<table>
<thead>
<tr>
<th>Title</th>
<th>Study of the electrical and chemical properties of the multistep deposited and two-step (ultraviolet ozone cum rapid thermal) annealed HfO2 gate stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yew, Kwang Sing; Ang, Diing Shenp; Tang, Lei Jun; Pan, Jisheng</td>
</tr>
<tr>
<td>Date</td>
<td>2015-12-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/39217</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2015 American Vacuum Society. This paper was published in Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena and is made available as an electronic reprint (preprint) with permission of American Vacuum Society. The published version is available at: [http://dx.doi.org/10.1116/1.4936893]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Study of the electrical and chemical properties of the multistep deposited and two-step (ultraviolet ozone cum rapid thermal) annealed HfO2 gate stack

Kwang Sing Yew, Diing Shen Ang, Lei Jun Tang, and Jisheng Pan

Citation: Journal of Vacuum Science & Technology B 34, 011205 (2016); doi: 10.1116/1.4936893
View online: http://dx.doi.org/10.1116/1.4936893
View Table of Contents: http://scitation.aip.org/content/avs/journal/jvstb/34/1?ver=pdfoov
Published by the AVS: Science & Technology of Materials, Interfaces, and Processing

Articles you may be interested in

Interface state density engineering in Hf1-xZrxO2/SiON/Si gate stack
J. Vac. Sci. Technol. B 34, 011207 (2016); 10.1116/1.4937916

Engineering crystallinity of atomic layer deposited gate stacks containing ultrathin HfO2 and a Ti-based metal gate: Effects of postmetal gate anneal and integration schemes
J. Vac. Sci. Technol. B 32, 03D122 (2014); 10.1116/1.4869162

Physical and electrical characterization of Ce-HfO2 thin films deposited by thermal atomic layer deposition
J. Vac. Sci. Technol. B 32, 03D103 (2014); 10.1116/1.4826174

Atomic layer deposition of HfO 2 and Al 2 O 3 layers on 300 mm Si wafers for gate stack technology
J. Vac. Sci. Technol. B 29, 01A301 (2011); 10.1116/1.3521374

Physical and electrical characterizations of ultrathin Si-rich Hf-silicate film and Hf-silicate/ Si O 2 bilayer deposited by atomic layer chemical vapor deposition
J. Appl. Phys. 100, 044106 (2006); 10.1063/1.2234823
I. INTRODUCTION

High-\(k\) last integration, by virtue of low-thermal-budget, allows the high-\(k\) metal oxide integration into MOSFET without undergoing phase change in conjunction with limited interfacial \(\text{SiO}_x\) layer (IL) regrowth, thereby achieving sub-1-nm equivalent oxide thickness (EOT) scaling with preserved high-\(k\) film quality.\(^1,2\) However, with reduced IL thickness, the gate stack reliability margin would be compromised since the high-\(k\) oxide grown at low temperature is usually loosely packed and inherently defective with high density of oxygen vacancies (\(V_\text{O}\)’s). This gives rise to gap states leading to transient charge trapping (hence threshold voltage instability) and gate leakage current.\(^3-5\) Attempts to reduce \(V_\text{O}\) density via various annealing methods were reported,\(^6-7\) but the high temperature involved limits the EOT scaling due to an increase in the IL thickness. Low-temperature annealing such as multistep deposition cum room-temperature ultraviolet ozone (RTUVO) anneal, on the other hand, yields only marginal improvement.\(^8\) The ability to optimize the high-\(k\) oxide quality under low thermal-budget is crucial for sub-1-nm EOT scaling. It was recently shown by our group that the multistep deposition cum two-step [comprising a RTUVO and a subsequent rapid thermal anneal (RTA) at 420°C], exhibits more superior electrical characteristics as compared to the gate stacks formed via multistep deposition cum single-step anneal (either RTUVO anneal or 420°C RTA). The former exhibits more than an order of magnitude smaller gate current density, a 14-fold increase in the time-to-breakdown, and reduced positive oxide trapped charge as compared to the latter. The enhanced performance and reliability are attributed to the improved formation of Hf–O bonds in \(\text{HfO}_2\), resulting from the efficient incorporation of oxygen atoms facilitated by the thermal activation of the absorbed ozone. The findings provide insights into the improvement mechanism by the two-step anneal method for high-\(k\) last integration scheme. \(\copyright\) 2015 American Vacuum Society. [http://dx.doi.org/10.1116/1.4936893]

