<table>
<thead>
<tr>
<th>Title</th>
<th>Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Berglund, Ken; Clissold, Kara; Li, Haofang E.; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E.; Lu, Dongye; Barter, Joseph W.; Rossi, Mark A.; Augustine, George James; Yin, Henry H.; Hochgeschwender, Ute</td>
</tr>
<tr>
<td>Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/39946</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2016 The Author(s) (Published by National Academy of Sciences). This is the author created version of a work that has been peer reviewed and accepted for publication by Proceedings of the National Academy of Sciences of the United States of America, The Author(s) (Published by National Academy of Sciences). It incorporates referee's comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1073/pnas.1510899113].</td>
</tr>
</tbody>
</table>
Luminopsins: integrating opto- and chemogenetics by using physical and biological light sources for opsin activation

Short title (50 characters): Control of neuronal activity by biological light

Ken Berglunda,b, Kara Clissoldc, Haofang E. Lic, Lei Wend,e, Sung Young Parkd, Jan Gleixnera, Marguerita E. Kleina, Dongye Luc, Joseph W. Barterc, Mark A. Rossic, George J. Augustined,e, Henry H. Yina,c,f,1, Ute Hochgeschwendera,g,h,1

aDepartment of Neurobiology, Duke University, Durham, North Carolina 27710, USA
bDepartment of Neurosurgery, Emory University, Atlanta, Georgia 30322
cDepartment of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708, USA
dCenter for Functional Connectomics, Korea Institute of Science and Technology, 39-1 Hawolgokdong, Seongbukgu, Seoul 136-791, Republic of Korea
eLee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Singapore 637553, Singapore
fCenter for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708, USA
gNeuroscience Program, Central Michigan University, Mt Pleasant, Michigan 48859, USA
hCollege of Medicine, Central Michigan University, Mt Pleasant, Michigan 48859, USA

1To whom correspondence may be addressed. Email: hy43@duke.edu or ute.hochgeschwender@cmich.edu; requests for materials should be addressed to U.H.
Abstract

Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type *Gaussia* luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright *Gaussia* luciferase variants with either channelrhodopsin to excite neurons (LMO) or a proton pump to inhibit neurons (iLMO). These improved LMOs could reliably activate or silence neurons *in vitro* and *in vivo*. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution, but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra *in vivo* not only produced the expected bidirectional control of single unit activity, but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, while preserving the ability to be activated by external light sources, LMOs expand the usage of optogenetics by making the same opsins accessible to non-invasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales.

Significance Statement

Although conventional optogenetics utilizing microbial photosensitive channels or pumps to control activity of neurons has enabled great progress in neuroscience, reliance on delivery of light by optic fibers implanted into the brain imposes certain logistical burdens and thus limits application of optogenetics. To expand their utility, we fused optogenetic probes with luciferase which emits biological light in the presence of a substrate and showed that the activity of neurons *in vitro*, *ex vivo*, and *in vivo* could be controlled by biological light in addition to physical light. Such fusion proteins, termed luminopsins, could prove invaluable for experimental and clinical neuroscience.
Optogenetics, which offers precise temporal control of neuronal activity, has been used widely in experimental neuroscience. Although optogenetic probes are indispensable tools, conventionally their application in vivo requires invasive optical fiber implants and thus imposes significant limitations for clinical applications and for applications involving multiple brain regions (1). On the other hand, chemogenetics can modulate neuronal activity throughout the brain using a genetically targeted actuator when combined with a systemically administered small molecule. Although systemic injection of a small molecule is far less invasive than implantation of fiber optics, chemogenetics has its own limitations, such as slow response kinetics and dependence on G-protein signaling, which potentially elicits unwanted secondary effects in target neurons (2).

Combining the distinct advantages of opto- and chemogenetic approaches would create unprecedented opportunities for interrogation of neural circuits at a wide range of spatial scales. To allow manipulation of activity of dispersed neuronal populations using optogenetic probes without fiber-optic implants, we proposed a novel approach where bioluminescence – biological light produced by enzymatic reaction between a protein, luciferase, and its diffusible substrate, luciferin – activates an opsin, which is tethered to the luciferase (3). After injection to the peripheral bloodstream, luciferin reaches a target in the brain because it crosses the blood-brain barrier (4). Light is generated by the luciferase and then activates the opsin, resulting in activation (in case of channelrhodopsins) or inhibition (in case of proton or chloride pumps) of the target neurons. Capitalizing on the major advantage of opsins as powerful generators of electrical current, our approach integrates opto- and chemogenetic methods by preserving conventional photoactivation of opsins where desired, while at the same time providing chemogenetic access to the same molecules, thus allowing manipulation of neuronal activity over a range of spatial and temporal scales in the same experimental animal.
Initial proof-of-concept studies showed that *Gaussia* luciferase (GLuc)-emitted light is able to activate opsins when the two molecules are fused together (luminescent opsin or luminopsin, LMO; 3). Here we report a set of new LMOs, incorporating brighter versions of GLuc, with significantly improved performance. We found that the improved LMOs could modulate neuronal activity via bioluminescence *in vitro*, *ex vivo*, and *in vivo* and could elicit behaviors in freely moving mice.

Results

Determining light intensity required for inducing action potentials

We previously reported that LMO2, a luminopsin based *on Volvox* channelrhodopsin 1 (VChR1; 5, 6), generates subthreshold depolarizations upon application of coelenterazine (CTZ), a substrate for GLuc (3). To determine the light intensity required for the VChR1 moiety within LMO to induce action potential firing, we illuminated a neuron with blue light (465 – 495 nm, which covered most of the emission spectrum of GLuc) (Fig. 1A). The amount of depolarization produced by 1 s light flashes increased with increasing light intensity, reaching action potential threshold at light intensities above 10 μW/mm2. The relationship between light intensity and action potential frequency could be fitted by the Hill equation (Fig. 1B; $n = 8$) and the minimal light intensity that induced at least one spike was 33 ± 13 μW/mm2 (mean ± S.E.M; $n = 8$). Thus, to reliably produce action potentials, it is necessary to have a luciferase that can emit sufficient bioluminescence.

