<table>
<thead>
<tr>
<th>Title</th>
<th>iTRAQ Quantitative Clinical Proteomics Revealed Role of Na+K+ -ATPase and Its Correlation with Deamidation in Vascular Dementia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Adav, Sunil S.; Qian, Jingru; Ang, Yi Lin; Kalaria, Raj N.; Lai, Mitchell K. P.; Chen, Christopher P.; Sze, Siu Kwan</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/39155</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 American Chemical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of Proteome Research, American Chemical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1021/pr500754j].</td>
</tr>
</tbody>
</table>
iTRAQ Quantitative Clinical Proteomics Revealed Role of Na⁺/K⁺-ATPase and its Correlation with Deamidation in Vascular Dementia

Sunil S. Adav¹, Jingru Qian¹, Yi Lin Ang¹, Raj N. Kalaria², Mitchell K.P. Lai³,⁴, Christopher P. Chen³,⁴, Siu Kwan Sze¹*

¹School of Biological Sciences, Nanyang Technological University, Singapore
²Institute for Ageing and Health, NIHR Biomedical Research Building, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom
³Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
⁴Memory, Aging and Cognition Centre, National University Health System, Singapore

Running title: iTRAQ Quantitative Proteomics Revealed Role of Na⁺/K⁺-ATPase in dementia

Keywords: Dementia; Na⁺/K⁺-ATPase; ion channel proteins, iTRAQ, mass spectrometry

* Corresponding author
Siu Kwan SZE, PhD
School of Biological Sciences
Division of Chemical Biology & BioTechnology
Nanyang Technological University,
60 Nanyang drive, Singapore 637551
Tel: +65: 6514-1006
Fax: +65: 6791-3856
Email: sksze@ntu.edu.sg
Abstract

Dementia is a major public health burden characterized by impaired cognition and loss of function. There are limited treatment options due to inadequate understanding of its pathophysiology and underlying causative mechanisms. In order to elucidate the perturbed pathways contributing to pathophysiology of Vascular Dementia (VaD), discovery-driven iTRAQ-based quantitative proteomics techniques were applied on frozen brain samples to profile the proteome from VaD and age-matched non-dementia controls. The iTRAQ quantitative data revealed significant up-regulation of Protein-L-isoaspartate O-methyltransferase (PIMT) and sodium-potassium transporting ATPase, while post-translational modification analysis suggested deamidation of catalytic and regulatory subunits of sodium-potassium transporting ATPase. Spontaneous protein deamidation of labile asparagines, generating abnormal L-isoaspartyl residues, is associated with cell aging, dementia due to Alzheimer’s Disease (AD) and may be a cause of neurodegeneration. As ion channel proteins play important roles in cellular signaling processes, alterations in their function by deamidation may lead to perturbations in membrane excitability and neuronal function. Structural modeling of sodium-potassium transporting ATPase revealed close proximity of these deamidated residues to the catalytic site during E$_2$P confirmation. The deamidated residues may disrupt electrostatic interaction during E$_1$ phosphorylation which may affect ion transport and signal transduction. Our findings suggest impaired regulation and compromised activity of ion channel proteins contribute to the pathophysiology of VaD.
Introduction

In addition to Alzheimer’s disease (AD), cerebrovascular disease is also a principal cause of age-related cognitive impairment. AD and Vascular dementia (VaD) are major contributors to disability, dependence and mortality among older adults - by recent estimates, 36 million people are suffering with dementia worldwide with an addition of 4.6 million new cases annually. Thus, further research is needed to understand the molecular events in the brain leading to dementia, and in particular, the possible interlink between protein deamidation and dementia. With age, proteins undergo several spontaneous modifications that alter their structure, influence stability, folding, and biological function. Studies by Geiger and Clerk on aspartyl (Asp) and asparaginyl (Asn) deamidation, isomerization, and racemization revealed that L-Asp and L-Asn residues can be converted to four different isoforms (L-Asp, L-isoAsp, D-Asp and D-isoAsp) via cyclic intermediates. Such transformations or isomerization denatures the protein, induce an autoimmune response to self proteins and also lead to the accumulation of potential abnormal L-isoaspartyl residues that alter their three-dimensional structure, stability, folding and finally, loss of function. The accumulation of isomerized proteins has been linked to metabolic dysfunction in neuronal cells and neurodegenerative diseases. The occurrence or accumulation of such abnormal residues have been demonstrated in development and aging, and has been shown to accelerate amyloid formation and alter amylin fiber structure which may lead to AD.

Isoaspartate (isoAsp) formation and its accumulation is a major source of protein damage. However, methyltransferases can recognize these changes and correct them through the methyl esterification reaction. Thus, the enzyme Protein L-isoaspartate (D-aspartate) O-methyltransferase (PIMT) functions as a protein repair enzyme and helps prevent the accumulation of dysfunctional proteins. The proteomic analysis of PIMT knock-down mouse brain extract identified 22 proteins including proteins involved in regulating synaptic

3
transmission (synapsins I and II, and dynamin-1) and cytoskeletal structure (e.g. alpha-, beta-tubulin) that were prone to isoAsp formation. The phosphorylation or acetylation of these proteins has been linked to accumulation of isoAsp and protein damage. Furthermore, signal transduction remains a vital aspect in many diseases: the ion channel proteins or Na⁺/K⁺-ATPase are well known for their role in ion transport across the plasma membrane. These ion channel proteins sustain Na⁺ and K⁺ gradient across the membrane which is vital for maintaining the cellular electrical potential for neuronal signaling, muscle contraction and solute/substrate co-transportation etc. It also plays a major role in signal transduction and several signaling pathways have been found to involve Na⁺/K⁺-ATPase. However, to the best of our knowledge, ion channel protein regulation, their deamidation and role of PIMT has not been previously investigated in vascular causes of dementia.