II. EXPERIMENT

An approximately 1-nm thermal oxide was intentionally formed via rapid thermal oxidation on 150-mm prime grade p-Si (100) substrate. The substrate was split into smaller pieces prior to ALD of 28-Å \(\text{HfO}_2\) film at 250°C under 0.2 Torr. Tetrakis (dimethylamino) hafnium was used as the Hf reactant precursor and \(\text{H}_2\text{O}\) was used as the oxidizing agent. The \(\text{HfO}_2\) film was grown via multistep ALD cum two-step annealing method.\(^9\) The \(\text{ALD}\) was divided into four steps. In each step, a \(\sim 0.7\)-nm \(\text{HfO}_2\) film was deposited and then subjected to \textit{ex situ} RTUVO for 1 min followed by
RTA at 420 °C (unless stated otherwise) in N₂ for 30 s (henceforth denoted as UVO-RTA gate stack). No high temperature annealing was performed so as to mimic the high-k last process. During UVO anneal, the ozone (≈500–1000 ppm) was produced via interaction between oxygen and UV illumination (254-nm wavelength) generated by a low-pressure Hg vapor grid. For comparison, control samples with (1) as-deposited (as-dep) HfO₂ (i.e., without receiving any anneal), (2) HfO₂ annealed with either UVO (Ref. 8) or RTA (Ref. 6) only after each deposition step, and (3) HfO₂ subjected to a reversed two-step anneal (i.e., RTA precedes UVO anneal in each deposition step) were prepared. The STM study was performed on blanket-deposited samples in ultrahigh vacuum (10⁻¹⁰ Torr) under controlled temperature. The bias voltage V_s was applied to the p-Si, and the probe (Pt/Ir) was grounded. On some samples, TiN was sputtered and patterned to form MOS capacitors for electrical measurement. All the devices were subjected to a final forming gas anneal at 425 °C for 30 min.

III. RESULTS AND DISCUSSION

High-resolution transmission electron microscopy confirms almost identical HfO₂ film and IL thicknesses for the various gate stacks (Fig. 1), except for a thicker IL in the RTA (1000 °C) sample induced by high temperature annealing. Figure 2(a) shows the high-frequency capacitance versus gate voltage ($C-V_g$) characteristics (each $C-V_g$ curve is an average of 20 devices) of the TiN/HfO₂/IL gate stacks subjected to various annealing conditions. Relative to the as-dep sample (denoted by open circle), only samples subjected to UVO annealing (i.e., UVO, RTA-UVO, and UVO-RTA samples) show evidently more positive flat band voltage (V_{FB}). V_{O^2+}’s typically exist as deep positively charged defect levels, and are the dominant state in high-k oxide. The positive V_{FB} shift, therefore, clearly indicates a reduced density of the positive oxide trapped charge in the high-k resulting from UVO annealing, similar to that achieved in O₂ annealing. On the other hand, only a marginal V_{FB} shift is observed for gate stack annealed with only RTA. Compared to the UVO sample, an incremental positive V_{FB} shift for the RTA-UVO sample indicates that the preceding RTA had a subtle effect on the V_O density. In other words, a reduced density of V_O in the sample is attributed mainly to the UVO anneal. Interestingly, however, an additional positive V_{FB} shift, corresponding to a further reduction of the positive oxide trapped charge, can be observed for the UVO-RTA sample as compared to RTA-UVO sample. This implies further removal of V_O’s by the 420 °C RTA carried out after the UVO anneal. The nearly identical (except for the one annealed at 1000 °C) EOTs of the respective gate stacks (inset) indicate no further increase in the IL thickness after annealed at 420 °C in N₂, consistent with that observed in Ref. 12. Clearly, the multistep deposition and two-step...
anneal did not affect the overall gate stack thickness. The larger EOT of the gate stack annealed at 1000 °C is ascribed to an increase in the IL thickness.13

