<table>
<thead>
<tr>
<th>Title</th>
<th>Finance-Led Growth in the OECD since the Nineteenth Century: How Does Financial Development Transmit to Growth?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Madsen, Jakob B.; Ang, James B.</td>
</tr>
<tr>
<td>Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/41914</td>
</tr>
</tbody>
</table>

© 2016 the President and Fellows of Harvard College and the Massachusetts Institute of Technology. This paper was published in Review of Economics and Statistics and is made available as an electronic reprint (preprint) with permission of the President and Fellows of Harvard College and the Massachusetts Institute of Technology. The published version is available at: [http://dx.doi.org/10.1162/REST_a_00513]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
FINANCE-LED GROWTH IN THE OECD SINCE THE NINETEENTH CENTURY: HOW DOES FINANCIAL DEVELOPMENT TRANSMIT TO GROWTH?

Jacob B. Madsen and James B. Ang*

Abstract—It is well established in the literature that financial development (FD) is conducive to growth, and yet the channels through which FD affects growth are not well understood. Using a unique new panel data set for 21 OECD countries over the past 140 years, this paper examines the extent to which FD transmits to growth through ideas production, savings, fixed investment, and schooling. Unionization and agricultural share are used as instruments for FD. The empirical results show that FD influences growth through all four channels. In particular, ideas production is found to be the most important channel through which FD affects growth.

I. Introduction

FOLLOWING the seminal contributions of King and Levine (1993a, 1993b) and Levine (1997), a number of studies have investigated the role of financial development (henceforth FD) in enhancing economic growth (see, e.g., Arestis & Demetriades, 1997; Demetriades & Hussein, 1996; Rajan & Zingales, 1998; Levine, Loayza, & Beck, 2000; Claessens & Laeven, 2003; Beck & Levine, 2004; Guiso, Sapienza, & Zingales, 2004; Aghion, Howitt, & Mayer-Foulkes, 2005; Arcand, Berkes, & Panizza, 2012; Henderson, Papageorgiou, & Parmeter, 2012). Common to almost all cross-sectional or panel studies that examine the effects of FD on growth is that growth is regressed directly on indicators of FD without paying attention to the channels through which FD influences growth, as Levine (2005) stressed. Very few studies, such as King and Levine (1993a), Beck, Levine, and Loayza (2000), and Benhabib and Spiegel (2000), have examined capital accumulation, savings, and total factor productivity as potential channels through which FD influences growth.

This paper constructs a unique macroeconomic data set for 21 OECD countries over the period 1870 to 2009 and tests ideas production, savings, investment, and secondary and tertiary education as channels through which FD transmits to growth. Considering the transmission channels beyond the investment and savings ones may shed some light on two paradoxes in the FD literature. First, the nexus between FD or financial liberalization and investment/savings has been disputed both theoretically and empirically (see, e.g., Bayoumi, 1993; Jappelli & Pagano, 1994; Bandiera et al., 2000; Beck et al., 2000). Second, FD must influence growth through channels other than just the traditional savings-investment ones since investment does not have permanent growth effects unless there are constant or increasing returns to fixed capital stock; several studies have found that FD has permanent productivity growth effects (see, e.g., Ang, 2011; Ang & Madsen, 2012). Since constant returns to capital stock are highly unlikely, there must be constant returns to knowledge in the ideas production function for FD to have permanent productivity growth effects. Thus, an essential channel of transmission of FD to economic growth must be through ideas of production, as echoed in the theoretical literature on FD and growth, which increasingly focuses on innovations as a crucial channel of transmission of FD to growth (see, e.g., Morales, 2003; Aghion et al., 2005; Buera, Kaboski, & Shin, 2011).

This study extends previous research in a number of ways. First, it examines whether FD influences growth through ideas production, savings, investment, and secondary and tertiary education, and it gives special attention to the role of increasing returns as the precondition for FD to have permanent growth effects. While the channels through which finance is linked to growth have been examined in the literature, previous studies (e.g., King & Levine, 1993a; Beck et al., 2000; Benhabib & Spiegel, 2000) have only examined the impact of FD on capital accumulation and productivity without paying attention to channels that can create a permanent growth effect such as ideas production.

Second, data on Tobin’s q, bank assets, private credit, monetary stock, stock market capitalization, stock market volatility, R&D expenditure, innovations, hours worked, age dependency rates, capital stock, and gross enrollment rates, among other variables, are constructed over the period from 1870 to 2009. This unique data set enables us to undertake a detailed macroeconomic analysis of the transmission of FD to growth. Collecting data on FD prior to 1950 is a challenging task because these data were not routinely reported by statistical agencies, and credit, deposits, and bank assets are often disaggregated into credit provision of numerous types of credit institutions. Moreover, the deflators implicit in credit, money, and bank asset aggregates are often inconsistent with the GDP deflator during periods of high inflation, thus creating a structural break in the indicator of FD unless such inconsistency is corrected.