Na⁺/K⁺-ATPase is a heterodimer of alpha- and beta-subunits. There are four and three different isoforms of alpha- and beta-subunits respectively. The expression of both Na⁺/K⁺-ATPase alpha1- and alpha3-subunit in mammalian neurons is present but its role is not known. A mutation in the gene coding Na⁺/K⁺-ATPase alpha3-subunit causes rapid onset of dystonia parkinsonism and familial hemiplegic migraine type-2, while its decline in activity is linked to impairment of learning and memory as Na⁺/K⁺-ATPase activity has been associated with the formation and persistence of long-term potential in neurons and glial cells, through its involvement in the mechanisms of synaptic plasticity. However, deamidation of Na⁺/K⁺-ATPase ion channel proteins and the possible role of PIMT has not been previously examined. We hypothesise that the deamidation of ion channel proteins interferes with the pumping of Na⁺ and K⁺ ions by Na⁺/K⁺-ATPase, affects signal transduction and may be a cause of neurodegenerative diseases. Thus, the main aim of the current study was to profile the relative regulation of ion channel proteins in VaD and age-
matched controls, examine their deamidation so as to elucidate its role and possible association with PIMT.

MATERIALS AND METHODS

Patients and Clinical Assessments

This study analyzed brain tissues from age-matched non-demented controls and VaD patients. Frozen gray matter from the neocortex (Brodmann area, BA21) were acquired from the Newcastle Brain Tissue Resource (NBTR), Institute for Ageing and Health, Newcastle University as part of the collection under Brains for Dementia Research, UK (http://www.brainsfordementiaresearch.org.uk). The details of the subjects are summarized in Table 1. The patients received current treatment for either hypertension (a documented history of blood pressure greater than 140/90 mm Hg), atrial fibrillation, ischaemic heart disease, peripheral vascular disease, hypercholesterolaemia, diabetes (documented or treated). However, several of the ageing controls also had vascular risk and were on current treatment for vascular factors (as above). Patients or controls were not treated for any other neurological condition or depressive illness unless specified. VaD was diagnosed following guidelines by National Institute of Neurological Disorders and Stroke and Association Internationale pour la Recherche et l'Enseignement en Neurosciences (NINDS-AIREN).18 The pathological diagnosis of dementia was specified by the presence of lacunar infarcts or multiple microinfarcts, border-zone infarcts, micro-infarcts (visible by microscopy) and small vessel disease in sub-cortical structures in the general absence of neurofibrillary tangles.19 None of the VaD cases satisfied diagnostic criteria for Alzheimer’s Disease as defined by Consortium to Establish a Registry for Alzheimer’s Disease (CERAD).20 The cognitive assessments were made using Mini-Mental State Examination (MMSE) which include 30-point scale to evaluate the cognitive functions that cover orientation, memory, and attention.21
The VaD patients had clinical dementia rating scores of 2-3. Informed consent was obtained from the guardians of the patients prior to donation of brain tissues, and approval for this study was granted by research ethics committees in the UK and in Singapore.

Experimental Design

The experimental design included 10 cases of VaD (age mean ±SD; 84.00±8.50) and 10 age-matched control samples (age 80.30±8.9). Frozen gray matter from the neocortex (Brodmann area, BA21) previously dissected free of white matter and meninges were thawed on ice, centrifuged and proteins were acetone precipitated. In brief, equal quantities of frozen tissues (w/w) were pooled in a group-wise manner and grounded into fine powder using liquid nitrogen. The resultant fine powder was suspended in a mixture of methanol (Merck KGaA, Darmstadt, Germany), chloroform and water (J.T. Baker, Center Valley, PA, USA) (1:1:2). The suspension was mixed and centrifuged at 15,000 ×g, 5 min to obtain the pellet. The pellet was further washed using a mixture of methanol, chloroform and water (4:1:3). The polar methanol–water phase was combined from consecutive steps and proteins were precipitated by adding 4 volumes of previously chilled acetone. The protein pellet was washed with methanol and dissolved in 8 M urea with protease inhibitor cocktail (Complete (Roche; Mannheim, Germany)). Proteins from the control and test groups (200μg) were separated on SDS-PAGE, protein bands were visualized by staining with Coomassie Brilliant Blue, each lane was sliced separately and cut into small pieces (approximately 1 mm²). The gel slices were washed with 75% acetonitrile containing TEAB (25 mM). Following destaining, gel pieces were reduced with Tris 2- carboxyethyl phosphine hydrochloride (5 mM) and then alkylated with methyl methanethiosulfonate (10 mM). Then gel pieces were dehydrated using acetonitrile and subjected to protein digestion using sequencing grade
modified trypsin (Promega, Madison, WI) at 37°C. The peptides were extracted using 50% acetonitrile, 5% acetic acid and concentrated using concentrator (Eppendrof AG, Hamburg, Germany) for further iTRAQ reagent labeling. All experiments were performed in triplicate.

iTRAQ Labeling and LC-MS/MS Analysis

The iTRAQ labeling of dried peptides from control and test group were performed using 4-plex iTRAQ reagent Multiplex kit (Applied Biosystems, Foster City, CA) following manufacturer’s protocol. The tryptic digested peptides from pooled control and VaD (n = 10 for each group) were labeled by two iTRAQ tags (114: control, 115:VaD) of the 4-plex iTRAQ kit. The iTRAQ experiment was repeated thrice (experimental replicate = 3, named as Set1, Set2 and Set3) using the pooled digest. LC–MS/MS analysis was performed thrice (technical replicate = 3) for Set1 and Set2, and four times (technical replicate =4) for Set3. We randomly selected 114 and 115 iTRAQ labels for this experiment. However, studies on their fragmentation behavior, accuracy and precision of iTRAQ quantitation have been documented23-26 iTRAQ labeled peptides were desalted using Sep-Pak C18 cartridges and then fractionated using HPLC. To reduce sample complexity, enhance separation, protein identification and its confidence; the iTRAQ labeled peptides were reconstituted in buffer A (10 mM ammonium acetate, 85% acetonitrile, 0.1% formic acid) and fractionated by ERLIC method using a PolyWAX LP column (4.6 × 200 mm, 5 μm, 300 Å) (PolyLC, Columbia, MD, USA) adopting HPLC system (Shimadzu) at a flow rate of 1.0 ml/min using our optimized laboratory protocol.27, 28 The HPLC mobile phase consisted of buffer A (10 mM ammonium acetate, 85% acetonitrile, 0.1% acetic acid) and buffer B (30% acetonitrile, 0.1% formic acid) while 60-min gradient was 100% buffer A for 5 min, 0 –36% buffer B for 25 min, 36 –100% buffer B for 20 min, and 100% buffer B for 10 min at 1 ml/min flow rate. The HPLC chromatograms were recorded at 280 nm, and fractions were collected using automated
fraction collector, concentrated using vacuum centrifuge, and reconstituted in 0.1% formic acid for LC-MS/MS analysis.

