<table>
<thead>
<tr>
<th>Title</th>
<th>Modality specificity in the cerebro-cerebellar neurocircuitry during working memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ng, H. B. Tommy; Kao, K.-L. Cathy; Chan, Y. C.; Chew, Effie; Chuang, K. H.; Chen, Shen-Hsing Annabel</td>
</tr>
<tr>
<td>Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/40937</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2016 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by Behavioural Brain Research, Elsevier. It incorporates referee's comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/j.bbr.2016.02.027].</td>
</tr>
</tbody>
</table>
Modality specificity in the cerebro-cerebellar neocircuitry during working memory

H.B. Tommy Nga, K-L Cathy Kaoa, Y.C. Chanb,c, Effie Chewb,c, K.H. Chuangd, S.H. Annabel Chena,e*

a Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University, 637332, Singapore

b Division of Neurology, University Medicine Cluster, National University Health System, Singapore

c Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

d Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, 138667, Singapore

e Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, 637459, Singapore

* Corresponding author. Division of Psychology, School of Humanities and Social Sciences, HSS-04-19, 14 Nanyang Drive, Nanyang Technological University, 637332, Singapore. Telephone: +65 6316 8836. E-mail address: annabelchen@ntu.edu.sg
Abstract

Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to determine lateralization of the activation patterns observed. Consistent with Chen and Desmond’s (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIa/VIIb) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIb) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies.

Keywords Cerebellum · Cerebrocerebellar · Functional magnetic resonance imaging · Verbal working memory · Visual working memory
Introduction

Working memory may be conceptualized as a neural system that temporarily maintains, stores, and manipulates information for complex cognitive tasks such as reasoning, learning, and language comprehension (Baddeley and Hitch, 1974). Within the theoretical framework, mechanisms of the phonological loop and visuo-spatial sketchpad are thought to support verbal and visual working memory, respectively.

Data from neuroimaging studies have consistently demonstrated the involvement of left inferior frontal and left inferior parietal regions in verbal working memory, areas of the brain that have been linked to phonological rehearsal and storage, respectively (Cohen et al., 1994, 1997; Awh et al., 1996; Fiez et al., 1996; Braver et al., 1997; Fiez and Raichle, 1997; Smith and Jonides, 1998; Jonides et al., 1998). Although cerebellar activations were also observed in early neuroimaging studies (Paulesu et al., 1993; Petrides et al., 1993; Jonides et al., 1997), their exact function in verbal working memory was not well understood (see Jonides et al., 1997).

In a previous fMRI study, Desmond and colleagues (1997) identified two cerebellar regions that were differentially activated during verbal working memory: one located bilaterally in the superior hemisphere (lobule VI/Crus I), and another in the inferior aspect (lobule VIIIB) of the right hemisphere. Based on the canonical cortico-ponto-cerebellar network (Middleton and Strick, 2001; Kelly and Strick, 2003) that forms a closed
loop circuitry via the thalamus (Thach and Jones, 1979; Asanuma et al., 1983; Middleton and Strick, 1997a; for review see Ramnani, 2006), the authors proposed a cerebro-cerebellar model of verbal working memory to account for superior cerebellar contribution to phonological rehearsal and encoding and inferior cerebellar contribution to phonological storage processes. In a later event-related fMRI study, Chen and Desmond (2005a) found concomitant activation of the superior cerebellum and left frontal regions during encoding, and concomitant activation of the right inferior cerebellum and left parietal regions during maintenance, supporting earlier speculations that a lateralized left cortical-right cerebellar neurocircuitry supports verbal working memory.

Although the laterality effect was observed in a number of subsequent studies (Chen and Desmond, 2005b; Kirschen et al., 2005, 2010; Marvel and Desmond, 2010), a caveat was that hemispheric lateralization was assessed via visual comparison of the number of activated voxels and activation intensity (as indicated by the normalized Z value) in homologous brain regions, without the rigour of statistical testing. To address this, one of the objectives of the present study was to evaluate the laterality effect of verbal working memory by means of a laterality index measurement (Binder et al., 1995; Cuenod et al., 1995; Desmond et al., 1995; Gaillard et al., 1997), which statistically evaluates voxel beta-values of homologous regions of interest. Specifically, an unbiased threshold-free computation of voxel t-values within regions of interest was used to calculate the laterality index. This approach has been shown to minimize
computational biases that are associated with statistical thresholding (Matsuo et al., 2012; for review see Seghier, 2008).

Another objective of the present study was to verify the laterality effects of working memory processes in the visual system. In the animal literature, an abundance of neurophysiological evidence converged on the involvement of ventral prefrontal and occipitotemporal brain areas in pattern, object, and face recognition and recall (Wilson et al., 1993; Miller et al., 1991, 1996; Rainer et al., 1998; Scalaidhe et al., 1999; Rolls, 2000). These results are in good concordance with studies demonstrating visual recognition deficits in monkeys with ventromedial prefrontal cortex and inferior temporal cortex lesions (Passingham, 1975; Mishkin and Manning, 1978; Bachevalier and Mishkin, 1986; Horel et al., 1987). Findings from human lesion (for review see Farah, 1990; Owen et al., 1995, 1996; Newcombe et al., 1987; Muller et al., 2002; Milner, 2003) and neuroimaging (Courtney et al., 1997; Haxby et al., 2000; Postle et al., 2000; for review see Ungerleider et al., 1998; Ranganath and D’Esposito, 2005) studies also provide evidence for the involvement of the abovementioned brain regions in visual working memory. However, despite the wealth of data, it remains unclear whether or not cerebral hemispheric lateralization persists in processes underlying visual working memory.