Identifying a GLuc variant that emits more light

To identify a variant of luciferase that emits more photons, we compared wild-type *Gaussia* luciferase (GLuc; 7, 8) to its variants “super-luminescent” (slGLuc; 9), and “slow-burn” (sbGLuc; 10), as well as to NanoLuc (11, 12), a luciferase engineered from *Oplophorus gracilirostris*. Each luciferase was fused to the extracellular N-terminus of VChR1, and thus expressed on the extracellular surface of transfected HEK cells; the
fluorescent reporter EYFP was fused to the C-terminus of VChR1, allowing identification of transfected cells. When treated with different doses of the GLuc substrate, CTZ, bioluminescence reached a peak within a minute after addition of CTZ and decayed afterwards, halving in the first 5 – 10 minutes and becoming negligible after 1 hour. At all CTZ concentrations tested, sbGLuc showed the largest bioluminescence (Fig. 1C and D). To quantify the dose-response relationships shown in figure 1C, luminescence from each luciferase was fitted with the Hill equation (Fig. 1C). While EC50 values for the different luciferases were similar (92, 74, 51, and 12 µM for GLuc, slGLuc, sbGLuc, and NanoLuc, respectively), the maximal luminescence emitted by each was quite different (49, 110, 220, and 9 \times 10^6 photons/s/cm^2/sr] for GLuc, slGLuc, sbGLuc, and NanoLuc, respectively). To facilitate comparison of the different constructs, figure 1D shows bioluminescence evoked by a 50 µM concentration of CTZ, which is the estimated plasma level in a mouse receiving an intravenous injection of 50 µg CTZ. At this concentration, sbGLuc emitted about 10 times more photons than wild-type GLuc. NanoLuc did not respond to CTZ very well, but did respond to its own substrate, furimazine; the resulting luminescence was smaller than that of sbGLuc (activated by CTZ), but comparable to that of slGLuc. Thus, NanoLuc does not have significant chemical crosstalk with GLuc, making it suitable for simultaneous use of two different luminopsins. Based on these results we decided to further characterize LMOs with the sbGLuc and slGLuc variants.

Increased bioluminescence improves coupling efficiency between luciferase and opsin

The performance of wildtype and slow burn GLuc was compared in HEK cells by measuring CTZ-induced current under whole-cell patch clamp (Fig. 2A). With LMO1 and LMO2, which are combinations of wild-type GLuc and ChR2 (LMO1) and VChR1 (LMO2), we observed small inward currents upon application of CTZ. When GLuc was replaced in LMO2 with the brighter variant sbGLuc, to produce LMO3, the inward current induced by CTZ treatment was markedly larger (Fig. 2A).
To further quantify the performance of the three LMOs, we examined the amount of current induced by CTZ application and compared it to the current induced by maximal activation by light from the lamp (Fig. 2B). For each variant of luminopsin, there was a positive correlation between the two: higher surface expression of the channel, reflected in larger amplitudes of lamp-induced currents, was associated with a larger CTZ-induced current. The slopes of these relationships indicate that LMO3 was able to activate channels most effectively upon CTZ application. Surface expression levels, assessed via the amplitude of lamp-induced photocurrents, was similar ($p = 0.19$; two-tailed Student’s t-test): 1,042 ± 168 pA for LMO2 (mean ± S.E.M, $n = 10$) and 993 ± 185 pA ($n = 14$) for LMO3. We observed similar correlations between photocurrent and CTZ-induced current in LMO3-expressing neurons in brain slice preparations (Fig. 2B, open red symbols). To quantify this difference, we measured the coupling efficiency, which is the amplitude of current induced by a saturating dosage of CTZ (100 µM; see Fig. 1C) divided by that of photocurrent induced by a saturating intensity of lamp (1 mW/mm²; see Fig. 1B); this represents the fraction of channels that can be activated by CTZ (Fig. 2C; see ref. 3). LMO3 had a coupling efficiency approximately 10-fold higher than that of LMO2, with over 10% of the VChR1 channels activated by CTZ treatment.

Increased bioluminescence controls action potential firing

The improved performance of LMO3 suggests that it could be better than LMO1 or LMO2, which are not effective in evoking action potential firing in response to CTZ application (3). To test the ability of LMO3 to manipulate neuronal activity, we expressed it in dissociated cortical neurons in culture. Cultured neurons were transfected with LMO3 under the control of the CAG promoter. Upon application of CTZ, LMO3-expressing neurons showed robust bioluminescence in their cell bodies as well as throughout their processes (Fig. 3A). The bioluminescence induced by CTZ activation of LMO3 was sufficient to produce suprathreshold depolarization of the neuronal membrane potential and could induce action potential firing (Fig. 3B). The mean CTZ-induced depolarization of LMO3-expressing neurons was more than 10 mV, whereas it was less than 5 mV in LMO2-expressing neurons (Fig. 3E). Thus, sbGLuc
was able to emit bioluminescence that activated the VChR1 moiety sufficiently to induce neuronal action potential firing. This is a significant qualitative improvement in performance over earlier LMOs (3).

We further extended the luminopsin concept to inhibition of neuronal activity by incorporating an inhibitory opsin. For this purpose, we first tested the suitability of a photosensitive proton pump from the fungus *Leptosphaeria maculans* (Mac; 13) for activation by GLuc emission. We transfected neurons with a fusion protein of Mac-EGFP and sIGLuc, which we termed iLMO, and compared the photosensitivity of iLMO to blue light (480 nm) and other wavelengths (*SI Appendix*, Fig. S1). Although iLMO was more sensitive to longer wavelengths, it also showed substantial sensitivity to 480-nm light, suggesting possible activation by GLuc emission. Thus, we further tested iLMO in cortical neurons in culture (Fig. 3 C–E). Similar to LMO3, iLMO expressing neurons showed robust bioluminescence in their cell bodies and processes (Fig. 3C). To examine the ability of iLMO to inhibit action potential firing, action potentials were elicited by repetitive injection of threshold-level currents at 1 Hz (Fig. 3D). CTZ application caused bioluminescence and concomitant hyperpolarization and abolished action potential firing. Similar results were obtained in 4 cells in total where CTZ caused small but significant hyperpolarization (Fig. 3E), on average, equivalent to 63% (-4.3 ± 1.0 mV; mean ± S.E.M; n = 4 cells) of the hyperpolarization induced by lamp illumination (4 mW/mm²). Thus, in addition to excitatory LMOs, inhibitory LMOs can harness bioluminescence at relatively high efficiency to inhibit neuronal action potential firing. Another form of inhibitory luminopsin based on engineered *Renilla* luciferase and an inhibitory, light-driven chloride pump, *Natronomonas* halorhodopsin, has just been reported (14).

Bioluminescence activates synaptic networks in vitro

The small diameter of an optical fiber limits delivery of light, so that conventional optogenetic probes can affect only a relatively small number of neurons. One of the potential advantages of LMOs is that their diffusable small-molecule substrate (e.g. CTZ)
allows control of a large or dispersed population of neurons that would otherwise be beyond the reach of optical fibers. To illustrate this, we infected entire populations of neurons on a coverslip with either lentiviral or adeno-associated virus carrying the LMO3 gene under control of the human synapsin promoter (hSyn), choosing a virus titer that yielded transduction of most neurons by LMO3. The effects of CTZ were compared to that of an arc lamp under these conditions (Fig. 4). Whole-cell patch clamp recordings were made from LMO3-negative cells (red cell in Fig. 4A), based on the absence of LMO3 fluorescence in the plasma membrane. Cells were held near the reversal potential for Cl⁻ to isolate excitatory postsynaptic currents (EPSCs). Surrounding neurons were stimulated with a spot of light (670 μm diameter) from an arc lamp (Fig. 4A) covering less than 0.6% of the total area of the coverslip (9 mm in diameter). Fast and transient EPSCs, together with negligible slow and sustained direct photocurrents in some cells, were recorded during photostimulation with the light spot (Fig. 4B). These currents were glutamatergic because they were blocked by application of the glutamate receptor antagonists, CNQX (100 μM) plus kynurenic acid (3 mM; Fig. 4C). Next, to activate the entire population of neurons on the coverslip, CTZ (100 μM; 470 μl) was added to the recording chamber. This generated bioluminescence that lasted for tens of seconds in all observable LMO3-transduced cells (Fig. 4D) and elicited widespread network activity, recorded as a barrage of EPSCs (Fig. 4E). On average, the frequency of spontaneous EPSCs was significantly increased both by the light spot and by CTZ (Fig. 4F; *p < 0.05; paired Student’s t-test; n = 8). Averaged EPSC waveforms were similar between spot- and CTZ-induced EPSCs (Fig. 4G), indicating that the two methods activated the same presynaptic inputs. These results indicate that the optogenetic element in LMO3 can be activated by both physical and biological light sources and that CTZ can provide sufficient excitatory drive to induce action potentials in a population of neurons within a network.