The LC-MS/MS analysis of HPLC fractionated labeled samples were performed with a QStar Elite mass spectrometer (Applied Biosystems/MDS Sciex) coupled with online microflow MDLC system. The iTRAQ labeled peptides were separated on a home packed nanobored C18 column with a picofrit nanospray tip (75 μm ID × 15 cm, 5 μm particles). Each iTRAQ labeled peptides fraction of set 1 was sequentially injected in triplicate. Similarly, set 2 was analyzed in triplicate while set 3 was analyzed by the LC-MS/MS using 60-min gradient for four times. The QSTAR Elite was set to positive ion mode using Analyst QS 2.0 software (Applied Biosystems) for data acquisition. The precursors with a mass range of 300-1600 m/z and calculated charge from +2 to +5 were selected for fragmentation. Peptides above five-count threshold were selected for MS/MS and each selected target ion was dynamically excluded for 20s with a mass tolerance of 0.1 Da. Smart information-dependent acquisition was activated with automatic collision energy and automatic MS/MS accumulation. The fragment intensity multiplier was set to 20, and maximum accumulation time was 2s.

Mass Spectrometric Data Search and Analysis

A total of ten sets of data acquired from the technical and experimental replicates was further processed using ProteinPilot™ software. The peak list generation, protein identification, and peptide quantification were performed using ProteinPilot™ software 3.0 (revision number 114732; Applied Biosystems, Foster City, CA). The concatenated target-decoy Uniport human database (sequence 87187, downloaded on 12 March 2012) was used for data search. The database search for set 1, set 2, and set 3 (biological replicates as defined above) and their technical replicates were performed separately, and the mean values
with standard deviations of the proteins that were quantified in at least two sets were reported in this study. The peptide identification was performed with Paragon algorithm (3.0.0.0, 113442) in ProteinPilot™ software, and further processed with Pro Group algorithm where isoform-specific quantification was implemented to trace the differences between expressions of various isoforms. User defined parameters in ProteinPilot™ software were: (i) sample type: iTRAQ 4-plex (peptide-labeled); (ii) cysteine alkylation: methyl methanethiosulfonate; (iii) digestion: trypsin; (iv) instrument: QSTAR Elite ESI; (v) special factors: urea denaturation; (vi) species: none; (vii) specify processing: quantitate, bias and background correction; (viii) identification focus: biological modifications and amino acid substitutions using DB, a concatenated target and decoy Uniport human database database; and (x) search effort: thorough. The default precursor and MS/MS tolerance for QSTAR ESI-MS instrument were adopted automatically by the software. The false discovery rates (FDR) of both peptide and protein identification were set to be less than 1% (FDR = 2.0*decoy hits/total hits). The peptide for protein quantification was automatically selected by Pro Group algorithm to calculate the iTRAQ ratio, p-value, and other parameters using the following criteria: a) the peptide was suitable for quantitation (iTRAQ reporter area >0); b) the peptide was identified with good confidence; 3) the peptide was not shared with another protein that had been identified with higher confidence. On top of these criteria, i.e. Pro Group quantified proteins, we selected only proteins which were iTRAQ quantified with more than two unique peptides with >95% confidence, in at least two biological replicates and two technical replicates. We applied iTRAQ cut off values of ≤0.80 for down regulation and ≥1.2 for up regulation

Results and Discussion

Vascular dementia is the second most common cause of age-related dementia after Alzheimer's disease and acquaintance of its pathophysiology is lagging behind due to limited
knowledge of the molecular events driving vascular and parenchymal changes in the brain. As agreed with the complexity and heterogeneity of cerebrovascular disorder and the occurrence of co-morbidities in VaD patients, it is most likely that multiple proteins candidates rather than small number of protein present in network are perturbed. Protein quantification through incorporation of stable isotopes has become a central technique in modern proteomics research that made it possible to explore global relative quantitation of proteins across various biological samples in a single experiment. Taking an advantage of this technique and to elucidate the perturbed pathways contributing to pathophysiology of VaD, iTRAQ-based quantitative proteomics was applied on brain samples to profile relative protein expression in pathologically confirmed cases of VaD and matched non-neurological controls. Again, and it has been put forward that through deamidation, Asn and Gln may serve as molecular clocks which time biological processes including protein turnover, homeostatic control, and organism development, aging and many more$^{29-32}$. Protein deamidation causes structural changes and functional inactivation and also enhancement in the protein aggregation process which is considered as one of the progression factors in AD. Therefore, this study targeted further targeted PTM of regulated sodium potassium transporting ATPase and located deamidation site by adopting 3D structure of Na^+/K^+-ATPase.

Estimation of threshold and bioinformatics analysis

A strict cut-off of unused protein score ≥ 2 (which corresponds to a confidence limit of 99%) as the qualification criteria and FDR of <1.0% was employed to minimize the false positive identification of proteins. To obtain quality and high confident data, ten replicates (including biological and technical replicates) were analyzed and the average data with standard deviation were reported in this study. The proteins identified with at least two
peptides in each run were further considered. Using these criteria, we iTRAQ quantified 1315±240 proteins (Table S1, supplementary). To these proteins, we applied iTRAQ cut off values of ≤0.80 for down regulation and ≥1.2 for up regulation. Although this study iTRAQ quantified 1315±240 proteins, here we limit our objective to ion channel proteins. These proteins were subjected to the next stage of bioinformatics to identify motif and deamidation sites.

