1 can be found in the Supplementary Data. With Equation (10), the CM12 can be calculated in a very efficient way with the general hypothesis of Gaussian distribution underlying gene expression data.

Path consistency algorithm

The path consistency (PC) algorithm is a widely used algorithm in graph theory and has been used for the reconstruction of gene regulation network. By gradually removing redundant edges in a network based on the conditional dependency between the nodes, PC-algorithm can construct a network with sparse topological structure. In particular, PC-algorithm is specifically useful for the sparse and scale-free networks, such as biological networks including GRNs. The PC-algorithm has been utilized for GRN inference by popular approaches, such as pcalg (36) and PCA-CMI (28), where partial correlation coefficient (PCC) and CMI were respectively used by pcalg and PCA-CMI to quantify the regulation strength.

CM12NI: GRN inference method based on CM12

Given an expression dataset with n genes and m samples, we developed a novel algorithm, called CM12NI, to infer its underlying GRN. In CM12NI, after obtaining MI and CM12 with Equations (2) and (10), the PC-algorithm was then used to remove the (conditional) indirect regulations from the clique/complete graph. GRN inference will be performed by removing those edges without strong causal regulations recursively until there is no change in the network topology, e.g. at L-th-order CM12. CM12NI improves the resulted GRN through accurately quantifying the causal regulation strength with CM12.

Figure 2 depicts the diagram of CM12NI with details described as follows. Firstly, we generated a complete connected graph according to the number of genes. Secondly, for an adjacent gene pair i and j, we computed the MI between them. If the gene pair i and j has low or zero MI, we deleted the edge between genes i and j. Thirdly, for an adjacent gene pair i and j, we calculated the first-order CM12 given another gene z that is neighbors of i and j. If the gene...
pair \(i\) and \(j\) has low or zero CMI2, we deleted the edge between them. Subsequently, the higher order CMI2 was calculated for a gene pair until there were no further changes in the network topology. The detailed algorithm for inferring a GRN was described in algorithm CMI2NI.

To reduce computational complexity but not sacrifice the accuracy for detecting the true regulatory interactions, we adopted an optimal strategy to select \(L\) genes from \(T\) adjacent genes for randomly selected gene pair \(i\) and \(j\), which also ensures the local optimality of the algorithm. For example, suppose that there are \(T\) \((T \geq 1)\) genes which are adjacent with both genes \(i\) and \(j\). When constructing the \(L\)th-order \((L \leq T)\) network, all the \(L\)th-order CMI2s for the possible combinations of \(L\) conditional genes from \(T\) genes are computed and the maximal one or the geometric mean of them is selected to decide the existence of regulation. Generally, after a few number of iterations \(L\), the computation will terminate due to no change on the network topology, i.e. \(L < m < n\). In other words, we can obtain the network without resorting to any approximations in the computational procedure, as indicated in the CMI2NI algorithm and also Figure 2. Theoretically, for a network with \(n\) genes or molecules \((e.g., n = 20,000\) genes\), it requires at least \(n\) independent samples to derive their direct regulations due to the computation of CMI2(. . . \(\ln n - 2\)). which clearly is not available for most of real cases. However, if the algorithm is converged to an \(L\)th-order network, it actually requires only \(L + 2\) independent samples due to CMI2(. . . \(\ln L\)). In other words, CMI2NI can infer the network without any approximation in the above process even with a small number of samples, i.e. \(L + 2\) independent samples when converged to an \(L\)th-order network, where \(L\) is usually between 3 and 5 for many real networks or datasets, far less than \(n\). Thus, comparing to the traditional requirement of \(n\) independent samples for computing all statistic dependency among variables, our algorithm can obtain the network without the approximation with a small number of samples \(L + 2\).

Algorithm (CMI2NI)

Input:
Gene expression matrix \(A\).
Parameter for dependence threshold \(\theta\).

Output:
Inferrered gene network \(G\).
Order of inferred network \(L\).

Step-1. Initialization. Generate the complete connected network \(G_0\) for all genes \((i.e., the clique graph of all genes)\). Set \(L := -1\).

Step-2. \(L := L + 1\). For a nonzero edge \(G_0(i, j) \neq 0\), select adjacent genes connected with both genes \(i\) and \(j\). Compute the number \(T\) of the adjacent genes (not including genes \(i\) and \(j\)).

Step-3. Set \(G := G_0\). If \(T < L\), stop. If \(T \geq L\), select out \(L\) genes from these \(T\) genes and let them as \(K = \{k_1, \ldots, k_L\}\). The number of all selections for \(K\) is \(C_T^L\). Compute the \(L\)th-order CMI2 for all \(C_T^L\) selections, and choose the maximal one denoting as CMI2max(\(i, j\))/\(K\). If CMI2max(\(i, j\))/\(K\) < \(\theta\), set \(G(i, j) = 0\).