Bioluminescence controls neuronal activity and behavior in vivo
To test the applicability of bioluminescence-driven optogenetics in mice in vivo, we utilized an established behavioral paradigm. Unilateral activation of GABAergic neurons in the substantia nigra pars reticulata (SNr) induces ipsiversive circling behavior, while silencing the same neurons induces contraversive circling (15). Based on previous studies utilizing pharmacological and lesion perturbations (15), it is shown that this circling behavior reflects the relative strength of outputs from the two sides of the SNr. We therefore used circling as a behavioral readout for unilateral nigral manipulation via LMOs.

We first injected adeno-associated virus expressing LMO3 (AAV-hSyn-LMO3) into the SNr and characterized virus-transduced neurons via whole-cell patch clamp recordings in acute SNr slices (SI Appendix, Fig. S2 and 3). We recorded from four LMO3-positive SNr neurons; these were identified as principal GABAergic cells (the vast majority of neurons in the SNr; 16-18) due to minimal voltage “sag” in response to hyperpolarizing currents (SI Appendix, Fig. S2A). In these cells, LMO3 expression was sufficiently robust to induce action potential firing in response to light (SI Appendix, Fig. S2 B). This allowed us to use a scanned laser spot to map the light sensitivity of these cells (SI Appendix, Fig. S2 C–D). Moreover, in one cell, we observed an increase in the frequency of fast outward currents, presumably representing GABAergic inhibitory postsynaptic currents (IPSCs), in response to both lamp photostimulation and CTZ application (SI Appendix, Fig. S3). Given that principal cells express LMO3 and are known to send GABAergic collaterals to neighboring cells (17-19), these IPSCs presumably resulted from activation of these local connections. Taken together, these results indicate that AAV-hSyn-LMO3 is expressed in GABAergic cells in the SNr and that activation of LMO3 can cause action potential firing in these cells.

We next asked whether LMOs could alter neuronal activity in the SNr of intact animals. We injected AAV-hSyn-LMO, either activating (LMO3; n = 5 mice) or inhibiting (iLMO; n = 5 mice), into the SNr of mice. Six to 10 weeks after injection, we implanted multi-electrode arrays to record the activity of SNr neurons in awake mice chronically.
Approximately 2 weeks after electrode implant surgery, mice received intraperitoneal injections of either CTZ (200 µg in 200 µl PBS per 30 g animal) or PBS, while firing of SNr neurons were recorded for one hour starting 30 minutes before injection till 30 minutes after injection. Recordings were carried out daily, alternating the order of injections (CTZ vs. vehicle) between animals.

Representative recordings of the activity of well-isolated units from mice expressing AAV-hSyn-LMO3 (Fig. 5A) and AAV-hSyn-iLMO (Fig. 5C) showed relatively high levels of spontaneous activity characteristic of SNr GABAergic neurons. Firing rates before and after CTZ injection are shown in Fig. 5B and Fig. 5D. In mice expressing AAV-hSyn-LMO3, a two-way ANOVA with time and group as factors showed an interaction between these factors ($F(1,59) = 4.29; *p = 0.044$). Post hoc tests (Bonferroni) showed an increased firing rate post-injection of CTZ compared to pre-injection ($*p = 0.0020$), but no effect for vehicle injection was observed ($p = 0.76$). In mice expressing AAV-hSyn-iLMO, the average firing rates after CTZ injection decreased following CTZ injection (interaction for two-way ANOVA: $F(1,80) = 6.78; *p = 0.01$; post hoc comparison between pre and post: $*p = 0.0003$ for CTZ injection, $n = 46; p = 0.91$ for vehicle injection, $n = 36$).

In order to examine how long CTZ injection remains effective, 2 mice (one with LMO3 and the other with iLMO) received both PBS and CTZ in the same session and firing of SNr neurons were recorded for 2 hours after each injection. This allowed us to estimate the offset times for the effect of CTZ in the same neurons. As shown in Fig. 5E, the effects of CTZ on neuronal firing rate started immediately and lasted up to 45 minutes. To analyze these data statistically, we divided the post-injection period into two epochs (0-45 minutes and 46-120 minutes) and compared the firing rates using a two-way ANOVA, with group (CTZ and vehicle) and time (epoch 1 and epoch 2). There was a significant interaction between group and time for LMO3 ($F(1,14) = 14.97; *p = 0.0017; n = 8$). Post hoc tests showed CTZ injection only increased firing rates relative to controls in the first epoch ($*p = 0.0020$), but not in in the second, i.e. after 45 minutes ($p = 0.53$). For iLMO, there was also a significant interaction between group and time.
Again, post hoc tests showed CTZ injection is only effective in the first epoch (*p = 0.0018) but not in the second, i.e. after 45 min (p = 0.64). These results indicate that, in mice expressing LMO3 or iLMO, intraperitoneal injections of CTZ can bidirectionally control the activity of target neurons in the SNr for approximately 45 minutes.

Finally, we examined the behavioral effects of LMO activation (Fig. 6). AAVs expressing either the excitatory LMO3 (Fig. 6A, left two panels, and B) or inhibitory iLMO (Fig. 6A, right two panels, and C), were delivered to the left SNr of mice through implanted cannulas. After 3-5 weeks we quantified and compared circling behavior under two conditions: direct application of CTZ through the cannula (Fig. 6B and C – left two panels), and systemic application of CTZ by intravenous injection (Fig. 6B and C – right two panels). For both routes of application, PBS was used as a vehicle control.

