<table>
<thead>
<tr>
<th>Title</th>
<th>Selective Laser Melting Of Nickel Base Heat Resistance Alloy EP648</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Baitimerov, R. M.; Lykov, P. A.; GU, D.; Zherebtcov, D. A.; Nerush, S. V.; Akmedianov, A. M.</td>
</tr>
<tr>
<td>Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/41828</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2016 by Pro-AM 2016 Organizers. Published by Research Publishing, Singapore</td>
</tr>
</tbody>
</table>
SELECTIVE LASER MELTING OF NICKEL BASE HEAT RESISTANCE ALLOY EP648

BAITIMEROV R.M.
Laboratory «Micropowder Technologies», Lenin's Prospect 76, Chelyabinsk, 454080, Russia

LYKOV P.A.
Aerospace Engineering Department, South Ural State University Lenin’s Prospect 76, Chelyabinsk, 454080, Russia

GU D.
College of Materials Science and Technology/ Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, People’s Republic of China

ZHEREBCOV D.A.
Department of Physical Metallurgy, South Ural State University Lenin’s Prospect 76, Chelyabinsk, 454080, Russia

NERUSH S.V.
The All-Russian Scientific-Research Institute of Aviation Materials Radio Street 17, Moscow, 105005, Russia

AKMEDIANOV A.M.
Laboratory of physical simulation of thermomechanical processes, South Ural State University Lenin’s Prospect 76, Chelyabinsk, 454080, Russia

ABSTRACT: For successful development of selective laser melting technology, it is important to increase the range of suitable materials. One of the most interesting materials for aerospace, automotive, shipbuilding and energy industries is heat-resistance superalloys. In this research EP648 nickel base heat resistance alloy was used for SLM. For determination of influence of SLM process parameters on EP648 4x4x4 mm cubic specimens were fabricated in SINTERSTATION® Pro DM125 SLM machine by using different process parameters (laser power, layer thickness, point distance, exposure time). The porosity of fabricated specimens was determined by scanning electron microscopy of polished cross-sections. SLM mode with lowest porosity (less than 1%) was selected for produce specimens for tensile strength tests. Tensile tests were carried out by using Gleeble 3800 Thermal-Mechanical Testing System for different test temperatures (up to 1073 K). Results of tests (ultimate tensile strength) showed that SLM produced EP648 by mechanical properties not inferior to cast material.

KEYWORDS: Selective Laser Melting, Nickel base heat resistance alloys, Superalloys, EP648

Proc. of the 2nd Intl. Conf. on Progress in Additive Manufacturing
Edited by Chee Kai Chua, Wai Yee Yeong, Ming Jen Tan, Erjia Liu and Shu Beng Tor
Copyright © 2016 by Pro-AM 2016 Organizers.
Published by Research Publishing, Singapore
ISSN: 2424-8967
INTRODUCTION

Selective Laser Melting (SLM) technology is widely used for producing metal details in world now. In comparison with conventional metal part fabrication technologies SLM have some advantages, such as: ability to produce of details with complex 3D shape and internal cooling channels; cheapness and rapidity of single or low volume production of complex shape parts (surgical and dental implants, design prototype); minimal quantity of production residuals. However SLM process is defined by a large number of parameters: laser power, scanning speed, layer thickness, point distance, exposure time, hatch space, stripe width, scanning strategy, powder bed temperature, building atmosphere and other), this complicates optimization of SLM process for each new metal or alloy. One of the most perspective materials for SLM fabrication is nickel base heat resistance alloy EP648, Evgenov et al. (2015), that is used in aerospace and energy industries, Evgenov et al. (2015), Nerush&Evgenov (2014). Now follow nickel base heat resistance alloys are well studied in point of view of SLM technology: Inconel 625, Amato et al. (2012), Muntaz&Hopkinson (2010), Inconel 718, Parimi et al. (2012), Jia&Gu (2014), Lu et al. (2015), Rickenbacher et al. (2013), CM247LC, Carter et al. (2014), CMX486, Carter et al. (2015), Hastelloy X, Harrison et al. (2015), Waspalloy, Muntaz et al. (2008), Nimonic 263, Vilaro et al. (2012), but EP648 is very different by chemical composition from this alloys.