This study is one of the very few that uses long historical data for multiple countries to investigate the economic...
implications of FD. Most multicountry studies typically cover a short time span of thirty to forty years. The use of long data enables us to exploit the large historical variations in the data for countries that have transformed from being financially underdeveloped in the nineteenth century into being quite developed at the beginning of the twentieth century and for financial systems that experienced increasing repression from the start of World War I to the end of World War II but enjoyed more liberalized and open regimes in the post–World War II period. In his seminal analysis, Gerschenkron (1962) argues that a key condition for industrialization is the presence of a sufficiently developed financial system and that countries that were the first to industrialize relied on banking capital. Furthermore, in the absence of private capital, successful growth spurts could occur only if the government became the principal source of finance (Sandberg, 1982). Our data include the years 1870 to 1913, the crucial period of industrialization in the Western world (Gerschenkron, 1962).

Third, external instruments are used for FD to overcome the possibility that growth and FD are both driven by other variables and guard against the possibility that “where enterprise leads, finance follows” (Robinson, 1952). Following the influential papers of La Porta et al. (1997, 1998) and Beck, Demirguc-Kunt, and Levine (2003), legal origin has predominantly been used as the instrument for FD; however, the time invariance of this instrument renders it unsuitable for panel regressions and limits the cross-country variations in the instrumented estimates. Furthermore, Rajan and Zingales (2003) find that countries with English common law systems were not financially more developed than others in 1913. They argue that a theory with a more variable factor is needed to explain both the time-series variations as well as the cross-sectional differences in FD. Against this backdrop, we use unionization and the share of agriculture in economy-wide GDP as instruments for FD. These variables meet the criteria for being good instruments by satisfying the exclusion restrictions and being significant determinants of FD, as elaborated in Section IV.

The rest of the paper is organized as follows. The macroeconomic framework is established in the next section. The four channels of transmission and model specifications are presented in section III. Section IV discusses data, identification, and estimation method. The estimation results are presented in section V, and some robustness checks are undertaken in section VI. Section VII concludes the paper.

II. Transmission Channels

This section briefly shows how FD influences innovations, savings, investment, and schooling and under which conditions FD has temporary or permanent productivity growth effects.

Consider the following homogeneous Cobb-Douglas production function,

\[Y = AK^aH^{1-\alpha} = AK^a(hL)^{1-\alpha}, \]

where \(Y \) is output, \(A \) is total factor productivity (TFP), \(K \) is capital stock, \(H \) is the total quantity of human capital used to produce output, \(L \) is employment, \(h \) is human capital per worker, and \(\alpha \) is capital’s share of income.

Human capital is computed following the Mincerian approach:

\[h = \exp(\theta \times sc), \]

where \(\theta \) is the returns to education and \(sc \) is years of schooling (educational attainment).

The production function can be written as:

\[\frac{Y}{L} = A^{1/(1-\alpha)} \left(\frac{K}{Y} \right)^{\alpha/(1-\alpha)} h. \]

Taking logs and differentiating equation (3) and using equation (2) yield the following income per worker growth rate, \(g_{Y/L} \):

\[g_{Y/L} = \frac{1}{1-\alpha} g_A + \frac{\alpha}{1-\alpha} g_{K/Y} + \Delta(\theta \times sc), \]

where \(g_A \) is the technology growth rate and \(g_{K/Y} \) is the growth rate in the capital-output ratio.

Since the \(K/Y \) ratio is constant along the balanced growth path and educational attainment cannot grow to infinity, equation (4) confirms the standard result in economic growth models that labor productivity is driven entirely by technological progress in the steady state. From this, it follows that FD can have potential permanent growth effects only if it influences the rate of technological progress. If FD is assumed to influence the savings-investment decision, as often stressed in the literature, FD can have only temporary growth effects under the assumption of diminishing returns to fixed capital.