The gate current density \(J_g \) vs \(V_g \) curves are shown in Fig. 2(b). The largest \(J_g \) of the 1000 °C RTA sample is due to the crystallization of \(\text{HfO}_2 \) induced by high temperature anneal.\(^{14,15} \) From the current map obtained by STM [Fig. 4(b)(i)], leakage current was shown to preferentially center near grain boundaries (GBs) of the crystallized \(\text{HfO}_2 \), thus making this location an ideal BD spot. Relative to the as-dep sample, the \(J_g \) of the 420 °C RTA sample (denoted by filled circle) is about an order of magnitude lower (i.e., \(\sim 1.7 \times 10^{-5} \text{ A/cm}^2 \) at \(V_{FB} = -1 \)). It was shown that 400–450 °C anneal could densify a high-\(k \) film without inducing crystallization.\(^{16} \) The improvement in \(J_g \) may be attributed to the removal of carbon-related impurities and unreacted precursor ligands from the \(\text{HfO}_2 \) film by the low temperature anneal,\(^{17} \) which helped retain the amorphous structure. For the gate stack annealed with only UVO, similar improvement in the \(J_g \) was obtained (denoted by open triangle). However, a further reduction in \(J_g \) is achieved for the RTA-UVO sample. This implies that the removal of \(V_{O} \)'s from the \(\text{HfO}_2 \) by the UVO anneal could proceed more efficiently after the impurities were driven off by the 420 °C RTA. Further reduction in \(J_g \) (by about an order of magnitude relative to the sample annealed with either only UVO or RTA) is achieved when the sequence of the two anneals is reversed, i.e., high-\(k \) sub-layer deposited in each step was annealed with UVO then followed by 420 °C RTA, consistent with that observed in Ref. 9. It is believed that the subsequent RTA not only drove off the impurities (thus enabling more efficient removal of \(V_{O} \)'s), it also provided the thermal activation, which enhanced the rate of structural defect repair.

The time-to-breakdown (\(T_{BD} \)) data of the various gate stacks subjected to constant gate \((-4.8 \text{ V})\) voltage stressing at 125 °C (Fig. 3) show a trend consistent to our earlier work in Ref. 9. The \(T_{BD} \) distributions of the UVO and RTA samples are clustered together, in agreement with the observation on the very similar \(J_g \) of these samples depicted in Fig. 2(b). An evidently longer \(T_{BD} \) is observed for the two-step annealed samples, with the UVO-RTA sample having \(\sim 4 \) and \(\sim 12 \) times longer \(T_{BD} \) as compared with the RTA-UVO and as-dep counterparts, respectively. From the \(T_{BD} \) result in Ref. 9, however, the UVO-RTA sample exhibits only \(\sim 9 \) times longer \(T_{BD} \) as compared with the as-dep sample. The larger improvement margin in Fig. 3, therefore, is ascribed to the improved IL quality. It is believed that the two-step annealing method not only “repair” the structural defects in high-\(k \), but also a partial of the defects that exist in the IL. The result clearly shows that the BD strength of gate stacks is significantly enhanced by the two-step anneal method. A greater increase in the \(T_{BD} \) of the UVO-RTA sample consistently shows that when the RTA is preceded by the UVO anneal, a more efficient removal of oxide traps is achieved.

Figure 4(a) shows the constant-current topography images of the various \(\text{HfO}_2 \) gate stacks acquired under a fixed positive bias voltage \(V_g (-2.5 \text{ V}) \) and tunneling current \(I_t (\sim 15 \text{ pA}) \) held constant by an electromechanical feedback circuit. The probability of electrons injected from the STM probe at the tunneling junction was predominantly determined by the vacuum gap that separated the probe from the dielectric surface. As the probe was scanned across the high-\(k \) surface, the variations of the high-\(k \) structure would affect the electrons’ injection probability, thereby resulting in a change in \(I_t \).\(^{14-16} \) A feedback circuit would sense the change in \(I_t \) and then adjusted the vacuum gap to keep \(I_t \) constant. Microscopic changes in the vacuum gap, needed to achieve a constant \(I_t \) as the probe was scanned across the high-\(k \) surface, gave rise to the contrast in the topography image in Fig. 4(a), which corresponds to the convolution data of the high-\(k \) morphology and local conductivity induced by the presence of electronic traps. The bright regions correspond to locations where the probe retracts from the high-\(k \) surface, either due to microprotrusions and/ or local oxide conductance due to electronic traps.\(^{19} \) The morphology and electronic properties of the high-\(k \) stack, however, can be demarcated via reference to the corresponding current maps [Fig. 4(b)] obtained by constant imaging tunneling spectroscopy (CITS) technique.\(^{19} \) The contrast in the current map denotes the variations of \(I_t \) across the high-\(k \) gate stack, i.e., bright shades represent high leakage sites due to electronic traps.