While there have been reports of left mid-frontal region preponderance during object working memory tasks (Smith and Jonides, 1995; Smith et al., 1995), there are by far more evidence for supporting
right cerebral dominance during visuo-spatial working memory tasks (McCarthy et al., 1994; Haxby et al., 1995; Courtney et al., 1996; Walter et al., 2003; van Asselen et al., 2006; Thomason et al., 2010; Yamanaka et al., 2010; for review see Mottaghy, 2006; Suchan, 2008). The inconsistent laterality effects observed at the neocortex prevail at the cerebellar level, with a number of studies reporting left cerebellar dominance during face (Haxby et al., 1996; Koshino et al., 2008), spatial (Gruber and Yves von Cramon, 2003), and abstract object (Hautzel et al., 2009; Kang et al., 2011) working memory tasks, and to a lesser extent, preponderance of right cerebellar activations during visuospatial working memory tasks (Pessoa et al., 2002; Thurling et al., 2012).

Given the inconsistency in previous findings, the current study aims to determine if laterality topography exists for working memory in the cerebrum and cerebellum for verbal and visual stimuli through a quantitative analysis.

Materials and Methods

Participants

Forty two (22 males, 20 females) neurologically healthy young-adults took part in the study. Their age ranged from 21 to 31 years with a mean of 22.83 years (S.D. = 1.95 years). All the subjects were right-handed (Laterality Quotient (LQ) > 60) according to Edinburgh Handedness
Inventory (EHI LQ: Mean = 96.83, S.D. = 6.14; Oldfield, 1971). The study protocol was approved by the Nanyang Technological University Institutional Review Board and the National Healthcare Group (NHG) Domain Specific Review Board (DSRB). The experimental procedures were carried out in accordance with the 1964 Declaration of Helsinki. At the successful completion of the experiment, subjects were paid for their participation. Informed consent was obtained from individual subjects prior to the start of each experiment.

Task description

We employed a block design for two working memory tasks (visual and verbal), based on the Sternberg paradigm. The tasks were presented to the subjects in alternating blocks of high- and low- load in separate runs. Each cycle consisted of 1 block of high-load and 1 block of low-load that had 2 trials each. Each block was interleaved by a 1.6 seconds interval and block duration was 20s. There were 10 cycles in each run adding up to a total of 20 high-load and 20 low-load trials. Each run lasted 400s. 2 runs of each task were performed and task order was counterbalanced across subjects.

Stimuli were pseudo-randomly presented on a Fujitsu Lifebook computer (Fujitsu, Tokyo, Japan) with E-Prime version 2.0 (Psychology Software Tools, Inc, Pittsburgh, US) software. The images were projected onto a screen that was located at the back of the scanner bore, and subjects viewed them via a mirror mounted on the cage coil. Before the
experiment began, subjects practised the tasks to familiarize with the experimental procedures.

In the verbal working memory (VERWM) task, a red fixation cross indicating the start of a trial was presented in the middle of the screen for 1.2 seconds. Following that, a horizontal array of either six non-repeated letters (high-load condition) or six identical letters (low-load condition) was presented above the cross for 3 seconds. During this time, subjects rehearsed the letters in sequential order subvocally and continued to do so during a 3 seconds maintenance period where no stimuli were shown on the screen. After the maintenance period, a probe letter was presented for 2 seconds and the subjects determined if it matched one of the letters in the array by pressing a button under the right index finger for “match” and a button under the right middle finger for “not-match”.

In the visual working memory (VISWM) task, the same fixation cross preceded (1.2 seconds) the presentation of a horizontal array of either three non-repeated geometrical patterns (high-load condition) or three identical geometrical pattern (low-load condition). During a 4 seconds encoding phase, subjects viewed and retained the visual patterns in their mind and continued to do so during a 1.5 seconds maintenance period where no stimuli were shown on the screen. After the maintenance period, a probe pattern was presented below the cross for 2.5 seconds and the subjects determined if it matched one of the patterns in the array by a button press in the same manner as that in the VERWM task. Subjects were instructed not to use verbal strategies for the VISWM task.
In both the verbal and visual working memory tasks, duration of a single trial was 9.2 seconds (see Figure 1).

Figure 1 about here

Behavioural data analysis

Paired-samples t-tests evaluated within-condition (high load versus low load) differences in performance accuracy and reaction times.

MRI data acquisition

Whole-brain MRI data were acquired on a 3 Tesla scanner (Siemens Trio, Erlangen, Germany) equipped with a 32-channel array coil. To minimize movements, foam paddings were placed between the subject’s head and scanner’s head rest. The acquisition protocol consisted of localizer, structural, and functional scans. High resolution (1mm isotropic) T1-weighted images were acquired in the sagittal plane with magnetization prepared rapid acquisition gradient echo sequence. T2*-weighted echo planar images were acquired in the oblique axial plane with the following parameters: TR = 2500 ms; TE = 29 ms; 48 slices; flip angle = 90°; FOV = 225 mm; 64 x 64 matrix giving an in-plane voxel size of 3.5 x 3.5 mm²; slice thickness = 3.5 mm. The acquisition plane was rotated 25° with respect to the posterior vertical axis of the brainstem to optimize signal measurements from the cerebellum and neocortices (Chen and Desmond,
MRI data collection was synchronized with the behavioural task via interfacing with the E-Prime software. Prior to each run, subjects were provided instructions via the scanner’s intercom system.

Functional data analysis

fMRI data were analyzed using the Statistical Parametric Mapping (SPM8) software package (Wellcome Department of Cognitive Neurology, Institute of Neurology, University College London, UK, www.fil.ion.ucl.ac.uk/spm). Structural and EPI images were aligned to the AC-PC plane. An ‘interleaved bottom-up’ slice timing correction was applied to the EPI images to correct for temporal lags in image acquisition. Head motions were corrected by aligning EPI images of run 1 and run 2 to the first EPI image of run 1. This routine generated a mean EPI image, which was used as a source image for registering the realigned functional images to the individual subject’s anatomical T1 image.