Growth in technology is determined by the following ideas production function (Peretto, 1998; Dinopoulos & Thompson, 1998; Peretto & Smulders, 2002; Dinopoulos & Waldo, 2005; Ha & Howitt, 2007; Ang & Madsen, 2011, Venturini, 2012a, 2012b):

\[g_A = \left(\frac{\lambda}{\lambda} \right) = \lambda \left(\frac{X}{\phi} \right)^\sigma A^{\phi-1}, \quad 0 < \sigma \leq 1, \phi \leq 1 \]

\[Q \propto L^\beta \] in steady state,

where \(X \) is R&D researchers, \(Q \) is product variety, \(L \) is employment or population, \(\lambda \) is a research productivity parameter, \(\sigma \) is a duplication parameter (0 if all innovations are duplications and 1 if there are no duplicating innovations), \(\phi \) is returns to scale of knowledge, and \(\beta \) is the coef-
icient of product proliferation. The ratio X/Q is referred to as research intensity.

This ideas production function extends the first-generation models of knowledge production function to allow for product proliferation and decreasing returns to knowledge stock, as highlighted in the second-generation models of economic growth (see Aghion & Howitt, 1998, 2006; Peretto, 1998; Peretto & Smulders, 2002; Ha & Howitt, 2007). R&D expenditure is divided by product variety following the Schumpeterian paradigm in which R&D spreads more thinly across the variety of products as the economy grows. Since, in steady state, product variety is growing at the same rate as population or the labor force, it follows that the growth rate, g_A, cannot increase in response to an increase in the number of researchers that keeps the number of researchers in fixed proportion to the population.

Extending the knowledge production function to allow for the influence of FD yields:

$$g_A = \lambda \left(\frac{X}{Q}\right)^\pi FD^\varphi A^{\phi - 1},$$

where FD is financial development and π is a positive constant. From equation (6), it follows that research intensity and FD have permanent growth effects only if there are scale effects in ideas production (i.e., $\phi = 1$).

The simple framework presented here shows that FD can influence productivity growth through the four principal channels considered in this paper. Temporary growth effects can be expected from the investment and schooling channels, given that they transmit to output through the production function under the assumption of diminishing returns to physical and human capital. FD will have permanent growth effects, provided that it feeds through ideas production with scale effects.

III. Model Specifications

This section develops the empirical framework that we use to test for the influence of FD on ideas production, savings, investment, and schooling, and the theories underlying each specific transmission channel are discussed.

A. Knowledge Production Function

FD affects knowledge production due to the presence of asymmetric information in financial markets, which hinders efficient allocation of financial resources and effective monitoring of investment projects. Morales (2003) argues that FD increases research productivity by mitigating the problems of moral hazard and demonstrates that FD improves the monitoring technology of financial intermediaries, thereby forcing researchers to exert a higher level of effort. Furthermore, Gorodnichenko and Schnitzer (2013) argue that a firm’s decision to invest in R&D is sensitive to financial frictions that can prevent the firm from adopting better technologies. They show that the larger the cost of external finance, the more sensitive are innovations to negative liquidity shocks.

Aghion et al. (2005) demonstrate that a developed financial system facilitates the adoption of new products or processes, leading to improvements in productive efficiency and increasing the speed at which laggards catch up to the frontier. In their model, an innovator can avoid repaying creditors by hiding the outcomes of successful innovations. Assuming that the hiding costs are positively related to the level of FD, innovative activity will be constrained for a financially underdeveloped country. In a similar vein, Buera et al. (2011) show that financial underdevelopment distorts the allocation of capital among incumbents and potential innovative entrants by delaying the entry of productive but financially poor individuals, whereas incompetent, but rich, entrepreneurs remain in business. As a result, talented but poor individuals are prevented from doing business until they can self-finance the capital needed for a profitable operation.

Taking logs of equation (6) and extending it to allow for international knowledge spillover effects yields the following stochastic specification of knowledge production:

$$\ln \hat{A}_it = \alpha_0 + \alpha_1 \ln (R/Y)_it^D + \alpha_2 \ln DTF_{it} + \alpha_3 (R/Y)_it^D \times \ln DTF_{it} + \alpha_4 \ln A_{it}^D + \alpha_5 \left[(M/Y^p)_{it} \times \ln (Pat/L)_{it}^F \right] + \alpha_6 \ln FD_{it} + CD + TD + \epsilon_{1, it},$$

where the superscripts D and F refer to domestic and foreign, respectively; A_{it}^D is measured by the number of patents filed by domestic residents; $(R/Y)_it^D$ is domestic research intensity, measured as the ratio of nominal R&D expenditure to nominal GDP; DTF is distance to the frontier, measured as the ratio of TFP in the United States to country i; M is nominal imports of goods; Y^p is nominal income; $(Pat/L)_it^F$ is research intensity spillovers through imports; FD is an indicator of financial development; CD is country dummies; TD is time dummies; and ϵ is a stochastic error term. The model, as well as all the other empirical specifications presented below, is estimated in five-year differences to filter cyclical influences out.