iTRAQ quantification and Regulation of Ion Channel proteins

To combat the dissipation of the concentration and electrical gradients of ions, Na+/K+-ATPase play critical role in regulating concentration of Na⁺, K⁺ inside and outside the cell. However, there is limited data on the role(s) of ion channel proteins such as the voltage-dependent anion-selective channel protein 1 (VDAC1) which participate in the formation of the permeability transition pore complex (PTPC). In our study, when brain tissue samples from VaD subjects were analyzed using the iTRAQ quantitative technique, 50% of the ion channel proteins identified including voltage-dependent anion-selective channel protein 1 (VDAC1), voltage-dependent anion-selective channel protein 2 (VDAC2) of VaD subjects were down-regulated when compared with age-matched controls (Fig 1). As a high level of VDAC1 expression has been reported in brain33, the down regulation of these VDAC proteins can lead to reduced mitochondrial function enhancing oxidative stress impairing neural function in VaD patients. Proteins like V-type proton ATPase subunit D (VATD), ATP synthase, H+ transporting, mitochondrial F0 complex, subunit b isoform (ATP5F1), Obg-like ATPase 1 (OLA1) and V-type proton ATPase subunit F (VATF) (Table 2) were also down regulated in VaD patients. Down regulation of protein like VATD, ATP5F1, OLA1 and VATF involved in energy production results into reduced energy
production, cell exhaustion and enhanced cell death. Proteins like sodium/potassium-transporting ATPase subunit alpha-1 (ATP1A1) and Na⁺/K⁺-ATPase alpha 3 subunit variant (ATP1A3) which catalyze hydrolysis of ATP coupled with the exchange of Na⁺ and K⁺ ions was up-regulated in VaD patients. The current findings suggest that, Na⁺/K⁺-ATPase could be an important target for dementia, particularly VaD.

We noted up-regulation of glutamate transporter (solute carrier family 1-SLC1). Woltjer et al. also found significant increase in levels of glutamate transporters, Excitatory amino-acid transporters (EAAT2) in patients with AD while its level in clinical dementia rating subjects was intermediately elevated. The results by Kirvell et al on the homogenates prepared from gray matter from 2 neocortical regions (Brodmann area BA 9 and BA 20) showed lower expression of EAAT2 but its concentration could not correlate with either CAMCOG (Cambridge Assessment of Mental Health for the Elderly, Section B) total score or CAMCOG memory score. Again, EAATs transporting L-glutamate and L-aspartate are mostly expressed in glial cells (EAAT1 and EAAT2) and neurons (EAAT3 and EAAT4), where they specifically regulate extracellular glutamate levels at both synaptic and extrasynaptic sites. It’s well established that EAATs play critical roles in the maintenance of normal excitatory synaptic transmission, protection of neurons from the excitotoxic action of excessive glutamate, and regulation of glutamate mediated neuroplasticity. Dysfunction of EAATs has been implicated in a variety of neurodegenerative diseases such as amyotrophic lateral sclerosis, Parkinson’s disease, AD, Huntington’s disease, and glaucoma, and other neurological diseases including ischemia, epilepsy, ataxia, and HIV-associated dementia. Again, these glutamate transporters are sodium-dependent proteins that rely on ion gradients generated by Na⁺/K⁺-ATPase. In addition, ATP1A1 and ATP1A3, proteins such as V-type proton ATPase subunit B, V-type proton ATPase subunit C1 and V-type proton ATPase 116 kDa subunit A isoform 1 were also up-regulated in VaD patients, as were
ATPase, H+ transporting, subunit G2 and ATP synthase, H+ transporting, subunit F6 that regulates electrogenic proton pump by acidifying intracellular compartments of cells. The limitation of this study is the small amount of the starting tissues that did not allow validation of the candidate proteins as the availability of post-mortem brain tissue of VaD is relatively limited comparing to AD.

Deamidation of ion channel proteins

In addition to biological metabolic pathway regulation, protein post-translational modifications such as deamidation are important but often ignored. Identified ion channel protein peptides with deamidation sites were listed in Table 3. ATP1A1 and ATP1A2 showed deamidation (Fig 2-3, fig S1-S7 Supplementary). No published data exists on the deamidation of ATP1A1, ATP1A2 and ATP1A3, however, it has been documented that the deamidation of channel forming prion protein alters channel activity and causes progressive neurodegeneration. Exposure of channel forming PrP(106-126) peptide to low concentration of Cu$^{2+}$ causes change in conformation of this peptide leading to changes in current transition. Thus, deamidation of channel forming peptide induces abnormal changes in signal transduction and cause neurodegenerative disease. Interestingly, the quantitative deamidation by integrating chromatograms showing N-deamidation and Q-deamidation revealed 1.63 and 1.46 ratios (115/114), indicating significantly higher deamidation in VaD patients. Again, our dataset showed expression of Cu$^{2+}$ transport protein and deamidated ATP1A1 and ATP1A2. According to Robinson, protein deamidation introduces a negative charge at the deamidation site and sometimes also leads to beta-isomerization. Thus, deamidation of ATP1A1 and ATP1A2 alter total charge of this protein subunit leading to conformational change at the Mg$^{2+}$, Cu$^{2+}$ binding site. This further affects conductance of
ions, resting membrane potential, action potential and signal transduction. However, further detailed study is required.