The presence of grains in the RTA (1000 °C) sample [Fig. 4(a)(i)], denoted by bright regions with an average size of <20-nm, is evident; note that the “leaky” GBs encompassing the less conductive grains in the corresponding current map [Fig. 4(b)(i)] are absent for the as-dep, UVO, RTA, RTA-UVO, and UVO-RTA samples. The bright shades in the topography images of these samples are dispersed randomly throughout, suggesting that the high-\(k \) films are amorphouslike structure. Moreover, the leakage density in the corresponding current maps is clearly reduced, with the two-step annealed samples showing the lowest leakage density [Figs. 4(b)(v) and 4(b)(vi)], in good agreement with the corresponding lowering of the average \(I_t \) of the scanned area [Fig. 5(a)]. It should be
mentioned that during CITS mode, the vacuum gap between the probe and the high-k surface was already adjusted by the feedback system to achieve the same I_t at a given V_s. Therefore, all the I_t–V_s curves converge at $V_s = 5\, \text{V}$. The difference between the STM-measured I_t–V_s and that obtained from the MOS devices [see Fig. 2(b)] is attributed to the presence of vacuum gap between the probe and the high-k surface, which absorbs part of the V_s applied across the gate stacks. Therefore, the I_t measured by STM in Fig. 5(a) does not reflect the actual value and it is expected to be larger. The stress-induced oxide degradation rate and the corresponding electrical uniformity of the respective gate stacks are examined by monitoring the evolution of the I_t statistical distribution (at $V_s = -3\, \text{V}$) in a given area under repeated STM scanning [Fig. 5(b)]. The gate stack was stressed by extending the voltage-ramp during local I_t–V_s measurement under CITS mode. Electronic trap generation in the IL is probed by the I_t extracted at a negative V_s (i.e., electrons are injected from the Si substrate), whereas the electrical uniformity is monitored by the spread of I_t distribution. To facilitate the comparison, all the I_t are normalized to the average I_t of the RTA (1000 °C) sample. A lesser increase in the average negative I_t as well as its spread is evident for the two-step annealed samples compared to the single-step annealed counterparts, pointing to a better immunity against traps generation and a lower degree of I_t nonuniformity. Both the two-step annealed samples exhibit a nearly identical distribution spread. The results in Fig. 5(b) are consistent with the current maps in Fig. 4(b), which clearly shows the impact of the high-k quality on the stress-induced degradation of the underlying IL.

The chemical structures of the various HfO$_2$/IL gate stacks were examined by EELS measurements. Figure 6(a) shows the background corrected O K edge spectra of the HfO$_2$ layer for the various samples, which exhibit the characteristic double peaks at the edge onset (one centered at...
The ratio of the two peaks with comparable heights is nearly identical for most of the samples, except for the sample prepared using the UVO-RTA method, which shows 40% taller 537.8 eV peak relative to that at the shoulder (centered at 533.5 eV). From the O K edge spectra of SiO$_2$, only a single peak centered at 537.8 eV is observed and this peak is attributed to the multiple scattering of the ejected O 1s electron from a given oxygen atom to its six second-nearest neighboring oxygen atoms (first O shell). Therefore, the 537.8 eV peak observed in the O K edge spectra of the HfO$_2$ may be ascribed to the similar mechanism. The peak intensity reflects the amount of local oxygen atoms (i.e., the peak intensity will drop with an increase in oxygen deficiency). Relative to the as-dep sample, the ~537.8 eV peak intensity is significantly enhanced by the UVO-RTA anneal, followed by the UVO anneal and the RTA-UVO anneal. This confirms that the UVO-RTA method is more efficient in incorporating oxygen atoms into the HfO$_2$ film as compared with the methods. On the other hand, an almost similar trend is also observed for the O K edge spectra of the underlying SiO$_2$ IL. The intensity of the peak centered at ~560 eV is enhanced by the two-step anneal. The 560 eV peak was also observed in the SiO$_2$ EELS results reported in literature and was attributed to the stretched O–O bonds. This implies that, apart from high-k, the quality of the underlying IL was also improved under UVO anneal, thereby contributing to a larger reliability improvement margin relative to the 0.75-nm EOT HfO$_2$/TiN gate stack, as evidenced in the TDDB results (Fig. 3). In addition, a small peak (centered at ~533 eV) with a very low intensity can be seen at the shoulder of the 537.8 eV peak as opposed to the SiO$_2$ EELS result (which shows no peak at 533.5 eV). This is ascribed to the possible interference signal from the HfO$_2$ in the IL O K edge spectra.