When CTZ was directly injected into the SNr through a cannula (34 ng in 0.4 µl; n = 3), mice expressing AAV-hSyn-LMO3 showed more ipsiversive turns, as expected when GABAergic SNr neurons are excited. A two-way ANOVA on ipsiversive turns from the first 3 minutes showed no interaction between CTZ and time \((F(2, 6) = 0.11; p = 0.90)\), no main effect of time \((F(2, 6) = 0.12; p = 0.89)\), but a significant main effect of CTZ \((F(1, 6) = 26.81; *p = 0.0021)\). By contrast, there was no main effect of CTZ on contraversive turns \((F(1, 6) = 0.034; p = 0.86)\) or any interaction between CTZ and time \((F(2, 6) = 1.48; p = 0.30)\). Similar effects were observed when CTZ was applied through the tail vein (200 µg in 50 µl; n = 5). For ipsiversive turns, there was no interaction between CTZ and time \((F(2, 12) = 0.07; p = 0.93)\), no main effect of time \((F(2, 12) = 0.27; p = 0.77)\), but a significant main effect of CTZ \((F(1, 12) = 5.28; *p = 0.04)\). For contraversive turns, there was no interaction \((F(2, 16) = 0.68; p = 0.52)\), no main effect of time \((F(2, 16) = 0.75; p = 0.49)\), or no main effect of CTZ \((F(1, 8) = 0.28; p = 0.61)\).

Mice expressing AAV-hSyn-iLMO injected with CTZ into the SNr through a cannula, showed more contraversive turns, as expected when SNr neurons are inhibited (n = 3). A two-way ANOVA on ipsiversive turns from the first 3 minutes showed an interaction
between CTZ and time \((F(2, 6) = 7.55; \rho = 0.02)\), a marginal main effect of time \((F(2, 6) = 4.9; \rho = 0.053)\), and a significant main effect of CTZ \((F(1, 6) = 11.17; *\rho = 0.016)\). A post hoc analysis showed that the vehicle controls had more ipsiversive turns during the first minute \((*\rho < 0.05)\). By contrast, for contraversive turns, there was no interaction between CTZ and time \((F(2, 6) = 0.37; \rho = 0.71)\), no main effect of time \((F(2, 6) = 0.10; \rho = 0.9)\), but a significant main effect of CTZ \((F(1, 6) = 29.3; *\rho = 0.0016)\). Similar effects were observed when CTZ was applied through the tail vein \((200 \mu g \text{ in } 50 \mu l; n = 8)\). For ipsiversive turns, there was no interaction between CTZ and time \((F(2, 21) = 0.15; \rho = 0.85)\), no main effect of time \((F(2, 21) = 0.18; \rho = 0.83)\), and no main effect of CTZ \((F(1, 21) = 1.35; \rho = 0.26)\). For contraversive turns, there was no interaction between CTZ and time \((F(2, 21) = 1.35; \rho = 0.28)\), no main effect of time \((F(2, 21) = 0.52; \rho = 0.60)\), but there was a significant main effect of CTZ \((F(1, 21) = 18.24; *\rho = 0.0003)\).

Thus intravenous injections of CTZ produced similar effects as local injection into the SNr. Regardless of how CTZ was applied, the activation of LMO3 and iLMO produced consistent effects on turning behavior in mice: ipsiversive turning due to excitation of SNr neurons and contraversive turning due to inhibition of SNr neurons, respectively. Interestingly, the behavioral effects of CTZ (up to 4 minutes) did not last nearly as long as the effects on neural activity (up to 45 minutes). One possible explanation for this difference is that there were compensatory changes in other areas (e.g. contralateral SNr) in response to long-lasting effects on neural activity, to resist continuous turning behavior.

In summary, these results demonstrate that the luciferase substrate, CTZ, reaches the brain when injected in the periphery and generates bioluminescence sufficient to activate opsins and initiate specific motor behavior in mice without requiring optical fibers to activate the opsins.

Bimodal opto- and chemogenetic interrogation of the same circuit by luminopsin
The same synaptic circuit analyzed by LMO3 in behaving animals \textit{in vivo} also can subsequently be interrogated, using tissue from the same animal, for higher-resolution analysis \textit{ex vivo}. To demonstrate this bimodal utility of LMOs, AAV-hSyn-LMO3 was injected into the hippocampus of mice and 4 weeks later slices were prepared (Fig. 7).

Current-clamp recordings were used to define the ability of CTZ to excite LMO3-expressing neurons in CA3. The resting membrane potential of these cells was -64.1 ± 1.0 mV (mean ± S.E.M; \(n = 6 \) cells). Although CTZ application depolarized all 6 CA3 neurons examined, the amplitude of CTZ-induced depolarization was somewhat smaller than observed in cultured hippocampal neurons, reflecting smaller photocurrents (and lower LMO3 expression) in the brain slice preparation (Fig. 2B). As a result, the mean CTZ-induced depolarization of 8.9 mV ± 4.6 mV (mean ± S.E.M; \(n = 6 \) cells) was below the threshold for action potential firing (-38.8 mV ± 0.8 mV; mean ± S.E.M.; \(n = 6 \) cells) in most cases; thus, CTZ treatment induced action potential firing in only one of the six CA3 cells examined. Treatment of slices with CTZ, which transiently caused bioluminescence emitted by CA3 cells (Fig. 7A), increased the frequency of EPSCs in 1 out of 6 recordings from postsynaptic CA1 pyramidal cells (Fig. 7B and C). The remaining five cells showed no change in EPSC frequency, consistent with the rate of CTZ-induced action potential firing recorded in presynaptic CA3 pyramidal cells.

Next, we used LMO3 to optically map the circuit between presynaptic CA3 cells and postsynaptic CA1 cells. An example of LMO3 expression in hippocampal dentate gyrus and CA3 neurons and that of a recorded CA1 cell is shown in Fig. 7D and E, respectively. Regions within the microscope objective field (approximately 500 \(\mu \)m diameter) were illuminated by scanning a small laser light spot (488 nm) in a random fashion. When the laser spot encountered LMO3-expressing Schaffer collaterals, these axons were photostimulated and light-evoked EPSCs were recorded in the CA1 pyramidal cells (Fig. 7F). These light-induced responses reflected glutamatergic EPSCs because they were blocked by treatment with the glutamate receptor antagonists, CNQX (10 \(\mu \)M) plus d-AP5 (50 \(\mu \)M) (Fig. 7G), as expected for the CA3-CA1 synapse.
All CA1 pyramidal cells examined \((n = 6)\) displayed similar light-evoked EPSCs in response to laser activation of Schaffer collaterals. EPSCs were evoked in locations within the stratum radiatum of CA1, where CA3 pyramidal cell axons (Schaffer collaterals) innervate the apical dendrites of CA1 pyramidal cells, but not when the light spot was located in other parts of the hippocampus. Thus, our results provided a functional map of the spatial organization of circuits between CA3 and CA1 neurons.

In summary, these experiments demonstrate that LMO3 enables an integrated opto- and chemogenetic approach, allowing fine-scale mapping of synaptic inputs over a fast time scale (Fig. 7F) as well as slower activation of the entire network using a small diffusible molecule (Fig. 7C).