Step-4. If \(G = G_0\), stop; If \(G = G_0\), set \(G_0 := G\) and return to Step-2.

Sometimes there is no need to run the algorithm with high order networks, so we set a parameter for deciding the maximal order of the network in the software to terminate the algorithm according to the user’s need. More importantly, this will greatly reduce the computational complexity. The MATLAB implementation of the algorithm described above with detailed tutorials are freely available at http://www.comp-sysbio.org/cmi2ni.

Datasets

In order to validate our method, CMI2NI was applied to simulation dataset as well as a real gene expression dataset. As for simulation data, the method was tested on the widely used reference network in Yeast with synthetic nonlinear expression data from DREAM challenge (4). As for real gene expression data, we applied our method to the well-known SOS DNA repair network with the experimental dataset in E. coli (47,48).

Metrics for evaluation

The performance of the proposed method was evaluated by the following measures, i.e. sensitivity (SN) or true positive rate (TPR), false positive rate (FPR), positive predictive value (PPV), accuracy (ACC) and Matthews coefficient constant (MCC). Mathematically, they are defined as

\[
\text{TPR} = \frac{TP}{TP + FN}, \\
\text{FPR} = \frac{FP}{FP + TN}, \\
\text{PPV} = \frac{TP}{TP + FP}, \\
\text{ACC} = \frac{(TP + TN)}{(TP + TN + FP + FN)}, \\
\text{MCC} = \frac{(TP \cdot TN - FP \cdot FN)}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}},
\]

where TP, FP, TN and FN are the numbers of true positives, false positives, true negatives and false negatives, respectively. TPR and FPR are also used to plot the receiver operating characteristic (ROC) curves and the area under ROC curve (AUC) is calculated. In addition, we compared CMI2NI with several PC algorithm-based methods, such as pcalg (49) and PCA-CMI (28).

RESULTS

Simulation study

For simulation expression data, the widely used benchmark networks along with expression datasets from DREAM challenge were adopted here to evaluate our method. The gold standard networks were selected from source networks of real species. The expression data were generated with the nonlinear ordinary differential equation (ODE) systems in which the network structures were determined with detailed dynamics of both transcriptional and translational processes (50). In this work, the DREAM3 datasets about Yeast knock-out gene expression data with sizes 10, 50 and 100 were used (4).

Firstly, we tested CMI2NI on the Yeast gene expression data with network size 10 and sample number 10. We chose 0.03 as the threshold value of mutual information and conditional mutual inclusive information to decide independence, and the order index was not constrained, i.e. the
The results on all the three datasets with different network sizes from DREAM challenge demonstrated the effectiveness of our CMI2NI. Furthermore, the good performance of CMI2NI indicates that CMI2, as a new measure of causal regulation strength, is superior to CMI.

Reconstruction of SOS network in *Escherichia coli*

Besides the above simulation datasets, CMI2NI was also applied to reconstruct gene networks from real gene expression data. We evaluated our CMI2NI on the well-known SOS DNA repair network which is an experimentally verified network in *E. coli* with real gene expression data (47,48).

The network is a 9-gene sub-network of SOS pathway in *E. coli*. The SOS pathway, which regulates cell survival and repair after DNA damage, involves the *lexA* and *recA* genes. There are more than 30 genes that are directly regulated by *lexA* and *recA*, while tens or even hundreds of other genes that are indirectly regulated by the two genes. Here, the nine transcripts in the test network include the principle mediators of the SOS response (*lexA* and *recA*), four other regulatory genes with known involvement in the SOS response (*ssp*, *recF*, *dinI* and *unnDC*), and three sigma factor genes (*rpoD*, *rpoH* and *rpoS*) whose regulations play important roles in the SOS response. For the expression data, we chose the perturbation data, which were obtained after perturbations were applied to the test network in *E. coli*. In the perturbation, each of the nine genes in the test network is overexpressed with arabinose-controlled episomal expression plasmid, and the change in expression of each transcript relative to the unperturbed cells was accordingly measured using quantitative real-time polymerase chain reaction (qPCR).

The performance of CMI2NI was evaluated with the network of size 9 and the expression dataset generated under perturbations. We chose 0.01 as the threshold of both MI and CMI2. To show the performances of CMI2NI and other methods, the true network and inferred networks were visualized with Cytoscape (51). Figure 4A shows the true network with 24 edges. Figure 4B–D shows the networks inferred by pcalg, PCA-CMI and CMI2NI, respectively, with corresponding ACC of 0.583, 0.694 and 0.722. From the results shown in Figure 4E, we can see that CMI2NI outperforms the other two methods significantly, where CMI2NI achieves the highest ACC of 0.802.