Na+/K+-ATPase Deamidated Sites in Structural Models

Na\(^+/K^+\)-ATPase is a heterodimer of \(\alpha\)-, \(\beta\)- and tissue specific regulatory \(\gamma\)-subunit. The \(\alpha\)-subunit consists of four domains that rearrange to change the conformations of the Na\(^+/K^+\)-ATPase while translocating ions via ATP hydrolysis. The reactions linking ion transport to ATP hydrolysis through conformational changes are shown in Fig 4. Three of the identified deamidated residues in ATP1A1 and ATP1A2 were located in close proximity to highly conserved sequences which is important for Na\(^+/K^+\)-ATPase activity. Mutation of Asn\(^{715}\) to Ala reduced Na\(^+/K^+\)-ATPase affinity for Mg\(^{2+}\) by four-fold in the E\(_1\) conformation which further affected dephosphorylation of Na\(^+/K^+\)-ATPase and its activity.\(^{46}\) Thus, Asn\(^{715}\) play a major role in maintaining activity of Na\(^+/K^+\)-ATPase. As can be seen from Fig 5, Asn\(^{210}\) and Gln\(^{220}\) are located near a conserved 214TGES sequence in the domain A, whereas Asn\(^{715}\) is in the conserved 712DGVND sequence. Restated, structural models of Na\(^+/K^+\)-ATPase in E\(_1\)P and E\(_2\)P conformations placed these three deamidated residues in close proximity to the catalytic site during the E\(_2\)P conformation. In fact, the conserved 214TGES of domain A which is isolated in the E\(_1\)P form makes contact with the phosphorylation site and becomes catalytically important in the E\(_2\)P conformation.\(^{47}\) During the E\(_1\)P to E\(_2\)P transition, 214TGES in domain A rotates close to the catalytic site and docks onto the P domain.\(^{48}\) As reported by Toustrup-Jensen et al.\(^{47}\), 214TGES is important in E\(_2\)P dephosphorylation that play major role in facilitating and positioning an attacking water molecule in a nucleophilic attack of the phosphorylated Asp\(^{371}\) or by interacting with phosphate group. According to Patchornik\(^{48}\), 214TGES sequence coordinates Mg\(^{2+}\) in E\(_2\)P and E\(_2\) states. While, as confirmed by
Goldshleger et al. conformational transition from E1P to E2P is associated with a change in Mg\(^{2+}\) ligation where glutamic acid residue of \(214^\text{TGES}\) is involved in Mg\(^{2+}\) coordination in E2P. Thus, deamidation of Asn\(^{210}\) and Gln\(^{220}\) flanking the \(214^\text{TGES}\) on both sides interfere with \(214^\text{TGES}\) repositioning near the catalytic site in E2P, interrupting any interactions that \(214^\text{TGES}\) formed near the catalytic site. Thus, deamidation of residues like Asn\(^{210}\) and Gln\(^{220}\) cause defects in phosphorylation and dephosphorylation mechanism further affecting ATP hydrolysis and energy supply for ATP-coupled ion transport. In nerve cells, Na\(^+/\)K\(^+\)-ATPase generates gradient of both sodium and potassium ions and propagate electrical signals that travel along nerves. However, this electrical signal transfer process requires ATP to generate resting potentials and defects in it prevent proper functioning of the nervous system.

According to Faller \(^50\), Mg\(^{2+}\) counterbalance the negative charge formed in the transition state and in the leaving carboxyl group during phosphorylation. \(^50\) Again as depicted by Robinson \(^40\), protein deamidation introduces a negative charge at the deamidation site. Interestingly, our study noted the deamidation of three residues located in close proximity to catalytic site which disrupts electrostatic interactions during E\(_1\) phosphorylation to E\(_1\)P. Na\(^+/\)K\(^+\)-ATPase plays critical role in maintaining ionic gradients for neuronal signaling and any defects in them affect the signaling mechanism leading to multiple neurological disorders, AD, learning and memory. \(^14\)-\(^17\) Thus, our study reports impaired regulation of Na\(^+/\)K\(^+\)-ATPase and its compromised activity as a major cause of pathogenesis of VaD.

Quantitative Expression of Protein L-isoaspartate (D-aspartate) O-methyltransferase

Asparaginyl and aspartyl residues are the most labile amino acids of the protein that undergo modification yielding both isoaspartyl (isomerization) and normal aspartyl residues. \(^51\) Proteins containing L-isoaspartyl and D-aspartyl residues have distorted
structures and biological activity. However, PIMT can recognize these abnormal residues and convert them to the normal L-aspartyl form.52, 53 Kosugi et al.54 established PIMT-knockdown cells using a short interfering RNA expression system and exemplified abnormalities in intracellular signaling pathways leading to significant accumulation of proteins with racemized D-aspartyl residues in PIMT-knockdown cells. The knock-out or transgenic mice model showing epileptic phenotype has deduced molecular mechanism including ion channel genes and genes regulating the synaptic release of neurotransmitters for epileptogenesis.55, 56 Thus, several researchers concluded that PIMT repair of abnormal protein is necessary to maintain normal signaling.52, 54, 57

In this study, PIMT was identified with unused score of 22.2 and percentage coverage 87.2. We found upregulation of PIMT in brain tissue of dementia subjects when compared with age-matched control. The down regulation of VDAC proteins may enhance oxidative stress stimulating over expression of PIMT. The PIMT activity has been detected in all vertebrates but significantly high level of activities and repair has been reported in brain tissue.57 In our PTM study, we noted deamidated PIMT. Although up-regulation of ion channels proteins and further loss of their function due to deamidation could be compensated by over-expression of PIMT, but the effects of deamidated PIMT has not yet been explored. Thus, we propose the deamidation of PIMT could influence its potential to recognize abnormal residues or affect its capability to converts isoaspartyl to the normal L-aspartyl form.

Methyltransferase specifically recognizes abnormal D-aspartyl and L-isoaspartyl residues; methyl-esterifies them and rapidly converted to succinimidyl residues in a nonenzymatic reaction, followed by spontaneous hydrolysis to native L-aspartyl residues.57 This prevents further accumulation of abnormal proteins and also restores protein configuration and function by eliminating L-isoaspartyl linkages and racemized D-aspartyl
residues.53, 58, 59 However, deamidation of PIMT might be causing defects in its protein repairing function and leads to significantly high accumulation of abnormal isoaspartyl and contribute to neuronal degeneration. The deamidation of ion channel proteins introduce defects in the phosphorylation and dephosphorylation mechanism and ATP-coupled translocation of Na+, K+ by Na+/K+-ATPase. Modulation of Na+/K+-ATPase activity affects neurotransmitter signaling and neural activity while inhibition by ouabain decreases norepinephrine60, dopamine, and serotonin re-uptake61 and increases acetylcholine release.62 Inhibition of Na+/K+-ATPase also impairs spatial and other forms of learning.63