Discussion

We report here the development of luminopsins for *in vivo* control of behavior in freely moving animals. While our initial proof-of-concept studies demonstrated that light emitted from wildtype *Gaussia* luciferase is able to activate channelrhodopsins when the two molecules are fused together, the resulting CTZ-induced depolarizations were small and subthreshold for action potential firing (3). Here we significantly improved the performance of luminopsins by incorporating brighter versions of GLuc, allowing either suprathreshold depolarization or effective silencing of action potentials when partnered with the appropriate optogenetic elements. We demonstrate this improved luminopsin performance *in vitro* (Fig. 3 and 4), *in vivo* (Fig. 5 and 6), and *ex vivo* (Fig. 7).

We experimentally assessed the effects of several GLuc variants on opsin activation when partnered in a fusion protein and ultimately used two GLuc variants. The one used in LMO3 (sbGLuc) carries two methionine-to-leucine mutations (i.e. M43L and M110L). This mutant was reported to increase the half-life of light emission ten times over that of wildtype GLuc while preserving the intensity of the luminescence signal (10). The GLuc variant used in iLMO (siGLuc) has one phenylalanine-to-tryptophan and one isoleucine-to-leucine mutation (i.e. F89W and I90L). Compared to wildtype GLuc this variant has
improved quantum yield and faster turnover rates, contributing to ten times improved bioluminescence intensities (9). Development and refinement of luciferases are ongoing, offering numerous possibilities to improve and tune luminopsins for particular applications (9, 10, 20).

The temporal precision of opsins achieved by physical light activation is an attractive biophysical property. However, many applications, specifically in vivo, often do not require the highest temporal resolution; instead, the usefulness of opsins for in vivo studies within the brain has been limited by the need for optical fibers for light delivery. Reflecting this limitation is the development of optogenetic actuators with red-shifted excitation spectra allowing possible light delivery through the skull (21, 22). However, high-intensity light sources are required to deliver light deep into the brain, which may cause unintended damage near the surface where light energy is high. In contrast, with bioluminescence-driven optogenetics, the cell containing a luminopsin generates its own light just sufficient to activate a nearby opsin. Moreover, any optogenetic element can be paired with a luciferase that matches its spectral properties. Although GLuc variants typically emit blue light, emission spectra of engineered luciferases can be shifted (23–25) and, together with luciferases from different marine organisms (26), can cover a wide spectrum of visible light. This allows the entire optogenetic toolbox to be complemented by a bioluminescence-driven approach.

Luminopsins utilize a diffusible small molecule for activation, similar to conventional chemogenetic probes such as DREADDs, PSAMs, TRPV1, and others (27–31). The time scales of chemogenetic neuronal modulation, which depend on how fast the small molecule can reach the brain and how fast it dissipates, can be in the range of seconds to hours. In this study, we employed two different routes of administration of CTZ, namely intravenous and intraperitoneal injections. Observed onset times of effect in vivo were within one to several minutes and lasted several minutes to over 30 minutes, which is shorter than conventional chemogenetic probes such as DREADDs, which typically act from 20 minutes onset after intraperitoneal injection of the ligand CNO and are sustained over several hours of action. Luminopsins are orthogonal to DREADDs in
two other important aspects. First, DREADDs are G-protein coupled receptors and thus require intrinsic intracellular second messenger pathways for their activation. Further, activation of these pathways can potentially cause unintended side effects, such as altering neuronal plasticity. LMOs avoid these complications by using opsins to directly generate electrical current. Second, DREADDs require extended protein engineering, which limits rapid expansion of the toolbox; currently, there is one DREADD for excitation and two for silencing, namely hM3Dq, hM4Di (32), and hKORD (33). In contrast, LMOs can, in principle, leverage the full array of luciferases, luciferins, and optogenetic elements, offering numerous combinatorial possibilities. In fact, the current study alone demonstrates engineering and evaluation of 4 new variants of LMOs.

Although several of the individual features of luminopsins overlap with those of current methods, the approach is unique in that luminopsins integrate opto- and chemogenetic approaches, thereby allowing manipulation of neuronal activity over a range of spatial and temporal scales in the same experimental animal. Only luminopsins allow the same opsin to be activated by physical light delivered by a conventional light source or by a systemically injected chemical. Thus, behavioral testing at the macrocircuit level (Fig. 5 and 6) can be complemented by photostimulation mapping at the local microcircuit level in the same experimental animal (Fig. 7, S2, and S3). Our approach therefore permits more global and more flexible interrogation of neuronal circuits than is currently possible.

Methods

Constructs. The generation of LMO plasmids is described in detail in reference (3). For the new versions of LMOs the wildtype Gaussia luciferase sequence was replaced by the mutated versions sGLuc (F89W/I90L; (9) or sbGLuc (M43L/M110L; (10) by switching out synthetized sequences (Genscript, Piscataway, NJ). Renilla luciferase and NanoLuc were retrieved from plasmids provided by Promega (Madison, WI). Opsin sequences were cloned from pcDNA3.1/VChR1-EYFP (a gift from Karl Deisseroth;
Addgene plasmid # 20955), and from FCK-Mac-GFP (a gift from Edward Boyden; Addgene plasmid # 22223). For viral vectors the coding sequences of LMO3 and iLMO were cloned into a lentiviral or AAV vector downstream of a CAG or human Synapsin promoter, respectively.

Animals. All experiments were conducted in accordance with approved animal protocols from the Institutional Animal Care and Use Committees of authors’ institutions. Mice had free access to water and food.

Virus. AAVs carrying LMOs were produced by transfecting subconfluent HEK293FT cells per 10cm culture dish with 24 μg of the helper plasmid pAd delta F6, 20 μg of the serotype plasmid AAV2/9, and 12 μg of the LMO3 plasmid using Lipofectamine 2000. After 72 h, supernatant was harvested from culture plates and filtered at 0.45 μm. Virus was purified from cells and supernatant following the method of Guo et al. (34), but without the partitioning step in the aqueous two-phase system. Virus was dialyzed against PBS (w/o Ca, Mg) overnight at 4°C, using FLOAT-A-LYZER G2, MWCO, 50KD, followed by concentration in Amicon Ultra-0.5 mL Centrifugal Filters. Viral titers were determined by Q-PCR for the WPRE element. Preparations with titers ranging from 1×10^7 to 1×10^{10} TU/µl were used in this study.

Lentivirus vectors were made by transfecting 6×10^6 293FT cells with 5 μg of the vesicular stomatitis virus glycoprotein (VSVg) envelope encoding plasmid, 15 μg of the delta-8.9 packaging plasmid, and 20 μg of promoter–reporter plasmid using Lipofectamine 2000. After 72 h, supernatant was harvested from three 10 cm culture plates, filtered at 0.45 μm, and pelleted by ultracentrifugation at 26,000 rpm for 2 h at 4°C. After resuspension, serially diluted lentivirus was used to transduce 293FT cells; 72 h later, labeled 293FT cells were counted to calculate the viral titer. Lentiviruses with titers ranging from 1×10^6 to 1×10^9 TU/ µl were used in this study.