International knowledge spillovers influence knowledge production through the channel of imports following Coe and Helpman (1995) and through the interaction between distance to the frontier and research intensity. According to them, productivity is an increasing function of the knowledge embodied in imported products. This line of reasoning suggests that the productivity of domestic innovators is a positive function of R&D intensity in the countries from which they import. The interaction between distance to the frontier and research intensity is included in the model to allow for the possibility that researchers can tap into the world stock of knowledge, following the model of Howitt (2000). Accordingly, the higher is the research intensity,
the more capable is a country of adapting and improving on the technology developed at the frontier.

B. Savings

As has been stressed for a long time in the literature on FD, savings may be curbed by financial underdevelopment, in that poor enforcement of financial contracts increases the spread between borrowing and lending rates and, consequently, depresses the domestic rate of return to savers. In their classical contributions, McKinnon (1973) and Shaw (1973) argue that FD is associated with greater mobilization of savings and more efficient allocation of resources. As elaborated in the literature survey of Levine (1997) and Ang (2008), savings from households may be insufficient to fully fund potential borrowers. Financial systems perform a key task of mobilizing savings by pooling the savings of diverse households and making this aggregate fund available for lending. Hence, as financial systems expand, more deposits will be attracted from savers and more funds will be available for investment.

In addition, savers in economies that have underdeveloped financial markets do not have access to good investment opportunities, such as pension schemes and investment in domestic and foreign stocks; rather, they have to rely on bank deposits with ordinary banks or small-holding money lenders in which interest, often by government regulation, is low or even zero. Finally, complicated, time-consuming, and expensive legal procedures are required for lenders to recoup their investment in financially backward markets when debtors default, thus dampening savings (Valderrama, 2008). A sophisticated financial system can also potentially enhance savings because it provides opportunities for investing in assets with the highest returns, and, more importantly, it provides a safeguard against the confiscation of assets, noting that underdeveloped financial markets often operate under legal systems in which financial contracts are poorly enforced (Valderrama, 2008).

Another way that FD enhances savings and innovations simultaneously is by boosting collaboration between domestic and foreign entrepreneurs. In the growth model developed by Aghion et al. (2009), catching up to the technology frontier by the laggards depends on the technical collaboration between foreign investors, who are familiar with frontier technology, and domestic entrepreneurs, who are familiar with the local conditions to which the technology must be adapted. Domestic saving is influential for the adoption of frontier technology because it allows the domestic entrepreneur to take a stake in the joint project and therefore mitigates the agency problems that would otherwise discourage the foreign investor. Thus, FD also has the potential to stimulate innovative production or knowledge creation through domestic savings, as the provision of domestic funds encourages this cooperative joint venture through reduced agency problems.

The relationship between savings and FD, however, is not unambiguously positive. If financial liberalization is assumed to enhance savings through increasing thee return on them, the long-term effects of FD depend on the interest rate elasticity of savings, a channel that has received only limited empirical support (for discussion, see Bandiera et al., 2000). Furthermore, if FD is associated with the emergence of speculative bubbles in asset markets, it may have some adverse effects on savings (Bandiera et al., 2000). The reduced private savings in the decade leading up to the global financial crisis and the associated increase in credit provision are certainly a reminder of the potential negative saving effects of FD, although it is difficult to disentangle these effects from the influence of the housing price run-up on savings and the provision of credit.

Finally, savings should not be considered as a channel that is separate from the other three channels of transmission but rather as one that promotes investment in fixed capital stock, schooling, and R&D. An increasing savings rate simultaneously lowers the required returns, which in turn increases the discounted returns to investment in fixed capital and R&D. Furthermore, savings may also positively influence the decision to attend school since they enable parents to finance their children’s education.

The following standard savings function augmented with FD is estimated (Liu & Woo, 1994):

\[s_{it} = \gamma_0 + \gamma_1 Age_{it} + \gamma_2 r_{it} + \gamma_3 \Delta ln y_{it} + \gamma_4 ln FD_{it} + CD_{it} + TD_{it} + e_{it}, \]

\[\gamma_1 < 0, \gamma_2 < 0, \gamma_3 < 0, \gamma_4 > 0, \]

(8)

where \(\Delta \) is the five-year first-difference operator, \(s \) is the savings rate (private savings to income ratio), \(r \) is the real interest rate, \(y \) is real per capita income, and \(Age \) is the age dependency ratio computed as the fraction of the population outside working age (the working-age population at time \(t \) is the population in the age cohort \(j + 15 \) to 64, where \(j \) is number of years the average person at time \(t \) is in the educational system beyond the age of 15). The savings rate is not in logs because it is occasionally negative. (Details on the computation of age dependency rates are given in the data appendix.)