The inference is also borne out in the XPS measurements using monochromatic Al K$_{\alpha}$ x-ray source (hv = 1486.7 eV). The O 1s and Hf 4f XPS spectra were referenced to C 1s peak binding energy (BE) at 285 eV. The Hf 4f spectra of the samples are shown in Fig. 7(a). Relative to the as-dep sample, the Hf 4$f_{7/2}$ peak BE of both the RTA and RTA-UVO samples show a slight incremental shift to 17.1 eV in the vicinity of Si (i.e., 17~17.5 eV), indicating the presence of Si 2p. More interestingly, the intensity of the peak centered at ~560 eV is enhanced by the two-step anneal. The 560 eV peak was also observed in the SiO$_2$ EELS results reported in literature and was attributed to the stretched O–O bonds.
of thin Hf silicates (HfSi(O)x) at the interface region.22 A larger incremental shift to 17.6 eV for the RTA (1000 °C) sample is attributed to the formation of a thicker Hf silicate resulting from the high temperature involved, consistent with the corresponding TEM in Fig. 1(c). For the sample annealed with only UVO, however, a trend similar to the as-dep sample is observed. It is interesting to note that when the UVO anneal precedes the RTA in the two-step annealed sample, a lesser Hf 4f7/2 peak BE shift is observed. In addition, the intensity at the valley between Hf 4f7/2 and Hf 4f5/2 peaks is comparable to that of the as-dep and UVO samples. This suggests no obvious Hf silicate formation, even if the formation occurs, only a thin layer is present at the interface region. In Fig. 7(b), the Si 2p XPS core-level spectra were referenced to the substrate Si 2p peak BE at 99 eV. The ~99 eV peak is attributed to the photoelectrons from the Si–Si bonds in substrate whereas the higher BE peak centered at ~103 eV is attributed to the photoelectrons from SiO2 and Hf silicate. Except for the RTA (1000 °C) sample, the rest of the samples exhibit almost identical trend, implying a stable oxidation state of Si. The Hf–O–Si peak centered at ~102.5 eV for the RTA (1000 °C) sample clearly indicates the presence of Hf silicate. Figure 8(a) shows the corresponding O 1s spectra of the various samples. The major peak centered at BE ~530 eV is attributed to the Hf–O bonds in HfO2 (Ref. 23) whereas the peak centered at BE ~531–532 eV at the shoulder corresponds to the Hf–O–Si bonds in Hf silicate and/or Si–O bonds in SiO2.22–24 The I(Hf–O)/I(Hf–O–Si,Si–O) intensity ratio reflects the relative content of HfO2 in the respective gate stacks [Fig. 8(b)]. It is observed that the UVO sample shows a higher intensity ratio relative to the as-dep sample. Since the Hf 4f spectra of both samples are identical (i.e., no obvious Hf silicate formation), an increase in the intensity ratio of the former must be necessarily contributed by the higher HfO2 content rather than a reduced Hf silicate content. A further increase in the ratio is observed in the UVO-RTA sample. This indicates more Hf–O bonds were formed via the incorporation of oxygen (i.e., removal of V0’s) into HfO2 film when thermal activation was provided by the RTA step.

IV. CONCLUSIONS

A detailed and systematic study of the electronic and chemical properties of the multistep deposited and two-step annealed (comprising a RTUVO anneal and a subsequent RTA at 420 °C) HfO2/IL gate stack was presented. The improved performance and reliability of the HfO2/IL gate stack is attributed to the more efficient incorporation of oxygen in the HfO2 film by the UVO-RTA method, thereby increasing the density of Hf–O bonds, as revealed by the EELS and XPS analyses. In the process, the V0-related electronic traps are removed. The ability of the UVO-RTA method to efficiently incorporate oxygen in the high-k oxide under low thermal budget processing makes it a promising means for enhancing the HKMG performance and reliability in the high-k last integration scheme.

ACKNOWLEDGMENT

The authors gratefully acknowledge the constant support by K. L. Pey.