Conclusion

Dementia is caused by brain damage leading to impaired cognition, behavior, and psychiatric symptoms. Na+/K+-ATPase does not only transport ions, but is also involved in many signaling events that are regulated by protein–protein interactions involving Na+/K+-ATPase. iTRAQ quantitative profile revealed significant dysregulation of sodium-potassium transporting Na+/K+-ATPase with up regulation of PIMT. This study noted deamidation of ATP1A1 and ATP1A2 subunits of Na+/K+-ATPase and abnormal isoaspartyl repairing PIMT. The overall data analysis revealed up-regulation of sodium-potassium transporting Na+/K+-ATPase, down-regulation of voltage-dependent anion-selective channel proteins, deamidation in catalytic subunits of sodium-potassium transporting ATPase and defective PIMT; which could affect membrane polarization and signal transfer, and hence be a cause of and treatment target in VaD.
Acknowledgements: We would like to thank the patients, families and clinical staff for their co-operation during this investigation study. Tissue for this study was collected by the NBTR, which is funded in part by a grant from the UK Medical Research Council (MRC; G0400074), by the Newcastle NIHR Biomedical Research Centre in Ageing and Age Related Diseases award to the Newcastle upon Tyne Hospitals NHS Foundation Trust, and by a grant from the Alzheimer’s Society and Alzheimer’s Research UK (ARUK) as part of the Brains for Dementia Research Project. We thank Dr. Arnab Datta for helpful experimental discussion/assistance. This research work was supported by the Singapore National Research Foundation under its CBRG grant (NMRC/CBRG/0004/2012) and administered by the Singapore Ministry of Health’s National Medical Research Council and CSA grant (NMRC/CSA/032/2011). RNK is supported by grants from the Newcastle Centre for Brain Ageing and Vitality, UK MRC (G0500247), and the Alzheimer’s Research UK.
References

List of figure and figure legends

Figure 1. Relative expression of ion channel proteins in dementia subjects. (P21281: V-type proton ATPase subunit B, brain isoform; Q53ESO: Na+/K+-ATPase alpha 3 subunit variant; P38606: V-type proton ATPase catalytic subunit A; Q53Y06: ATPase, H+ transporting; Q2L6F8: ATPase, H+ transporting; Q6IB54: ATP synthase, H+ transporting; P46459: Vesicle-fusing ATPase; Q16864: V-type proton ATPase subunit F; O00244: Copper transport protein; Q9Y5K8: V-type proton ATPase subunit D; P05023: Sodium/potassium-transporting ATPase subunit alpha-1; Q9NTK5: Obg-like ATPase 1; Q93050: V-type proton ATPase 116 kDa subunit a isoform 1; Q6NW36: Proteasome 26S subunit, ATPase, 1; Q9UI12: V-type proton ATPase subunit H; Q5VWC4: Proteasome 26S subunit, non-ATPase, 4; Q53GB3: ATP synthase, H+ transporting; P21283: V-type proton ATPase subunit C 1; Q8N169: Solute carrier family 1, glutamate transporter; P45880: Voltage-dependent anion-selective channel protein 2; P21796: Voltage-dependent anion-selective channel protein 1).

Figure 2. Figure 2. MS/MS spectrum of sodium/potassium transporting ATPase subunit alpha 3 deamidated peptide that show deamidation site at N*. The spectrum shows the peptide fragmentation pattern and is labeled with both b and y ions.

Figure 3. Figure 3. MS/MS spectra of sodium/potassium transporting ATPase subunit Beta 1 peptide that show deamidation site at Q*. The spectrum shows the peptide fragmentation pattern and is labeled with both b and y ions.

Figure 4. Simplified schematic of sodium/potassium ion transport in Na+/K+-ATPase. The α-subunit consists of four domains; N (nucleotide-binding), A (actuator), P (phosphorylation) and M (membrane) domains. The major conformational changes during E1P to E2P transition is the 35° rotation of P domain, the rotation of N-domain away from the P-domain, and the rotation and translation of A domain that relocate the TGE sequence near to the catalytic site 64-66.

Figure 5. Structural models of Na+/K+-ATPase catalytic site in (a) E1P 65 and (b) E2P 64 conformations (PDB ID 4HQJ and 2ZXE respectively). In both a and b, color changes gradually amino-terminal (blue) to carboxyl-terminal (red); A domain is in blue and cyan, P domain is in yellow, and N domain is in green. Notable deamidated residues, N210, D220 and N715, are in red whereas highly conserved sequences, 214TGES, 712DGVND, Asp371 and Lys382 are in gray. Magnesium ion is in magenta, ADP is in orange and phosphate analogue is in purple. In E2P state (b), 712TGES is located in close proximity to the catalytic site compared to E1P state (a). Structural models is visualized and prepared in The PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC.

Table 1. The characteristics of subjects and numbers of samples for control and VaD patients

Table 2. iTRAQ quantified PIMT and ion channel proteins regulated in demented patients.

Table 3. iTRAQ quantified deamidated Ion channel proteins with their peptide sequence and deamidation site.
Supplementary Table and Figure legends

Table S1. iTRAQ quantified proteins. Complete information of the full list of the qualified proteins (Unused prot score ≥ 2 and peptide ≥2) obtained from iTRAQ data set.

Figure S1. MS/MS spectrum of GVGIISEGN*ETVEDIAARLNIPVSQVNPR (/potassium transporting ATPase subunit alpha2) showing fragmentation evidence and modification assigned by ProteinPilot.

Figure S2. MS/MS spectrum of VAPPGLTQIPQI*Q*K (sodium/potassium transporting ATPase subunit beta1) showing fragmentation evidence and modification assigned by ProteinPilot.

Figure S3. MS/MS spectrum of LN*IPMSQVNPR (sodium/potassium transporting ATPase subunit alpha 2) showing fragmentation evidence and modification assigned by ProteinPilot.

Figure S4. MS/MS spectrum of GVGIISEGN#ETVEDIAR G (sodium/potassium transporting ATPase subunit alpha 2) showing fragmentation evidence and modification assigned by ProteinPilot.

Figure S5. MS/MS spectrum of VAPPGLTQ#IPQIQK (Sodium/potassium-transporting ATPase subunit beta-1) showing fragmentation evidence and modification assigned by ProteinPilot.

Figure S6. MS/MS spectrum of LN#IP (Sodium/potassium-transporting ATPase subunit alpha 2) showing fragmentation evidence and modification assigned by ProteinPilot.