The purpose of this paper is studying of influence of the SLM process parameters on heat resistance alloy EP648.

RESEARCH METHODOLOGY

There are 4 stages in this work: fabrication of cubic specimens EP648 by selective laser melting for determination of porosity, choice of mode selective laser melting, fabrication of specimens EP648 by selective laser melting for tensile strength tests.

In this work, inert gas atomized EP648 powder were used. EP648 is nickel base heat resistance alloy. Chemical composition of EP648 presents in Table 1. Chemical composition of EP648 is significantly different in comparison with widely used in SLM Inconel 625 and Inconel 718.

Table 1. Chemical composition of EP648 and some nickel base superalloys (wt.%)

<table>
<thead>
<tr>
<th>Material</th>
<th>Ni</th>
<th>Cr</th>
<th>W</th>
<th>Mo</th>
<th>Nb</th>
<th>Al</th>
<th>Ti</th>
<th>Mn</th>
<th>Co</th>
<th>Cu</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal EP648</td>
<td>Balance</td>
<td>32-35</td>
<td>4.3-5.3</td>
<td>2.3-3.3</td>
<td>0.5-1.1</td>
<td>0.5-1.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≤0.1</td>
</tr>
<tr>
<td>Precursor powder EP648 by EDS</td>
<td>53.92</td>
<td>34.10</td>
<td>6.06</td>
<td>3.12</td>
<td>0.76</td>
<td>1.06</td>
<td>0.96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Inconel 625</td>
<td>≥58</td>
<td>20-23</td>
<td>-</td>
<td>8-10</td>
<td>3.15-4.15</td>
<td>≤0.4</td>
<td>≤0.4</td>
<td>≤0.5</td>
<td>≤1</td>
<td>-</td>
<td>≤0.1</td>
</tr>
<tr>
<td>Inconel 718</td>
<td>50-55</td>
<td>17-21</td>
<td>-</td>
<td>2.8-3.3</td>
<td>4.75-5.5</td>
<td>0.2-0.8</td>
<td>0.65-1.15</td>
<td>≤0.35</td>
<td>≤1</td>
<td>≤0.3</td>
<td>≤0.08</td>
</tr>
</tbody>
</table>

For characterization of EP648 powder, scanning electron microscopy (SEM) was used. SEM micrographs of EP648 powder were presented in Figure 1. Most of powder particles have a regular spherical shape.
The cubic specimens (4x4x4 mm) EP648 were fabricated in SINTERSTATION® Pro DM125 SLM machine (Table 2) by using different process parameters (laser power, layer thickness, point distance and exposure time).

![SEM micrographs showing EP648 powder morphology](image)

Figure 1. SEM micrographs showing EP648 powder morphology: a) x 2000; b) x 500

<table>
<thead>
<tr>
<th>Laser</th>
<th>CO₂ laser redPower SP-200C-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max laser power</td>
<td>200 [W]</td>
</tr>
<tr>
<td>Scanning speed</td>
<td>up to 1000 [mm/s]</td>
</tr>
<tr>
<td>Layer thickness</td>
<td>20-100 [μm]</td>
</tr>
<tr>
<td>Laser beam diameter</td>
<td>35 [μm] at powder surface</td>
</tr>
<tr>
<td>Max part building area</td>
<td>125x125x125 [mm]</td>
</tr>
<tr>
<td>Inert atmosphere</td>
<td>argon</td>
</tr>
<tr>
<td>O₂ level controlling</td>
<td>from 100 to 5000 [ppm]</td>
</tr>
<tr>
<td>Powder bed heating</td>
<td>up to 200 [°C]</td>
</tr>
</tbody>
</table>

Surface Eq.(1) and volume Eq.(2) energy densities were used for describe of SLM modes.

\[
E_v = \frac{P \cdot ET}{PD \cdot HS \cdot h} \quad (1)
\]

\[
E_s = \frac{P \cdot ET}{PD \cdot HS} \quad (2)
\]

Where P is laser power; ET is exposure time; PD is point distance; HS is hatch space; h is layer thickness.