The experimental effects were estimated with the general linear model within SPM8. Two [high-load > low-load (VERWM); high-load > low-load (VISWM)] contrast images were calculated for each subject, yielding 42 images per task. It was assumed that these contrast images reflected parametric recruitment of neural resources during the two load conditions. The images were then normalized separately to fit the ICBM152 whole-brain template with default parameters in SPM8 and the Spatially Unbiased Infra-tentorial Template (SUIT). This was done to overcome the limitations of normalizing cerebellar activations to MNI space. Accordingly, the MNI template, which is derived from 152 T1-weighted scans, lacks
information of important anatomical landmarks (e.g. primary and intrabiventer fissures) crucial for aligning structures in the cerebellum. It has been previously suggested that such a normalization procedure would result in substantial stretching of the cerebellum in the z-direction, ‘pushing’ activations in superior aspect of the cerebellum to the visual cortices and obscuring those in the inferior cerebellum (Diedrichsen, 2006; Diedrichsen et al., 2009).

In the SUIT normalization, individual T1-weighted images were cropped to isolate the cerebellum from the other brain structures. These structural images were then warped to fit the SUIT space and the resulting deformation parameters were applied to the functional images for resampling at 3.5 x 3.5 x 3.5 mm3 resolution. All contrast images were smoothed with a 6 mm Full Width Half Maximum (FWHM) Gaussian kernel.

After normalization, random effects analyses were conducted on task-specific contrasts with one-sample t-tests. Cluster-level activations that survived family-wise error (FWE) rate correction with significance level at $p < 0.05$ were reported. Except for cerebellar activations that were superimposed onto the SUIT template, all other brain activations were superimposed onto the MNI template. Locations of cerebral and cerebellar activation maxima were determined using the Automated Anatomical Labeling [AAL; (Tzourio-Mazoyer et al., 2002)] software and probabilistic cerebellar atlas (Diedrichsen et al., 2009), respectively.
Lateralization of brain activations was evaluated with AveLI (Matsuo et al., 2012). In this method, voxel beta-values are used to compute laterality index (LI) of two homologous regions of interest (ROIs). Specifically, subordinate LIs (sub-LIs) are computed from task-specific positive beta-values using the following equation:

\[\text{sub} - \text{LI} = \frac{\text{Lt} - \text{Rt}}{\text{Lt} + \text{Rt}} \]

where Lt and Rt are the summations of voxel beta-values at and above an arbitrary threshold in the left and right ROIs, respectively. AveLI is subsequently calculated by averaging the sub-LIs in the ROIs as follows:

\[\text{AveLI} = \frac{\sum (\text{sub} - \text{LI})}{\text{VN}} \]

where VN is the total number of positive t-values voxels in the ROIs.

In the current study, we used AAL template (Tzourio-Mazoyer et al., 2002) in Wake Forest University PickAtlas (Maldjian et al., 2003) and the SUIT cerebellum template (Diedrichsen, 2006) to create bilateral ROIs for AveLI analyses in the cerebral cortex and cerebellum, respectively. Based on previous literature, ROIs for the VERWM task were defined in the inferior frontal gyrus (see Chen and Desmond, 2005a), inferior parietal lobule (see Ravizza et al., 2004), cerebellar lobule VI/CrusI, and cerebellar lobule VIIb/VIII (see Chen and Desmond, 2005b). For the VISWM task, ROIs were defined in the inferior frontal gyrus (see Courtney et al., 1996), inferior temporal gyrus (see Ranganath et al., 2004), cerebellar lobule...
VI/CrusI (see Thurling et al., 2012), and cerebellar lobule VIIB/VIII (see Hautzel et al., 2009).

Results

Behavioural data

In the VERWM task, performance accuracy (percent) was significantly \(t(40) = 5.55, P < 0.001 \) higher in the low-load \((M = 98.90, SD = 1.94)\) compared to high-load \((M = 95.24, SD = 4.18)\) condition. Reaction times (milliseconds) were significantly \(t(40) = 16.51, P < 0.001 \) greater during high-load \((M = 939.64, SD = 166.38)\) compared to low-load \((M = 653.55, SD = 114.27)\) condition. Similarly in the VISWM task, subjects registered significantly \(t(40) = 12.05, P < 0.001 \) higher percentage of correct responses in the low-load \((M = 97.99, SD = 2.64)\) compared to high-load \((M = 87.44, SD = 5.85)\) condition. Reaction times (milliseconds) were significantly \(t(40) = 14.03, P < 0.001 \) greater during high-load \((M = 864.07, SD = 165.07)\) compared to low-load \((M = 699.56, SD = 142.56)\) condition.

Across tasks, subjects performed better in the verbal task compared to the visual task \(t(40) = 7.02, P < 0.001 \) although they took a longer time to make their responses \(t(40) = 4.10, P < 0.001 \).

Imaging data

Activations in MNI space
Figure 2, Table 1, and Table 2 show regional activation profiles and loci of activation maxima during the working memory tasks.

In the VERWM task, left hemispheric dominance was observed in inferior and middle frontal regions, posterior parietal regions, and occipitotemporal regions. Apart from the brain regions depicted in Figure 2, other activated brain areas not visible from the rendered brain included the putamen, caudate, pallidum, insular, cingulum, and hippocampus.

In the VISWM task, brain activations were obtained bilaterally in the inferior and middle frontal regions, posterior parietal regions, occipital regions, and occipitotemporal regions. Activated brain areas not visible from the rendered brain included the cingulum, insular, hippocampus, and thalamus.
Activations in SUIT space

Figure 3 and Table 3 show cerebellar activation profiles and loci of activation maxima during the working memory tasks, respectively.

Although the VERWM task appeared to recruit bilateral superior cerebellar regions, cluster-level thresholding produced activation maxima only in the right hemisphere. Within this region, two activation maxima were obtained; locus of the stronger maxima lay anterior, inferior, and lateral to the weaker one. In the same hemisphere, a separate activation maxima was obtained in lobule VIIB/VIII of the inferior posterior cerebellum. Of note, there was no significant cerebellar lobule VIIB/VIII activation in the left hemisphere.

In the VISWM task, robust activations were obtained bilaterally in the superior posterior region of cerebellar lobule VI, which became a contiguous cluster through the adjoining vermal activation in the anterior cerebellum. Smaller clusters of voxels were also obtained in the inferior posterior aspects of both cerebellar cortices. The intensity and size of the activation maxima in left cerebellar lobule VIIB was greater compared to that in the right hemisphere.