Figure S7. MS/MS spectrum of VDN#SSLTGESEPQTR (Sodium/potassium-transporting ATPase subunit alpha-1) showing fragmentation evidence and modification assigned by ProteinPilot.
Fig1. Relative expression of ion channel proteins in dementia subjects. (P21281: V-type proton ATPase subunit B, brain isoform; Q53ES0: Na+/K+-ATPase alpha 3 subunit variant; P38606: V-type proton ATPase catalytic subunit A; Q53Y06: ATPase, H+ transporting; Q2L6F8: ATPase, H+ transporting; Q6IB54: ATP synthase, H+ transporting; P46459: Vesicle-fusing ATPase; Q16864: V-type proton ATPase subunit F; O00244: Copper transport protein; Q9Y5K8: V-type proton ATPase subunit D; P05023: Sodium/potassium-transporting ATPase subunit alpha-1; Q9NTK5: Obg-like ATPase 1; Q93050: V-type proton ATPase 116 kDa subunit a isoform 1; Q6NW36: Proteasome 26S subunit, ATPase, 1; Q9UI12: V-type proton ATPase subunit H; Q5VWC4: Proteasome 26S subunit, non-ATPase, 4; Q53GB3: ATP synthase, H+ transporting; P21283: V-type proton ATPase subunit C 1; Q8N169: Solute carrier family 1, glutamate transporter; P45880: Voltage-dependent anion-selective channel protein 2; P21796: Voltage-dependent anion-selective channel protein 1).
Figure 2. MS/MS spectrum of sodium/potassium transporting ATPase subunit alpha 3 deamidated peptide that show deamidation site at N*.

The spectrum shows the peptide fragmentation pattern and is labeled with both b and y ions.
Figure 3. MS/MS spectra of sodium/potassium transporting ATPase subunit Beta 1 peptide that show deamidation site at Q*. The spectrum shows the peptide fragmentation pattern and is labeled with both b and y ions.
Figure 4. Simplified schematic of sodium/potassium ion transport in Na\(^+\)/K\(^+\)-ATPase. The α-subunit consists of four domains; N (nucleotide-binding), A (actuator), P (phosphorylation) and M (membrane) domains. The major conformational changes during E\(_1\)P to E\(_2\)P transition is the 35° rotation of P domain, the rotation of N-domain away from the P-domain, and the rotation and translation of A domain that relocate the TGE sequence near to the catalytic site 64-66.
Figure 5. Structural models of Na\(^+\)/K\(^+\)-ATPase catalytic site in (a) E\(_1\)P\(^{65}\) and (b) E\(_2\)P\(^{64}\) conformations (PDB ID 4HQJ and 2ZXE respectively). In both a and b, color changes gradually amino-terminal (blue) to carboxyl-terminal (red); A domain is in blue and cyan, P domain is in yellow, and N domain is in green. Notable deamidated residues, N210, D220 and N715, are in red whereas highly conserved sequences, \(^{214}\)TGES, \(^{712}\)DGVND, Asp\(^{371}\) and Lys\(^{482}\) are in gray. Magnesium ion is in magenta, ADP is in orange and phosphate analogue is in purple. In E\(_2\)P state (b), \(^{712}\)TGES is located in close proximity to the catalytic site compared to E\(_1\)P state (a). Structural models is visualized and prepared in The PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC.
Table 1. The characteristics of subjects and numbers of samples for control and VaD patients

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>VaD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Age of Patients at death</td>
<td>83.3±8.9</td>
<td>84.0±8.5</td>
</tr>
<tr>
<td>Years, (Mean ± SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braak staging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–II</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>III–IV</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>V–VI</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SD=Standard deviation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 iTRAQ quantified PIMT and ion channel proteins regulated in demented patients. Transport proteins iTRAQ quantified with unused score ≥2 and with ≥2 peptides were listed below.