Neuronal Culture. Primary neurons were collected from embryonic day 18 rat embryos carried by pregnant Sprague Dawley females obtained directly from a commercial
vendor (Harlan). Cortical neuron cultures were grown on 12 mm poly-d-lysine coated coverslips in 4-well or 24-well plates. Cells were plated in culture medium consisting of Neurobasal Medium (Invitrogen) containing B-27 (Invitrogen), 2 mM Glutamax (Invitrogen), and 5% FCS. The medium was replaced with culture medium without serum the next day. Neurons were transfected with Lipofectamine 2000 (Invitrogen) or transduced with virus on days in vitro (DIV) 2. Lipofection was done by following the manufacturer’s protocol, except that one tenth of the recommended amount of Lipofectamine was used. Virus was added to the culture medium (1 µl per well of concentrated stocks). All-trans retinal (Sigma R2500) was added to the culture medium to 100 µM final concentration the day before electrophysiological recordings. Neurons were used for recording on DIV 7 to 14.

Electrophysiology in vitro. Cells were examined on an upright epifluorescence microscope (Eclipse FN-1, Nikon, Melville, NY) equipped with a 40x 0.8 NA water immersion objective, a metal-halide arc lamp, an electronic shutter (Uniblitz, Vincent Associates, Rochester, NY), a GFP filter cube (B-2E/C, Nikon), a cooled CCD camera (CoolSNAP fx, Photometrics), and acquisition software (Micro-Manager, www.micro-manager.org) on a PowerMac G5 (Apple, Cupertino, CA).

For electrophysiology, conventional whole-cell voltage or current clamp recordings were made using a patch clamp amplifier (Multiclamp 700B; Axon Instruments, Foster City, CA), a digital acquisition system (Digidata 1440A; Axon Instruments), and pClamp 10 software (Axon Instruments) on a PC. Recording pipettes had resistances of 7 – 10 MΩ when filled with 140 mM K-glucoramic acid, 2 mM MgCl₂, 0.5 mM CaCl₂, 10 mM HEPES, 4 mM Na₂-ATP, 0.4 mM Na₃-GTP, and 5 mM EGTA (pH 7.1 titrated with KOH). In some experiments, [Cl⁻] was increased to 12.5 mM by substituting 7.5 mM of K-glucoramic acid with equimolar KCl. The extracellular solution consisted of 150 mM NaCl, 3 mM KCl, 2 mM CaCl₂, 2 mM MgCl₂, 20 mM D-glucose, and 10 mM HEPES, (pH 7.35, titrated with NaOH). For voltage clamp experiments, cells were held at -60 mV. For current clamp experiments, cells were held with zero current. Junction potential was not corrected. A chamber for a 12-mm coverslip (RC-48LP, Warner Instruments, Hamden, CT) was
constantly superfused with the extracellular solution at ~500 µl/min. For routine opsin photoactivation, the GFP filter cube (excitation: 465–495 nm) was used. All the experiments were performed at room temperature (21–24°C).

Bioluminescence imaging. The *Gaussia* luciferase substrate, coelenterazine (CTZ), was purchased from Nanolight Technology (Pinetop, AZ). Coelenterazine free base, the natural form of CTZ (Nanolight, cat. no. 303) was reconstituted in Nanolight’s proprietary solvent NanoFuel (cat. no. 399; 0.5 mg/50 µl), and kept at -80 °C. The NanoLuc substrate, furimazine, was purchased from Promega.

For measuring luminescence from HEK cells, reconstituted and diluted CTZ was added to the culture medium to the final concentration indicated in the experiment. Bioluminescence was measured from each well of a 96-well plate using a plate reader (GloMax, Promega).

For recording experiments reconstituted CTZ was diluted in the extracellular solution at 100 µM immediately before the experiments. CTZ solution (~0.5 ml) was added to the recording chamber immediately before imaging. Bioluminescence was imaged using the CCD camera every 5 s without any filter cube with 4 by 4 binning and 4.5-s exposure.

Stereotactic injection of virus. Mice (C57BL/6) used for collection of brain slices were injected with AAV-LMO3 into the hippocampus. Animals were anesthetized by intraperitoneal injections of ketamine/xylazine mixture and placed in a stereotaxic apparatus (David Kopf Instruments, Tujunga, CA). For injection of viruses, a 31-gauge syringe needle was used to infuse 2 µl of virus into the dentate gyrus and CA3 of the hippocampus at a rate of 0.1 µl/min. The needle was left in place for 10 min after injection before being slowly withdrawn. To close the incision, Vetbond tissue adhesive (3 M, 7003449) was used. After surgery, mice were given analgesia.

For virus injection in the SNr, mice implanted with indwelling stainless steel guide cannulas (24 g.; Plastics One) unilaterally aimed at the SNr were injected with 0.6 µL
AAV-hSyn-LMO3 or AAV-hSyn-iLMO using a Hamilton syringe over 6 minutes and left in place for 5 minutes post-injection to allow for diffusion away from the injection site.

Slice preparations and electrophysiology. Hippocampal slices were prepared, using conventional methods (35), 2 to 3 weeks after virus injection. In brief, the mice were anesthetized, their brains were isolated and then placed in cold artificial cerebrospinal fluid (ACSF), containing (in mM): 125 NaCl, 2.5 KCl, 1.25 NaH₂PO₄, 26 NaHCO₃, 20 d(+)−glucose, 2 CaCl₂ and 1.3 MgCl₂ (pH 7.4 after bubbling with 95% O₂/ 5% CO₂, v/v). A vibratome was used to make 300 μm thick coronal sections. The slices were then incubated at 36 °C for 30 min prior to use.

Electrophysiological recording in slices was done with IR-DIC and 2-photon imaging, using an Olympus FV1000 microscope, similar to our previous study (36). In brief, fluorescence was excited with 790 nm light (<50 mW) and imaged using either a 25X or 40X water-immersion objective (Olympus) with appropriate emission filters for EYFP and Alexa Fluor 594 (Invitrogen). Whole-cell patch clamp recording was made similar to *in vitro* recording with a glass pipette of lower resistance (2 – 7 MΩ) and Alexa Fluor 594. For photostimulation, an area of ~500 × 500 μm was scanned with a 488-nm laser spot (typically 4 ms duration) in a 32 × 32 array of pixels. The laser spot was scanned in a pseudorandom sequence, to avoid activation of adjacent pixels, while cellular responses were simultaneously measured with whole-cell patch clamp recordings (37).

In vivo electrophysiology: Each mouse was fully anesthetized with isoflurane (induction at 3%, maintained at 1%). The head was fixed on a stereotax (Kopf) for a craniotomy (~1 mm by 2 mm) to target the SNr. The dura was first removed, and the virus was injected (5 mice each for LMO3 and for iLMO). The electrode arrays were inserted into place, targeting the final coordinates (in mm relative to Bregma): AP -3.4, ML ±1.25, DV -4.9. Each array contained 16 tungsten microwires (5-7 mm, 50 μm,) with 150 μm electrode spacing and 200 μm row spacing attached to an Omnetics connector in a 4 by 4 configuration (Innovative Electrophysiology). The arrays were grounded to screws placed in the skull with a silver ground wire, and then anchored in place with
dental acrylic. After surgery, mice were allowed to recover for at least one week before starting the recording experiments. Single unit activity was recorded using the Cerebus data acquisition system (Blackrock).