Figure 3 about here

Table 3 about here

AveLI

Table 4 shows the laterality effect of brain activations during the working memory tasks. According to Seghier (2008) and Matsuo et al. (2012), AveLI values greater than 0.2 and lesser than -0.2 represent left and right lateralization of brain activations, respectively.

A robust laterality effect was observed in the VERWM task. Activations in the IFG (0.32 ± 0.17; Mean ± SD) and IPL (0.59 ± 0.20) were lateralized to the left cortical hemisphere whereas those in lobule VI (-0.37 ± 0.40), lobule VIIB (-0.58 ± 0.45) and lobule VIII A (-0.31 ± 0.41) were lateralized to the right cerebellar hemisphere. Activations in cerebellar lobule Crus I was bilateral.

In contrast, in the VISWM task, AveLI values approximating zero (-0.04 to 0.12) indicated that cortical (inferior frontal gyrus, inferior temporal gyrus) and cerebellar (lobule VI/Crus I and lobule VII/B/VIII A) brain regions were quasi-equitably activated across hemispheres.

Table 4 about here
Discussion

The present study confirms earlier findings supporting a laterized cerebro-cerebellar (left neocortical-right cerebellar) network of verbal working memory. In contrast, quantitative findings showed bilateral activations in the cerebral and cerebellar regions during visual working memory. These results did not provide evidence to suggest a distinct right neocortical-left cerebellar network for visual working memory.

The activations observed in the region representative of the Broca’s area and posterior aspect of the left parietal cortex during verbal working memory are in concordance with previous findings (Chen and Desmond, 2005a, b; Paulesu et al., 1993; Cohen et al., 1997; Ravizza et al., 2004). Specifically, the left inferior parietal lobule (BA 40) has been linked to processes related to phonological storage. Although cluster maxima were obtained in the proximity of the Broca’s area (see Figure 2, Table 1), the contrast images in the present study did not reveal any cluster maximum in the left inferior parietal lobule. However, based on laterality effect analysis that showed strong dominance of the left inferior parietal lobule (see Table 4), it is likely that this brain region might be part of a larger contiguous node that was localized to the superior parietal lobule (see Table 1). A number of previous investigations have observed superior parietal activations during verbal working memory (Petrides et al., 1993; Tsukiura et al., 2001; Crottaz-Herbette et al., 2004; Narayanan et al., 2005; Marvel and Desmond, 2012). While its exact function is unclear, the brain region is thought to be involved in the storage of verbal information.
(Awh et al., 1996), memory retrieval (Callicot et al., 1999), and processes related to attentional demands (Smith et al., 1998). In the current Sternberg paradigm, it is likely that the subjects iteratively attended to the alphabets on the screen to subvocally rehearse the visual information for memory maintenance and storage. In general, our data are in agreement with current models of verbal working memory that hypothesize the contribution of the Broca’s area to articulatory rehearsal and the posterior parietal region to phonological storage (Desmond et al., 1997; Chen and Desmond, 2005a), processes of which sustain the phonological loop assumed to be fundamental to the perception and production of language (Baddeley et al., 1988; Miyake and Shah, 1999; Baddeley, 2003).

Hellige (1993) and Banich (1997) proposed that hemispheric specialization of cognitive functions is innate in the human brain. A number of fMRI studies have reported dominance of the left cerebral hemisphere during verbal working memory tasks (Casey et al., 1995; Kelley et al., 1998; Golby et al., 2001) and right cerebral hemisphere during nonverbal working memory tasks (Thomas et al., 1999; Manoach et al., 2004). In these studies, hemispheric specialization was determined by either contrasting the activation maps of working memory versus control tasks (Casey et al., 1995; Thomas et al., 1999), spatial working memory versus object working memory tasks (Manoach et al., 2004), or verbal working memory versus nonverbal working memory tasks (Manoach et al., 2004). The results of these between-task contrasts informed us about the neural substrates that were uniquely activated or brain regions that were
activated more in extent and intensity in one task relative to the other. In contrast, a within-task (high-load minus low-load condition) parametric contrast reflects neural underpinnings of the task that was performed. Previously, Thomason et al. (2008) had employed laterality index measurement to determine hemispheric specialization of phonological loop processes and found left cerebral lateralization in prefrontal and parietal regions. In the present study, we compared high- and low-load verbal working memory within-subjects and found not only left lateralization of the aforementioned neocortical brain regions but also right lateralization of cerebellar substrates in lobule VI and lobule VIIB/VIII. To our knowledge, this is the first quantitative demonstration of a cerebro-cerebellar network in verbal working memory, confirming findings of earlier studies that implicated right-sided lateralization of cerebellar involvement in phonological loop routines (Chen and Desmond, 2005 a, b; Kirschen et al., 2005, 2010; Marvel and Desmond, 2010).

Studies of primates have shown that neural connections originating from neocortical frontal regions terminate predominantly along medial aspects of the pontine nucleus (Wiesendanger et al., 1979; Schmahmann and Pandya, 1997a, b), which in turn project to superior portions of the cerebellar cortex including lobule VI and Crus I (Haines et al., 1997; Middleton and Strick, 1997b, 2001; Dum and Strick, 2003; Kelly and Strick, 2003). A distinct circuitry originating from the parietal and temporal regions has also been identified to synapse along lateral portions of the pontine nucleus (Wiesendanger et al., 1979; Leichnetz et al., 1984; Weber and
Yin, 1984; May and Andersen, 1986; Brodal and Bjaalie, 1997), which in turn project to inferior aspects of the paramedian lobule [(hemispheric lobule VIIB); Brodal 1979, 1982; Glickstein et al., 1994]. Taking together these findings and our current data, they form a strong neuroanatomical and functional basis for implicating a crossed coupling between left inferior frontal region and right superior cerebellar region in articulatory rehearsal and a separate crossed coupling between left inferior parietal region and right inferior cerebellar region in phonological store (Desmond and Fiez, 1998; Paulesu et al., 1993; Chen and Desmond, 2005 a, b; Salmon et al., 1996; Rypma et al., 1999; Awh et al., 1996; Desmond et al., 1997; Smith et al., 1998). Future research employing effective connectivity analysis should provide insights into the integration between functionally specialized brain areas.