The porosity of obtained specimens was determined by using JSM-6400LV electron microscope (Figure 2). The specimens were prepared by polishing. The cross-section images of the specimen were obtained by the microscope and processed using MATLAB Image Processing tools to determine the area of pores. Porosity was calculated by using Eq. (3):
Porosity = \frac{\text{area of pores}}{\text{area of cross-section}} \tag{3}

Tensile tests were performed at ambient and evaluated temperature by using Gleeble 3800 Thermal-Mechanical Testing System. For tensile tests three cylindrical specimens with 6 mm diameter and 120 mm length were fabricated for each test temperature.

RESULTS AND DISCUSSION

In Figure 2 polished cross-section micrographs of specimens with the lowest (1.04%) and highest (29.8%) porosity are presented. These two regimes differ only by output laser power (200 and 50 W).

Pores of both specimens have different formation mechanism. Pores of 200 W laser power regime is small (maximum size - 32 μm) (Figure 2,b). For this regime laser power is sufficient for melting of metal powder and pore formation is explained by balling effect, Gu et al. (2009). In other hand, for regime with 50 W laser power is unsufficient for completely melting of metal powder then pores are very large (Figure 2,b) and have many unmelted powder particles.

In Figure 3, the porosity of specimen from their surface and volumetric energy density dependencies were presented. As it can be seen in Figure 3 porosity dependencies from surface
and volumetric energy densities have a good correlation for both layer thickness values. It is explained that layer thickness values is very close (35 and 40 µm).

![Figure 3. Influence of surface (a) and volumetric (b) energy density on the porosity of specimens](image)

In result of analysis of plots in Figure 3, we made the following conclusion: for SLM fabrication of dense parts from EP648 alloy with layer thickness of 35-40 µm minimum surface and volumetric energy density should be not less than 3 J/mm² and 75 J/mm³. These results have good correlation with paper Harrison et al. (2015), where four nickel base alloys (Inconel 625, Inconel 718, CM247LC, CMX486) was studied.

The decrease porosity of the material with increasing surface and volumetric energy densities may be explained by the changing nature of processes. Apparently, the increased energy density leads to a complete meltdown and overheating of the metal in the coordinate of the laser spot. The overheating of the melt increases the fluidity and the filling of pores in the material.

Results of tensile tests presents in Table 3. Ultimate tensile strength of SLM produced EP648 by mechanical properties are close to the cast material: for 300 K test temperature UTS of SLM produced EP648 was 97.77% form the cast EP648, for 1073 K – 93.33%. Good UTS of SLM produced EP648 can be explained by high SLM process cooling speed (up to 10^7 K/s, Trijis et al. (2013)).

<table>
<thead>
<tr>
<th>Material</th>
<th>T=300 K</th>
<th>T=923 K</th>
<th>T=1073 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate tensile strength (UTS), MPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLM produced EP648</td>
<td>880-910</td>
<td>665-675</td>
<td>560-600</td>
</tr>
<tr>
<td>Cast EP648</td>
<td>900-950</td>
<td>-</td>
<td>600-640</td>
</tr>
</tbody>
</table>

SUMMARY

In this paper an influence of SLM process parameters on porosity of EP648 nickel base heat resistance alloy porosity was studied. For determination of porosity an optical method was used. For this purpose 4x4x4 mm cubic specimens were fabricated by using different SLM process parameters (scanning speed, laser power, layer thickness). It was determined that for SLM fabrication of dense parts from EP648 alloy with layer thickness of 35-40 µm surface and volumetric energy density should be not less than 3 J/mm² and 75 J/mm³. The lowest porosity that
was achieved is 1.04%. Tensile tests showed that ultimate tensile strength of SLM-EP648 specimens are close with ultimate tensile strength of cast EP648.

REFERENCES

Nerush, S.V., Evgenov, A.M. (2014) "Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP", Trudy VIAM, 3, 1-20.