<table>
<thead>
<tr>
<th>Unused Protein Score</th>
<th>Total Protein Score</th>
<th>% Coverage</th>
<th>Accession</th>
<th>Protein</th>
<th>Peptides (95%)</th>
<th>115;114</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.21±9.4</td>
<td>23.5±7.5</td>
<td>87.2±9.6</td>
<td>P22061</td>
<td>Protein-L-isoaspartate(D-aspartate) O-methyltransferase</td>
<td>19±8</td>
<td>1.31±0.26</td>
</tr>
<tr>
<td>59.4±20.2</td>
<td>59.4±20.2</td>
<td>66.2±9.6</td>
<td>P55072</td>
<td>Transitional endoplasmic reticulum ATPase</td>
<td>34±14</td>
<td>0.64±0.05</td>
</tr>
<tr>
<td>48.2±9.8</td>
<td>48.2±9.8</td>
<td>76.9±6.0</td>
<td>P21281</td>
<td>V-type proton ATPase subunit B, brain isoform</td>
<td>32±11</td>
<td>1.23±0.18</td>
</tr>
<tr>
<td>24.6±6.0</td>
<td>27.7±10.1</td>
<td>36.2±7.9</td>
<td>Q53ES0</td>
<td>Na+/K+-ATPase alpha 3 subunit variant (Fragment)</td>
<td>14±6</td>
<td>1.96±0.46</td>
</tr>
<tr>
<td>28.2±7.6</td>
<td>28.2±7.6</td>
<td>54.3±11.8</td>
<td>P38606</td>
<td>V-type proton ATPase catalytic subunit A</td>
<td>18±7</td>
<td>0.99±0.13</td>
</tr>
<tr>
<td>29.1±6.0</td>
<td>29.1±6.0</td>
<td>74.8±13.8</td>
<td>Q53Y06</td>
<td>ATPase, H+ transporting, lysosomal 31kDa, V1 subunit E isoform 1</td>
<td>21±7</td>
<td>1.05±0.14</td>
</tr>
<tr>
<td>22.7±4.0</td>
<td>22.7±4.0</td>
<td>88.3±6.7</td>
<td>Q2L6F8</td>
<td>ATPase, H+ transporting, lysosomal 13kDa, V1 subunit G2</td>
<td>30±12</td>
<td>1.41±0.18</td>
</tr>
<tr>
<td>24.8±8.4</td>
<td>24.8±8.4</td>
<td>86.1±10.1</td>
<td>Q6IB54</td>
<td>ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F6, isoform CRA</td>
<td>17±6</td>
<td>1.54±0.18</td>
</tr>
<tr>
<td>18.5±6.1</td>
<td>20.8±6.8</td>
<td>44.5±12.4</td>
<td>P46459</td>
<td>Vesicle-fusing ATPase</td>
<td>10±4</td>
<td>1.12±0.14</td>
</tr>
<tr>
<td>5.7±2.2</td>
<td>7.0±4.6</td>
<td>53.4±24.7</td>
<td>Q16864</td>
<td>V-type proton ATPase subunit F</td>
<td>5±3</td>
<td>0.75±0.07</td>
</tr>
<tr>
<td>8.1±1.6</td>
<td>7.8±1.7</td>
<td>71.3±15.4</td>
<td>O00244</td>
<td>Copper transport protein ATOX1</td>
<td>4±1</td>
<td>0.73±0.13</td>
</tr>
<tr>
<td>5.6±2.9</td>
<td>3.9±3.6</td>
<td>30.0±20.0</td>
<td>Q9Y5K8</td>
<td>V-type proton ATPase subunit D</td>
<td>2±2</td>
<td>0.46±0.09</td>
</tr>
<tr>
<td>6.1±1.1</td>
<td>18.8±4.3</td>
<td>32.6±7.9</td>
<td>P05023</td>
<td>Sodium/potassium-transporting ATPase subunit alpha-1</td>
<td>10±3</td>
<td>1.89±1.13</td>
</tr>
<tr>
<td>7.4±1.5</td>
<td>7.4±1.5</td>
<td>48.0±13.0</td>
<td>P61970</td>
<td>Nuclear transport factor 2</td>
<td>5±2</td>
<td>0.97±0.10</td>
</tr>
<tr>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Gene ID</td>
<td>Description</td>
<td>Value 4</td>
<td>Value 5</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>5.6±2.4</td>
<td>5.0±3.0</td>
<td>27.0±12.8</td>
<td>Q9NTK5</td>
<td>Obg-like ATPase 1</td>
<td>2±2</td>
<td>0.57±0.05</td>
</tr>
<tr>
<td>3.1±1.2</td>
<td>3.5±1.4</td>
<td>12.1±5.5</td>
<td>Q93050</td>
<td>V-type proton ATPase 116 kDa subunit a isoform 1</td>
<td>2±1</td>
<td>1.36±0.16</td>
</tr>
<tr>
<td>5.5±2.0</td>
<td>5.1±2.6</td>
<td>24.5±7.5</td>
<td>Q6NW36</td>
<td>Proteasome (Prosome, macropain) 26S subunit, ATPase, 1</td>
<td>2±1</td>
<td>0.97±0.11</td>
</tr>
<tr>
<td>4.7±0.0</td>
<td>2.6±2.0</td>
<td>13.2±8.0</td>
<td>A8K143</td>
<td>cDNA FLJ75342, highly similar to Homo sapiens solute carrier family 12, (potassium-chloride transporter) member 5 (SLC12A5), mRNA</td>
<td>2±1</td>
<td>092.±0.01</td>
</tr>
<tr>
<td>3.1±1.1</td>
<td>3.1±1.1</td>
<td>20.8±8.6</td>
<td>Q9UI12</td>
<td>V-type proton ATPase subunit H</td>
<td>2±1</td>
<td>1.08±0.12</td>
</tr>
<tr>
<td>4.3±1.2</td>
<td>4.3±1.1</td>
<td>24.4±6.5</td>
<td>Q5VWC4</td>
<td>Proteasome (Prosome, macropain) 26S subunit, non-ATPase, 4</td>
<td>2±1</td>
<td>0.91±0.07</td>
</tr>
<tr>
<td>6.0±4.0</td>
<td>4.6±4.5</td>
<td>30.7±20.1</td>
<td>Q53GB3</td>
<td>ATP synthase, H+ transporting, mitochondrial F0 complex, subunit b isoform 1 variant (Fragment)</td>
<td>2±2</td>
<td>0.53±0.07</td>
</tr>
<tr>
<td>16.7±3.9</td>
<td>18.2±4.1</td>
<td>49.0±6.7</td>
<td>P45880</td>
<td>Voltage-dependent anion-selective channel protein 2</td>
<td>12±3</td>
<td>0.69±0.07</td>
</tr>
<tr>
<td>45.2±7.4</td>
<td>45.2±7.4</td>
<td>86.0±6.8</td>
<td>P21796</td>
<td>Voltage-dependent anion-selective channel protein 1</td>
<td>32±8</td>
<td>0.61±0.04</td>
</tr>
</tbody>
</table>
Table 3. iTRAQ quantified deamidated Ion channel proteins with their peptide sequence and deamidation site.

<table>
<thead>
<tr>
<th>Accessions</th>
<th>GeneSym</th>
<th>Name of protein</th>
<th>Peptide</th>
</tr>
</thead>
<tbody>
<tr>
<td>P05023</td>
<td>ATP1A1</td>
<td>Sodium/potassium-transporting ATPase subunit alpha-1</td>
<td>VDNSSLTGESEPQ#TRS</td>
</tr>
<tr>
<td>P50993</td>
<td>ATP1A2</td>
<td>Sodium/potassium-transporting ATPase subunit alpha-2</td>
<td>GVGIISEGN#ETVEDIAARL</td>
</tr>
<tr>
<td>Q53ES0; P13637</td>
<td>ATP1A3</td>
<td>Sodium/potassium-transporting ATPase subunit alpha-3</td>
<td>GVGIISEGN#ETVEDIAARLNIPVSQVNPR</td>
</tr>
<tr>
<td>P50993</td>
<td>ATP1A2</td>
<td>Sodium/potassium-transporting ATPase subunit alpha-2</td>
<td>LIFDN#LK</td>
</tr>
<tr>
<td>P50993</td>
<td>ATP1A2</td>
<td>Sodium/potassium-transporting ATPase subunit alpha-2</td>
<td>LN#IPMSQVNPR</td>
</tr>
<tr>
<td>P05026</td>
<td>ATP1B1</td>
<td>Sodium/potassium-transporting ATPase subunit beta-1</td>
<td>VAPPGLTQ#IPQIQK</td>
</tr>
</tbody>
</table>
Graphical Abstract

Brain sample

↓

Protein expression

↓

Post translational modification

↓

Protein Deamidation