Of note, our findings are not consistent with that of two recent neuroimaging studies that reported the absence of cerebellar hemispheric lateralization in verbal working memory (Hautzel et al., 2009; Thurling et al., 2012). In the earlier study that employed an n-back paradigm (Hautzel et al., 2009), subtraction analyses of 2-back minus 0-back yielded bilateral cerebellar activation in lobule VI and lobule VIIIa/VIIB. It was argued that the lack of cerebellar lateralization could be due to the nature of the n-back task that emphasized manipulation of information and executive control in excess of stimulus maintenance, thus superseding processes of the phonological loop that might have been induced. Although reasonable, the assumption did not prevail when a Sternberg paradigm emphasizing item
encoding and maintenance was used in a subsequent fMRI study (Thurling et al., 2012). We suggest that the lack of cerebellar hemispheric lateralization might be due to inequitable articulatory rehearsal between the load conditions. In that study, high-load condition comprised a matrix of six letters and low-load condition comprised a matrix of one letter and five ‘#’ symbols. In the latter condition, it is not reported whether the subjects rehearsed subvocally only the letter or every item in the matrix including the ‘#’ symbols, or if they did rehearse at all during the maintenance phase of the task. In the present study, the number of items presented was identical across conditions and all items were alphabets (see Figure 1) and subjects were asked to continue subvocal rehearsal even during the maintenance phase. This, we reasoned has the effect of equating motoric processes underlying articulatory rehearsal for encoding and maintenance, without which subtraction analyses might elicit additional cerebellar resources for motoric processes in the high-load condition. Alternatively, the additional cerebellar activations might reflect greater motoric demands for rehearsing different alphabets under the high-load condition or response-time variability between the two conditions (Simmonds et al., 2007).

While brain regions associated with motoric and cognitive functions may be topographically located in the same cerebellar lobules (i.e. VI and VIIb/VIII), meta-analytic data of Stoodley and Schmahmann (2009) suggests a dissociation of functional locality. Accordingly, lobular VI and VIIb/VIII activations associated with motoric processes are located anterior.
(y coordinate between -60 to -70) to those that are associated with working memory (y coordinate between -70 to -80). Our data concur well with their findings in that two distinct regions of cerebellar lobule VI were activated during the verbal working memory task, i.e. one in the anterior aspect and another in the posterior aspect of the lobule (Table 3). Recently, Peterburs and colleagues (2015) were able to attribute a motoric cerebellar network to oculomotor demands and a separate load effect cerebellar network to memory demands during stimulus encoding. In the case of lobule VIIIb/VIII, the activation was localized to the posterior aspect of the brain structure.

Apart from the phonological loop, working memory models have also envisaged a separate system (visuo-spatial sketchpad) that enables the human brain to hold and manipulate non-verbal information for deciphering semantic and geographical properties of objects in the environment (Andrade, 2001; Conway et al., 2007). As proposed by Baddeley and colleagues (Baddeley and Hitch, 1974; Baddeley, 1986; Logie, 1995), the visuo-spatial sketchpad comprises two mechanisms: an inner scribe for image rehearsal and a visual cache for storage, processes of which operate in tandem to support visual working memory. In a review of data from lesion and neuroimaging studies, Baddeley (2003) proposed candidate brain structures that might be involved in visuo-spatial working memory: for inner scribe, inferior frontal gyrus (BA 47), middle frontal gyrus, and a region overlapping the superior parietal lobule (BA 7) and anterior extrastriate occipital cortex (BA 19); for visual cache, inferior aspect of the occipitotemporal region and the cuneus (BA 17). The current
activations obtained in the aforementioned brain areas (see Table 2) support Baddeley’s conjecture and concur with data from animal (Bachevalier and Mishkin, 1986; Horel et al., 1987), human lesion (Owen et al., 1995, 1996; Newcombe et al., 1987) and neuroimaging (Haxby et al., 2000; Postle et al., 2000) studies of visual working memory.

Although bilateral parietal activations were observed during visual working memory (Figure 2b), only a maximum in the right superior parietal lobule was revealed under the current thresholding (Table 2). Interestingly, this brain area lies near the occipitoparietal region postulated by Baddeley (2003) to be involved in inner scribe processes. While mechanisms of these processes are not well understood, a parsimonious prediction would be that visual imagery plays a part in keeping the stimuli in working memory. A number of neuroimaging studies have demonstrated precuneal activations, a component brain region of the superior parietal lobule, during visual mental imagery (Kosslyn et al., 1993; Fletcher et al., 1995; Ghaem et al., 1997; Ganis et al., 2004). Lundstrom and colleagues (2005) further showed that these brain activities are related to accurate item recognition and recall, coherent with the high accuracy scores in the current study.

Apart from these brain regions, additional activations were also obtained in the fusiform gyrus of the inferior temporal cortex (see Table 2), as reported in a number of other investigations (Fuster and Jervey, 1982; Miller et al., 1991, 1996; Postle et al., 2000). While its function is not as clear-cut as those of the phonological loop, there is evidence to show that
the inferior temporal cortex is centrally involved in visual working memory, as lesion or cooling of this brain region significantly impaired performance of delayed matched to sample working memory tasks (Horel et al., 1987; Gaffan and Murray, 1992; Newcombe et al., 1987).

Unlike the distinct laterality effect that was observed in the verbal working memory task, we failed to obtain evidence for hemispheric lateralization in visual working memory, as the contrast images revealed activations in bilateral frontal and inferior temporal regions (see Figure 2), and subcortically in bilateral superior and inferior cerebellar regions (see Figure 3). The ‘zero-centering’ laterality indices confirmed that visual working memory engaged specialized brain areas in both neocortical and cerebellar hemispheres (see Table 4). Previous neuroimaging studies have demonstrated the involvement of bilateral frontal and inferior temporal brain regions in working memory of novel faces (Haxby et al., 1995; Courtney et al., 1997), and more recently with event-related fMRI, Ranganath and colleagues (2004) showed that active maintenance of visual information is supported by activation of object representations in inferior temporal cortices, and that memory retrieval is effected by top-down signals originating from the frontal cortices. Therefore, lesions in and along the pathway connecting these two brain regions would severely impair visual recall (Eacott and Gaffan, 1992; Gutnikov et al., 1997; Hasegawa et al., 1998; Tomita et al., 1999).