The detailed results of different methods can be found in Table 2 with respect to some indexes, such as PPV, ACC, MCC, etc. From Table 2, we can see that CMI2NI performs best on most metrics. Although pcalg achieves higher TPR with the same parameter, the higher FPR disables it as a good performer. Both PCA-CMI and CMI2NI outperform pcalg, implying the efficiency of CMI. The superior performance of CMI2NI over PCA-CMI demonstrates that CMI2 is better than CMI when quantifying the causal strength between variables.

Performance of CMI2NI

The theoretical analysis of CMI2 has proven that CMI2 can be decomposed into CMI and a non-negative term. This implies that CMI2 value is bigger than CMI. Hence, CMI2 can
Table 1. Comparison of different methods on networks with sizes 10, 50 and 100 in DREAM3 challenge

<table>
<thead>
<tr>
<th>Method</th>
<th>TP</th>
<th>FP</th>
<th>TN</th>
<th>FN</th>
<th>TPR</th>
<th>FPR</th>
<th>PPV</th>
<th>ACC</th>
<th>MCC</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 10</td>
<td></td>
</tr>
<tr>
<td>pcalg</td>
<td>20</td>
<td>8</td>
<td>62</td>
<td>0</td>
<td>1.000</td>
<td>0.114</td>
<td>0.714</td>
<td>0.911</td>
<td>0.795</td>
<td>0.991</td>
</tr>
<tr>
<td>PCA-CMI</td>
<td>18</td>
<td>2</td>
<td>68</td>
<td>2</td>
<td>0.900</td>
<td>0.028</td>
<td>0.900</td>
<td>0.956</td>
<td>0.871</td>
<td>0.991</td>
</tr>
<tr>
<td>CMI2NI</td>
<td>18</td>
<td>2</td>
<td>68</td>
<td>2</td>
<td>0.900</td>
<td>0.028</td>
<td>0.900</td>
<td>0.956</td>
<td>0.871</td>
<td>0.994</td>
</tr>
<tr>
<td>Size 50</td>
<td></td>
</tr>
<tr>
<td>pcalg</td>
<td>66</td>
<td>162</td>
<td>2134</td>
<td>88</td>
<td>0.428</td>
<td>0.071</td>
<td>0.289</td>
<td>0.898</td>
<td>0.299</td>
<td>0.782</td>
</tr>
<tr>
<td>PCA-CMI</td>
<td>72</td>
<td>78</td>
<td>2218</td>
<td>82</td>
<td>0.467</td>
<td>0.034</td>
<td>0.480</td>
<td>0.934</td>
<td>0.438</td>
<td>0.810</td>
</tr>
<tr>
<td>CMI2NI</td>
<td>78</td>
<td>80</td>
<td>2216</td>
<td>76</td>
<td>0.506</td>
<td>0.035</td>
<td>0.493</td>
<td>0.936</td>
<td>0.466</td>
<td>0.834</td>
</tr>
<tr>
<td>Size 100</td>
<td></td>
</tr>
<tr>
<td>pcalg</td>
<td>152</td>
<td>252</td>
<td>9316</td>
<td>180</td>
<td>0.457</td>
<td>0.026</td>
<td>0.376</td>
<td>0.956</td>
<td>0.392</td>
<td>0.829</td>
</tr>
<tr>
<td>PCA-CMI</td>
<td>114</td>
<td>96</td>
<td>9472</td>
<td>218</td>
<td>0.343</td>
<td>0.010</td>
<td>0.542</td>
<td>0.968</td>
<td>0.416</td>
<td>0.849</td>
</tr>
<tr>
<td>CMI2NI</td>
<td>128</td>
<td>76</td>
<td>9492</td>
<td>204</td>
<td>0.385</td>
<td>0.007</td>
<td>0.627</td>
<td>0.971</td>
<td>0.478</td>
<td>0.855</td>
</tr>
</tbody>
</table>

Table 2. Comparison of different methods on SOS DNA repair network

<table>
<thead>
<tr>
<th>Method</th>
<th>TP</th>
<th>FP</th>
<th>TN</th>
<th>FN</th>
<th>TPR</th>
<th>FPR</th>
<th>PPV</th>
<th>MCC</th>
<th>ACC</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcalg</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>12</td>
<td>0.500</td>
<td>0.250</td>
<td>0.800</td>
<td>0.239</td>
<td>0.583</td>
<td>0.701</td>
</tr>
<tr>
<td>PCA-CMI</td>
<td>16</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>0.667</td>
<td>0.250</td>
<td>0.842</td>
<td>0.393</td>
<td>0.694</td>
<td>0.792</td>
</tr>
<tr>
<td>CMI2NI</td>
<td>17</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>0.708</td>
<td>0.250</td>
<td>0.850</td>
<td>0.435</td>
<td>0.722</td>
<td>0.802</td>
</tr>
</tbody>
</table>

