<table>
<thead>
<tr>
<th>Title</th>
<th>Rail-to-Rail Input and Output Op Amp Using Local Charge Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ng, Rui Qi</td>
</tr>
<tr>
<td>Citation</td>
<td>Ng, R. Q. (2016, March). Rail-to-Rail Input and Output Op Amp Using Local Charge Pump. Presented at Discover URECA @ NTU poster exhibition and competition, Nanyang Technological University, Singapore.</td>
</tr>
<tr>
<td>Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/41614</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2016 The Author(s).</td>
</tr>
</tbody>
</table>
Rail-to-Rail Input and Output Op Amp Using Local Charge Pump

Motivation

This project aims to improve the Signal-to-Noise Ratio (SNR) that has degraded over the years due to the

- Increasing demand for mixed-mode IC which introduces noise due to the clock in digital core
- Tapering of V_{DD} which makes noise more dominant

Evolution of Rail-to-Rail Input Techniques

NMOS/PMOS Input Pair
- Poor input swing as NMOS (PMOS) pair operate only at high (low) V_{in}

Composite CMOS Input Pair
- At mid-rail V_{in}, both NMOS and PMOS operate and g_m doubles

Current Steering Technique
- g_m evens out at all regions of operations

Local Charge Pump
- Rail-to-Rail input swing is achieved by boosting V_{DD}

Proposed Idea

This project aims to boost V_{DD} to V_{DDX} using a local charge pump. A charge pump is also known as a **DC to DC converter** which purposes to create either a higher or lower voltage supply using **capacitors**.

Application

Popular in modern CMOS analog intensive circuits