Consistent with our finding, two recent fMRI studies reported, among other cerebellar areas, bilateral activation of lobule VI and lobule
VIIB during working memory of abstract object (Hautzel et al., 2009; Thurling et al., 2012). Of note, in the Thurling et al. (2012) study, stronger lobule VI and lobule VIIB activations were obtained in the right cerebellar hemisphere. Through post-experiment feedback, the authors posited that the use of verbal strategies might have activated the phonological loop, thereby reducing demand of the visuo-spatial sketchpad. This may offer a plausible explanation for the findings in our study. In a recent event-related fMRI study, Sobzak-Edmans and colleagues (2016) reported that stored visual representations could possibly involved maintenance mechanisms that employ verbal coding. Alternatively, the quasi-equitable cerebellar activations obtained in lobule VI and VIIB might not be the result of phonological loop recruitment but rather a reflection that a distributed network is needed to support processes of the visuo-spatial sketchpad.

Cerebellar activations obtained in the midline vermal regions could be associated with online oculomotor control (Takagi et al., 1998; Miall et al., 2000; Krauzlis, 2005), as subjects in the current study might have made saccadic eye movements from one geometrical pattern to another during encoding.

Data from neurophysiological and behavioral experiments in monkeys have shown that object recognition involves a multistage process leading from localized feature analysis in the primary visual cortex, through a sequence of association areas, to more global object recognition in the inferior temporal cortex (Malach et al., 1995). This might explain why an extensive recruitment of brain resources is needed to support processes of
not only object recognition but also memory retrieval. Alternatively, we could suppose that if subjects in the present study had chosen to remember the letter array in the verbal working memory task as a visual pattern, the same way visual stimuli were maintained in visual working memory, it is possible that an equally extensive bilateral network might have been activated. However, this process is cost intensive and the brain knowing of a more efficient system would convert the graphemes to phonemes before entering them into the phonological loop for encoding and maintenance, thus recruiting the left cerebro-right cerebellar network. We speculate that the lack of an alternative cost-effective system in visual working memory might have resulted in the extensive recruitment of bilateral neocortical and cerebellar structures.

The present study is not without limitations. First, similar to the trial setup of Thurling et al.’s (2012) study, timing and item parameters were differentiated across tasks to match for performance accuracy. Results from our pilot study showed that by increasing encoding and reducing maintenance timing, and reducing the number of items in the visual task, accuracy rate was comparable between the two tasks ($t(9) = 1.53, P = .16$). Of note, subjects in our pilot study did not receive practice prior to the behavioural experiment. In contrast, subjects practised the tasks until they attained eighty percent accuracy prior to fMRI scanning. We posit that additional exposure to the stimuli might have aided, to a greater extent, performance of the verbal task compared to the visual task, biasing the interpretation that the observed laterality effect was a consequence of task
difficulty. While that could be a plausible explanation, it is noteworthy to highlight that behavioural confounds of disparate task performance have been reported in previous studies (Nystrom et al., 1999; Gruber and von Cramon, 2003; Chen and Mitra, 2009; Thurling et al., 2012), implicating the difficulty of matching performance accuracy across different modality of working memory.

Second, while the current analyses are sufficient for answering questions about hemispheric lateralization in working memory, they lack the temporal resolution for evaluating specific processes of working memory. Future research employing fast event-related fMRI will help us better understand underlying cerebro-cerebellar circuitry of encoding and maintenance in human working memory.

In summary, the results of the present study provide quantitative evidence for an underlying cerebro-cerebellar circuitry in verbal working memory. As postulated in earlier studies (Chen and Desmond, 2005 b; Kirschen et al., 2005, 2010; Marvel and Desmond, 2010), the phonological loop recruited left-lateralized language-related brain areas in the inferior frontal and posterior parietal regions, and right-lateralized cerebellar areas in lobular VI and VIIB/VIII regions. In contrast, a lack of hemispheric dominance in visual working memory suggests that a distributed network of brain areas in the cerebral and cerebellar hemispheres is needed to sustain this modality of working memory.
Compliance with Ethical Standards

Funding: This work was supported by a Tier 2 Academic Research Fund (MOE2011-T2-1-031) that was approved by the Ministry of Education, Singapore.

Conflict of Interest: All the authors in the manuscript declare no conflict of interest.

Ethical Approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of Nanyang Technological University Institutional Review Board and National Healthcare Group (NHG) Domain Specific Review Board (DSRB)(A), as well as, with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent: Informed consent was obtained from all individual participants included in the study.
References

Asanuma C, Thach WT, Jones EG (1983) Distribution of cerebellar
terminations and their relation to other afferent terminations in the
ventral lateral thalamic region of the monkey. Brain Res 286:237-
265.

Dissociation of storage and rehearsal in verbal working memory:

Bachevalier J, Mishkin M (1986) Visual recognition impairment follows
ventromedial but not dorsolateral prefrontal lesions in monkeys.
Behav Brain Res 20:249-261.

Press.

Baddeley AD, Gathercole SE, Papagno C (1998) The phonological loop as

Learning and Motivation: Advances in Research and Theory, Ed.

Nat Rev Neurosci 4:829-839.

prefrontal cortex in children during nonspatial working memory task
with functional MRI. Neuroimage 2:221-229.

Chen SHA, Desmond JE (2005a) Temporal dynamics of cerebro-
cerebellar network recruitment during a cognitive task.
Neuropsychologia 43:1227-1237.

Chen SHA, Desmond JE (2005b) Cerebrocerebellar networks during
articulatory rehearsal and verbal working memory tasks.
Neuroimage 24: 332-338.