Data was filtered with analog and digital band-pass filters (analog high-pass 1st order Butterworth filter at 0.3 Hz, analog low-pass 3rd order Butterworth filter at 7.5 kHz). Data were filtered with analog and digital band-pass filters (analog high-pass 1st order Butterworth filter at 0.3 Hz, analog low-pass 3rd order Butterworth filter at 7.5 kHz), and then separated with a high-pass digital filter (4th order Butterworth filter at 250 Hz) and sampled at 30 kHz. The data was processed using online sorting algorithms and then re-sorted offline (Offline Sorter, Plexon). Waveforms were classified as single units as previously described (38–40). The following criteria were used: 1) a signal to noise ratio of at least 3:1; 2) consistent waveforms throughout the recording session; 3) refractory period of at least 1000 µs. Data were analyzed using Neuroexplorer.

Behavioral experiments. For application of CTZ directly through the cannula, injectors were lowered extending 0.2 mm past the end of the cannulas, which were implanted using the same stereotaxic coordinates as for the electrode arrays. PBS (control) or CTZ in saline (34 ng; 400 nl) was injected at a rate of 0.15 µl/min by a Harvard Apparatus (Holliston, MA) injector pump. For systemic CTZ application, mice were injected into the tail vein with 200 µg CTZ in 50 µl solvent. Mice were placed in the experimental chamber and behavior was monitored via video recording. Mice were recorded for 10 minutes. The number of ipsiversive and contraversive turns was counted. Anatomical location was verified at the end of the experiments by fluorescence microscopy of perfused and sectioned brains.

Statistical analyses. All analysis and statistics were done in Igor Pro 6 (WaveMetrics, Lake Oswego, OR), using in-house and NeuroMatic macros (Jason Rothman) for electrophysiological data and/or Origin 8 software.

Acknowledgements
This work was supported by the US National Institutes of Health (R21MH101525 to U.H.), by the Duke Institute for Brain Science (DIBS Research Incubator Award to U.H., H.H.Y., and Dr. Marc A. Sommer), and a DAAD RISE (German Academic Exchange Program – Research Internships in Science and Engineering) Research Fellowship to J.G..

References

Figure legends

Fig. 1. Determining minimum light intensity for induction of action potential for *Volvox* channelrhodopsin 1 and comparison of light emission from variants of *Gaussia* luciferase. (A) A cortical neuron from a rat embryo in culture expressing *Volvox* channelrhodopsin 1 (VChR1) was whole-cell current-clamped and light pulses (1 s; 480 nm) at different intensities were delivered, resulting in sub- and supra-threshold depolarizations. (B) Frequency of action potential firing was quantified as a function of light intensity. Fitting with the Hill equation resulted in maximum firing frequency of 11.8 ± 0.3 Hz, half-maximum light intensity of 56.7 ± 5.1 μW/mm², and the Hill coefficient of 2.6 ± 0.6. *n* = 8. Error bars indicate S.E.M. in this and subsequent figures. (C) HEK cells were transfected with wildtype *Gaussia* luciferase (GLuc), super luminescent (slGLuc) and slow burn (sbGLuc) variants, and with NanoLuc luciferase all fused with VChR1 and were challenged with different concentrations of coelenterazine (CTZ) to obtain dose-response curves for bioluminescence using a plate reader. The data was fitted with the Hill equations. Hill coefficients were set to 2. *n* = 3 wells. (D) sbGLuc showed a ~10-fold increase in bioluminescence compared to wildtype GLuc at 50 µM CTZ concentration. Luminescence from *Renilla* luciferase and from NanoLuc with its own substrate, furimazine, was also plotted. The same dataset obtained from HEK cells shown in C was replotted. *n* = 3 wells.

Fig. 2. Luciferases with higher light emission improve coupling efficiency. (A) Representative CTZ-induced currents with LMO1 (GLuc-ChR2; top), LMO2 (GLuc-VChR1; middle), and LMO3 (sbGLuc-VChR1; bottom) in transfected HEK cells (sampling rate: 10 KHz). Bioluminescence was obtained simultaneously but at a much lower sampling rate (0.2 Hz) and is shown in the same scale for the three examples (cyan). (B) For all LMOs, the response to CTZ correlated with the maximum photocurrent elicited by direct illumination. However, for a given value of maximum photocurrent, responses to CTZ were higher for cells expressing LMO2 than for cells expressing LMO1, and substantially higher for cells expressing LMO3. *n* = 3 – 4 cells for each data point from 12 (LMO1; HEK cells), 10 (LMO2; HEK cells), and 14 (LMO3;
neurons in culture) cells in total. Correlation between photocurrent and CTZ-induced current was also examined in the brain slice preparation (open symbols in red; \(n = 3 \) and 4 cells). (C) The efficiency of coupling between the GLuc variants and the channelrhodopsins was calculated from the same dataset shown in B by dividing the amplitude of the CTZ-induced current by that of the maximum photocurrent induced by direct illumination of the LMOs. The coupling efficiency of LMO3 was significantly higher than that of the first two LMOs. \(n = 12 \) (LMO1), 10 (LMO2), and 21 (LMO3). The coupling efficiency of LMO3 determined in neurons in culture and in brain slice preparation was not significantly different (\(p = 0.87; \) two-tailed unpaired Student’s \(t \)-test; \(n = 14 \) and 7 for culture and slice preparation, respectively) and thus pooled together.

Fig. 3. Bioluminescence controls action potential firing. (A) An LMO3-expressing neuron showed bioluminescence upon CTZ application (100 \(\mu \)M). (B) CTZ-induced bioluminescence (blue trace) in the LMO3-expressing neuron shown in (A) caused depolarization and action potential firing (black trace). (C) An iLMO-expressing neuron showed bioluminescence upon CTZ application (100 \(\mu \)M). (D) CTZ-induced bioluminescence (blue trace) in an iLMO-expressing neuron caused slight hyperpolarization and inhibition of action potential firing (black trace). Action potentials were induced by peri-threshold depolarizing currents (60 pA, 15 ms) at 1 Hz. (E) Mean membrane potential change caused by CTZ application in neurons expressing LMO2, LMO3, and iLMO. \(n = 8, 4, \) and 4 respectively.