Figure 4. Comparison of CMI2NI with pcalg and PCA-CMI on the SOS network. (A) Benchmark (true) network. (B) Network inferred by pcalg. (C) Network inferred by PCS-CMI. (D) Network inferred by CMI2NI. In the network, a pink node represents a gene. (E) ROC curves of three methods, where the AUC score of CMI2NI is 0.802.

address the underestimation problem of CMI. To further test this theoretical conclusion, we investigated the value of CMI2 with both simulation and real expression datasets. Moreover, we compared values of CMI2 and CMI. For simulation dataset, we used a random dataset as well as the dataset from DREAM challenge. For real gene expression dataset, we used the expression data of SOS network in *E. coli*.

Firstly, we generated random variables with different samples 5, 10, 100 and 500, we took one or more of them as conditional variable(s). We computed their CMI2 and CMI values using these datasets. The calculation was performed 100 times on each dataset, and the mean of the CMI2 and CMI values were used for comparison. Figure 5A gives the results of CMI2 and CMI values. From the histogram, we can find that for all the types of datasets with different samples, CMI2 values are always larger than CMI values, which is consistent with theoretical analysis of CMI2.

Secondly, we investigated the values of CMI2 on the datasets from DREAM challenge and the real expression dataset for SOS network in *E. coli*. When computing the causal strength, we only calculated CMI2 or CMI for the edges in the network, where the means of all edges for CMI2s or CMIs were used for comparison. Figure 5B shows the values of CMI2 and CMI on the five datasets, from which we can clearly see that CMI2 is indeed higher than CMI.

Case study: reconstruction of cancer-specific gene regulatory network

It is well recognized that most complex traits are caused by the dysfunction of certain functional modules and pathways (52), where the gene regulatory circuit may be rewired in the diseases. Since the gene regulatory network provides a global view of the gene regulations, we hereby investigated how the cancer genes are regulated by constructing a gene regulatory network for cancer. As a case study, we applied CMI2NI to build a GRN for acute myeloid leukemia (AML) based on the RNA sequencing data of a large cohort of AML patients from TCGA (http://cancergenome.nih.gov).
The information theory-based association measures, e.g. MI and CMI have been widely used to infer gene regulatory networks. However, these measurements either underestimate or overestimate the associations between variables \((5,56)\). In this paper, we proposed a novel association concept, namely CMI2, to accurately quantify the dependency between a pair of variables. CMI2 provides a natural generalization of correlation and is capable of characterizing the nonlinear dependency between variables that is common in biology. Furthermore, CMI2NI can accurately quantify the causal strengths or correlations between gene-pairs so that the indirect regulation can be eliminated, which is the key point to improve the accuracy of GRN inference. With CMI2, we developed a network inference algorithm, namely CMI2NI, to infer gene regulation networks. With the power of PC algorithm, CMI2NI can also keep the natural sparseness of biological networks. The benchmark results show that CMI2NI outperforms other popular approaches, implying the effectiveness of CMI2NI. Considering the complex functional relationships among genes \((57)\), we also constructed an AML-specific GRN with CMI2NI to see how the cancers genes are regulated. Similar to other network-based approaches, such as network differentiation \((58–63)\) and dynamical network biomarkers \((64–66)\), investigating the regulatory circuit of cancer genes provides new insights into the cancer pathogenesis.

Despite the advantages of CMI2NI, we notice there is still room to improve it. Firstly, similar to PCA-CMI, CMI2NI cannot directly infer edge directionality, which is also a general problem of many other methods, especially for those not working on time series data \((23)\). Secondly, it is still a challenge task to select the conditional genes in an optimization way. In the PC-algorithm, genes \(i, j\) and their neighbours are randomly selected when calculating association. For example, there are \(T \geq 1\) genes which are adjacent with both genes \(i, j\) and \(i, j\). When constructing the \(L\)-th-order \((L \leq T)\) network, all the \(L\)-th-order CMI2s for the possible combinations of \(L\) conditional genes from \(T\) genes are computed, and the maximal one or the geometric mean of them is used to describe the regulation strength. However, the selection of conditional genes may affect the performance of PC algorithm.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their constructive comments, which greatly help us improve our manuscript, Dr Dominik Janzing for the discussion on the model of causal strength, Dr Yue Li for providing the leukemia dataset and Ms Peipei Xiao for the technique help.

FUNDING

Funding for open access charge: Strategic Priority Research Program of the Chinese Academy of Sciences (CAS).
REFERENCES