Chen YN, Mitra S (2009) Distinctions between spatial and verbal working
32:380-389.

Cohen JD, Forman SD, Braver TS, Casey BJ, Servan-Schreiber D, Noll
DC (1994) Activation of the prefrontal cortex in a nonspatial working
memory task with function MRI. Hum Brain Mapp 1:293-304.

Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J,
Smith EE (1997) Temporal dynamics of brain activation during

Courtney SM, Ungerleider LG, Keil K, Haxby JV (1996) Object and spatial
visual working memory activate separate neural systems in human

 Hemispheric differences in neural system for face working memory:
 A PET-rCBF study. Hum Brain Mapp 3:68-82.

 Cambridge, MA: Harvard University Press.

 performance of visual tasks while segments of the inferotemporal
 cortex are suppressed by cold. Behav Brain Res 23:29-42.

Jonides J, Schumacher EH, Smith EE, Koepp RA, Awh E, Reuter-Lorenz
 PA, Marshuetz C, Willis CR (1998) The role of the parietal cortex in

Jonides J, Schumacher EH, Smith EE, Lauber EJ, Awh E, Minoshima S,
 Koepp RA (1997) Verbal working memory load affects regional
 brain activation as measured by PET. J Cognitive Neurosci 9:462-475.

Kang SS, Sponheim SR, Chafee MV, MacDonald III AW (2011) Disrupted
 functional connectivity for controlled visual processing as a basis for
 impaired spatial working memory in schizophrenia.
 Neuropsychologia 49:2836-2847.

Kelley WM, Miezin FM, McDermott KB, Buckner RL, Raichle ME, Cohen
 NJ, Ollinger JM, Akbudak E, Conturo TE, Snyder AZ, Petersen SE
 (1998) Hemispheric specialization in human dorsal frontal cortex

Figure captions

Figure 1
Event timing of a single trial of the Sternberg working memory tasks. Stimuli presented during high-load and low-load condition of (a) verbal working memory and (b) visual working memory tasks. (c) Timing of one cycle of high-load and low-load trials interleaved by a 1.6 s rest interval.

Figure 2
For display purposes, activation maps superimposed on the canonical T1-weighted rendered brain were thresholded at $T = 4.7$ [$P < 0.05$ (FWE corrected) at cluster-level]. (a) During verbal working memory, left hemispheric dominance was observed in frontal, parietal, occipital, and occipitotemporal regions. (b) During visual working memory, bilateral activations of the same brain regions were observed. The colour bar refers to activation intensity expressed in T values. Lighter colour represents increased activation intensity.

Figure 3
Coronal section views of cerebellar activations during the working memory tasks. For display purposes, activation maps were thresholded at $T = 4.7$ [$P < 0.05$ (FWE corrected) at cluster-level]. (a) During verbal working memory, bilateral superior cerebellar activations were obtained from slices $y = -78$ to $y = 57$. In the same y slices, inferior cerebellar activations were obtained only in the right hemisphere. (b) During visual working memory, bilateral superior cerebellar activations were obtained from slices $y = -80$ to $y = -57$. Bilateral inferior cerebellar activations were obtained from slices $y = -78$ to $y = -61$. The colour bar refers to activation intensity expressed in T values. Lighter colour represents increased activation intensity.
Tables

Table 1

Brain regions activated during the working memory tasks, high-load > low-load

<table>
<thead>
<tr>
<th>Brain structures</th>
<th>(N_{\text{vox}})</th>
<th>SPM(Z)</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal working memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precentral_L</td>
<td>2688</td>
<td>7.57</td>
<td>-51</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>Precentral_L</td>
<td></td>
<td>6.56</td>
<td>-49</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>Precentral_L</td>
<td></td>
<td>6.55</td>
<td>-41</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>Calcarine_L</td>
<td>8351</td>
<td>7.07</td>
<td>-11</td>
<td>-91</td>
<td>0</td>
</tr>
<tr>
<td>Occipital_Inf_R</td>
<td></td>
<td>6.91</td>
<td>21</td>
<td>-92</td>
<td>-4</td>
</tr>
<tr>
<td>Putamen_L</td>
<td>2234</td>
<td>7.20</td>
<td>-19</td>
<td>-4</td>
<td>14</td>
</tr>
<tr>
<td>Caudate_R</td>
<td></td>
<td>6.73</td>
<td>17</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Pallidum_R</td>
<td></td>
<td>6.15</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parietal_Sup_L</td>
<td>966</td>
<td>6.98</td>
<td>-23</td>
<td>-64</td>
<td>46</td>
</tr>
<tr>
<td>Insula_L</td>
<td>427</td>
<td>6.95</td>
<td>-33</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>Supp_Motor_Area_L</td>
<td>1181</td>
<td>6.88</td>
<td>-3</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>Supp_Motor_Area_L</td>
<td></td>
<td>6.78</td>
<td>-7</td>
<td>16</td>
<td>44</td>
</tr>
<tr>
<td>Cingulum_Mid_R</td>
<td></td>
<td>6.75</td>
<td>9</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>Insular_R</td>
<td>342</td>
<td>6.13</td>
<td>31</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>Hippocampus_R</td>
<td>166</td>
<td>5.51</td>
<td>25</td>
<td>-28</td>
<td>-6</td>
</tr>
<tr>
<td>Hippocampus_L</td>
<td>202</td>
<td>5.38</td>
<td>-27</td>
<td>-36</td>
<td>-4</td>
</tr>
<tr>
<td>Angular_R</td>
<td>214</td>
<td>5.27</td>
<td>33</td>
<td>-58</td>
<td>46</td>
</tr>
</tbody>
</table>

Activation maxima are reported using a single subject MNI template brain (Tzourio-Mazoyer et al., 2002), \(P < 0.05\) (FWE corrected) at cluster-level. Abbreviations: Inf = inferior; L = Left; Mid = middle; \(N_{\text{vox}}\) = number of voxels in a contiguous cluster; Oper = opercularis; R = right; Sup = superior; Supp = supplementary.
Table 2