Fig. 4. Bioluminescence elicits postsynaptic currents *in vitro*. (A) Cortical neurons from rat embryos in culture were transduced by lentivirus carrying the LMO3 gene, resulting in EYFP tag expression (yellow). A negative cell in the center was whole-cell patch clamped and filled with Texas Red dye (shown in red), while neighboring cells were activated by focal photostimulation with an arc lamp depicted as a cyan circle (not scaled; the actual spot size in wide-field illumination was 670 \(\mu \)m in diameter). (B) A light pulse (1 s; 480 nm; 1 mW/mm\(^2\); 670 \(\mu \)m in diameter) elicited fast inward currents in the cell under voltage clamp at -60 mV. The internal solution contained 12.5 mM chloride to keep the equilibrium potential of chloride close to the holding potential. (C) In
another cell, fast inward currents elicited by photostimulation were blocked by a cocktail of ionotropic glutamate antagonist, CNQX (100 µM) and kainic acid (KA; 3 mM), indicative of glutamatergic EPSCs. (D) CTZ (100 µM; 470 µl) was bath-applied to the same coverslip shown in (A), causing widespread bioluminescence. Bioluminescence was expected in the entire coverslip (9 mm in diameter) depicted as a cyan rectangle (not scaled). (E) CTZ-induced bioluminescence (blue trace, top) caused fast inward currents (black trace, middle) while it lasted. EPSC frequency was quantified in 10-s bins (bottom trace). All traces are shown in the same time scale. (F) Mean frequency of spontaneous EPSCs before stimulation (control), during stimulation by lamp, or by CTZ (*p < 0.05; paired Student’s t-test; n = 8 for both lamp and CTZ). (G) Averaged waveforms of EPSCs recorded from the cell shown in A, B, and E during photostimulation by lamp and by bioluminescence with CTZ. n = 24 (lamp) and 101 (CTZ).

Fig. 5. Bioluminescence changes in vivo single unit activity bidirectionally in awake behaving mice. (A) Firing rate of a representative neuron in the substantia nigra pars reticulata (SNr) that increased firing after CTZ in a mouse expressing LMO3, with its spike waveform on the right. (B) LMO3 population summary: average firing rates before and after injection (**p < 0.01; two-way ANOVA followed by post hoc test; n = 30 (vehicle) and 31 (CTZ) cells from 5 mice). Error bars represent S.E.M.. (C) Firing rate of a representative SNr neuron that decreased firing after CTZ in a mouse expressing iLMO, with its spike waveform on the right. (D) iLMO population summary: average firing rates before and after injection (**p < 0.001; two-way ANOVA followed by post hoc test; n = 36 (vehicle) and 46 (CTZ) cells from 5 mice). (E) Firing rates of 2 representative neurons over 2 hours following injection of CTZ (1 for LMO3 and 1 for iLMO). Shaded area indicates the estimated period during which CTZ remains effective in altering firing rates.

Fig. 6. Bioluminescence modulates behavior in awake freely moving mice. (A) Representative trajectories of mouse bodies showing effects of intra-SNr injection of CTZ on turning behavior in mice expressing LMO unilaterally in the SNr. Unilateral
excitation of nigral neurons produced more ipsiversive turning (LMO3), whereas unilateral inhibition produced more contraversive turning (iLMO), consistent with well-established observations of nigral functions. (B) In mice expressing LMO3, injection of CTZ into the SNr ($n = 3$) or the tail vein ($n = 5$) increased ipsiversive turning ($^{*}p = 0.0021$ and $^{*}p = 0.04$, respectively; two-way ANOVA followed by post hoc test). (C) In mice expressing iLMO, injection of CTZ into the SNr ($n = 3$) or the tail vein ($n = 8$) increased contraversive turning ($^{*}p = 0.016$ and $^{*}p = 0.0003$, respectively; two-way ANOVA followed by post hoc test).

Fig. 7. Bimodal opto- and chemogenetic interrogation of neurons expressing luminopsin. (A – G) Hippocampal dentate gyrus and CA3 neurons were transduced by AAV-LMO3. (A – C) CTZ-induced bioluminescence and EPSCs in a CA1 pyramidal cell. CTZ treatment elicited bioluminescence (A), as well as fast inward currents, presumably EPSCs (B). Inset shows inward currents on a faster time scale. (C) Time course of CTZ-induced increase in EPSC frequency. (D – G) Mapping local excitatory inputs of a CA1 pyramidal cell. (D) Image shows fluorescence from the EYFP tag (green) overlaid on a bright-field image of a hippocampal slice. (E) CA1 pyramidal cell was whole-cell patch clamped with a pipette filled with Texas Red dye, with dye fluorescence revealing morphology of the neuron. (F) Left, map of excitatory inputs activated by brief laser light spots scanned throughout the part of the CA1 region shown in (E). Pseudo color scale (lower left) indicates amplitudes of EPSCs evoked when laser spot was positioned at each location, while red image illustrates cell morphology (from E). Right, representative EPSCs evoked at locations indicated by corresponding numbers in map at left. (G) Light flash (blue) evoked EPSCs (black) that were blocked by treatment with the glutamate receptor antagonists, CNQX and d-AP5 (red).
A. CTZ-induced current (pA) for LMO1, LMO2, and LMO3.

B. Relationship between CTZ-induced current (pA) and maximum photocurrent (nA) for LMO1, LMO2, and LMO3. Data points are indicated for culture and slice conditions.

C. Coupling efficiency (%) for LMO1, LMO2, and LMO3.
Supporting Figure Legends

Fig. S1. Characterization of Mac photocurrent. (A) Neurons were transfected with Mac-EGFP and photocurrent was elicited with various wavelengths at different intensities under voltage clamp. Mean currents were fitted with the Hill equations with the following parameters: 25.5 pA, 0.75, and 12.9 mW/mm² with 480 nm; 24.3 pA, 0.85, and 5.0 mW/mm² with 540 nm; 20.6 pA, 1.14, and 3.7 mW/mm² with 560 nm; 17.8 pA, 0.97, and 3.2 mW/mm² with 575 nm for the maximal photocurrent, the Hill coefficient, and the half maximal irradiance, respectively. \(n = 3 \). Error bars denotes S.E.M. in this and the subsequent panels. (B, C) The data from each cell was individually fitted with the Hill equation and means for the maximal photocurrent (B) and for the half maximal irradiance (C) were calculated. The same data set as in A.

Fig. S2. Light responses in LMO3-expressing neurons in the substantia nigra *ex vivo*. (A) Hyperpolarization in the membrane potential (Vₘ) by current injection (Iₘ), showing minimal contribution of Iₗ. Rebound action potential firing was truncated for clarity. (B) Photocurrent in response to a 2-s light pulse. (C) Optical mapping of light-induced voltage responses in a SN cell activated by 559-nm laser; pixel color scale (right) indicates size of light responses, with locations where laser stimulation evoked action potentials indicated in orange. (D) Representative light responses evoked in locations #1-3 in C.

Fig. S3. Bioluminescence-induced responses in a SN cell. (A) Responses to a 2-s light pulse. Fast outward currents resembling IPSCs were superimposed on an inward photocurrent due to LMO3 expressed by cell. Inset: IPSCs shown on expanded time scale. (B) Bioluminescence (top) and membrane current (middle) simultaneously recorded from a SN cell. CTZ induced slow inward current (red dashed line) and superimposed fast outward currents resembling IPSCs. Holding potential was -60 mV. Inset: CTZ-induced IPSCs on expanded time scale.