<table>
<thead>
<tr>
<th>Brain structures</th>
<th>MNI Coordinates (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N_{vox}</td>
</tr>
<tr>
<td>Visual working memory</td>
<td></td>
</tr>
<tr>
<td>Fusiform_L</td>
<td>17637</td>
</tr>
<tr>
<td>Occipital_Mid_L</td>
<td>7.45</td>
</tr>
<tr>
<td>Fusiform_R</td>
<td>7.38</td>
</tr>
<tr>
<td>Supp_Motor_Area_L</td>
<td>1482</td>
</tr>
<tr>
<td>Cingulum_Mid_R</td>
<td>6.75</td>
</tr>
<tr>
<td>Insula_R</td>
<td>464</td>
</tr>
<tr>
<td>Precentral_L</td>
<td>1699</td>
</tr>
<tr>
<td>Precentral_L</td>
<td>6.21</td>
</tr>
<tr>
<td>Precentral_L</td>
<td>5.59</td>
</tr>
<tr>
<td>Insular_L</td>
<td>171</td>
</tr>
<tr>
<td>Frontal_Inf_Oper_R</td>
<td>781</td>
</tr>
<tr>
<td>Frontal_Inf_Oper_R</td>
<td>5.37</td>
</tr>
<tr>
<td>Frontal_Inf_Tri_R</td>
<td>5.33</td>
</tr>
<tr>
<td>Hippocampus_L</td>
<td>43</td>
</tr>
<tr>
<td>Frontal_Mid_R</td>
<td>417</td>
</tr>
<tr>
<td>Precentral_R</td>
<td>5.36</td>
</tr>
<tr>
<td>Parietal_Sup_R</td>
<td>135</td>
</tr>
<tr>
<td>Thalamus_R</td>
<td>32</td>
</tr>
</tbody>
</table>

Activation maxima are reported using a single subject MNI template brain (Tzourio-Mazoyer et al., 2002), $P < 0.05$ (FWE corrected) at cluster-level. Abbreviations: Inf = inferior; L = Left; Mid = middle; N_{vox} = number of voxels in a contiguous cluster; Oper = opercularis; R = right; Sup = superior; Supp = supplementary; Tri = triangularis.
Table 3
Cerebellar brain regions activated during the working memory tasks, high-load > low-load

<table>
<thead>
<tr>
<th>Brain structures</th>
<th>Lobule</th>
<th>N_{vox}</th>
<th>SPM(Z)</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal working memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superior posterior cerebellum</td>
<td>VI</td>
<td>961</td>
<td>R</td>
<td>Inf</td>
<td>21</td>
<td>-63</td>
</tr>
<tr>
<td>Superior posterior cerebellum</td>
<td>VI</td>
<td>R</td>
<td>6.87</td>
<td>11</td>
<td>-73</td>
<td>-23</td>
</tr>
<tr>
<td>Inferior posterior cerebellum</td>
<td>VIIB/VIII</td>
<td>R</td>
<td>6.44</td>
<td>25</td>
<td>-70</td>
<td>-51</td>
</tr>
<tr>
<td>Visual working memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superior posterior cerebellum</td>
<td>VI</td>
<td>930</td>
<td>L</td>
<td>7.13</td>
<td>-35</td>
<td>-59</td>
</tr>
<tr>
<td>Superior posterior cerebellum</td>
<td>VI</td>
<td>R</td>
<td>7.12</td>
<td>28</td>
<td>-70</td>
<td>-19</td>
</tr>
<tr>
<td>Anterior cerebellum / Vermis</td>
<td>IX</td>
<td>-</td>
<td>6.75</td>
<td>0</td>
<td>-56</td>
<td>-33</td>
</tr>
<tr>
<td>Inferior posterior cerebellum</td>
<td>VIIB</td>
<td>22</td>
<td>L</td>
<td>5.70</td>
<td>-25</td>
<td>-73</td>
</tr>
<tr>
<td>Inferior posterior cerebellum</td>
<td>VIIB</td>
<td>9</td>
<td>R</td>
<td>4.65</td>
<td>25</td>
<td>-73</td>
</tr>
</tbody>
</table>

Activation maxima are reported using the probabilistic cerebellar atlas (Diedrichsen et al., 2009), $P < 0.05$ (FWE corrected) at cluster-level. Abbreviations: L = left; N_{vox} = number of voxels in a contiguous cluster; R = right.
Table 4
Means and standard deviations (SDs) of the laterality indices

<table>
<thead>
<tr>
<th>ROIs</th>
<th>VERWM Mean</th>
<th>VERWM SD</th>
<th>VISWM Mean</th>
<th>VISWM SD</th>
<th>Laterality</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFG</td>
<td>0.32</td>
<td>0.17</td>
<td>0.02</td>
<td>0.23</td>
<td>Bilateral</td>
</tr>
<tr>
<td>IPL</td>
<td>0.59</td>
<td>0.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ITG</td>
<td>-</td>
<td>-</td>
<td>-0.04</td>
<td>0.26</td>
<td>Bilateral</td>
</tr>
<tr>
<td>CL VI</td>
<td>-0.37</td>
<td>0.40</td>
<td>0.06</td>
<td>0.36</td>
<td>Bilateral</td>
</tr>
<tr>
<td>CL Crus I</td>
<td>-0.12</td>
<td>0.46</td>
<td>0.08</td>
<td>0.39</td>
<td>Bilateral</td>
</tr>
<tr>
<td>CL VIIIB</td>
<td>-0.58</td>
<td>0.45</td>
<td>0.05</td>
<td>0.51</td>
<td>Bilateral</td>
</tr>
<tr>
<td>CL VIIIA</td>
<td>-0.31</td>
<td>0.41</td>
<td>0.12</td>
<td>0.45</td>
<td>Bilateral</td>
</tr>
</tbody>
</table>

Abbreviations: IFG = inferior frontal gyrus, IPL = inferior parietal lobule, ITG = inferior temporal gyrus, CL = cerebellar lobule, ROI = region of interest, VERWM = verbal working memory, VISWM = visual working memory.