Savings may be either a positive or a negative function of productivity growth. The permanent income hypothesis assumes a negative effect of growth on savings, given that higher expected growth enhances permanent income and therefore leads to increases in the propensity to consume out of current income. However, the model of Carroll, Overland, and Weil (2000) predicts that the propensity to consume is a declining function of income growth due to habit persistence in consumption. The age dependency rate is expected to have a negative impact on consumption, following the life cycle hypothesis. Finally, the coefficient of the real interest rate can be positive or negative, depending on the trade-off between intertemporal substitution and wealth effects in consumption.
C. Investment

One of the key functions of a financial system, as identified in the survey article of Levine (1997), is its role in enabling resource allocation efficiency. With the ability to evaluate investment projects, financial intermediaries allow entrepreneurs to expand their businesses by borrowing at lower rates and on easier terms. Financial intermediaries evaluate different investment opportunities by assessing the associated risks so that funds are channeled to the most promising projects. This leads to an improved quality of investments, which can have positive productivity effects.

Investment may also be positively related to FD when a large fraction of the fixed investment of existing firms is financed externally and the entrance of new and innovative firms depends on external finance. A substantial theoretical literature proposes that market imperfections, such as moral hazard and asymmetric information, lower investment because investors are constrained by the availability of credit (e.g., Stiglitz & Weiss, 1981). Consequently, FD will reduce the extent of credit rationing because it mitigates moral hazard and asymmetric information problems, as shown in the model of Aghion et al. (2005). Asymmetric information may, to some extent, explain why new and innovative firms with a small capital base find it particularly difficult, if not impossible, to obtain loans in underdeveloped financial markets (Lingelbach, Vina, & Asel, 2005). Conversely, FD may harm investment if it renders it easier to obtain consumer loans leading to a disproportionately high fraction of the credit flow being allocated to this area (Jappelli & Pagano, 1994). Since our credit data do not distinguish between different types of credit, we cannot test this hypothesis.

To test for the influence of FD on nonresidential investment, the following Tobin’s q model, in which the firm optimizes the discounted profit under credit constraints, is estimated (see Madsen & Carrington, 2012):

$$\left(\frac{I}{K}\right) = \left(C^\prime\right)^{-1}(q - 1 - \lambda),$$

where λ is the shadow value of loosening up the credit constraint by one unit under a credit-constrained regime, C is convex and symmetric adjustment costs ($C(0) = 0, C^\prime > 0$), q is the shadow price of fixed capital stock, I is gross investment, and K is capital stock.

From this model, it is clear that loosening up the credit constraint lowers the benchmark level of q at which investment is undertaken. Another channel through which FD influences fixed investment is the ability of firms to raise capital in the stock market. Thus, investment at the macroeconomic level may not be closely related to q in a standard Tobin’s q model because most firms are not able to raise capital in the stock market, which is either reserved for large and established corporations or does not exist at all in an underdeveloped financial market. Furthermore, banks may not be able to provide lending for fixed investment because they are constrained by their liabilities. As liabilities in an underdeveloped banking system are dominated by deposits, banks cannot easily expand their lending base without experiencing an increase in deposits, which is often dependent on the types of monetary policy implemented.

Log-linearizing equation (9) and allowing for the possibility that firms are demand constrained due to nominal rigidities yield the following stochastic investment function:

$$\ln(I/K)_{it} = \beta_0 + \beta_1 \ln q_{it} + \beta_2 \Delta \ln y_{it} + \beta_3 \ln FC_{it} + CD + TD + e_{3,it},$$

where y is labor productivity (Y/L) growth. It is allowed for in the equation following Chirinko’s (1993) conclusion, in his survey of the literature, that income growth is a robust determinant of investment.

D. Schooling

It is widely accepted in the literature that borrowing constraints lead to underinvestment in human capital (Becker, 1960; Schultz, 1961; Keane & Wolpin, 2001). Financially constrained students are deterred from investing in education because they lack sufficient financial resources to pay for their living and school fees (Cartiglia, 1997; Lochner & Monge-Naranjo, 2012). Furthermore, De Gregorio (1996) shows that the incentive to work when one is young is an increasing function of the extent of credit constraints.

The following schooling model is estimated:

$$\ln GER_{it} = \lambda_0 + \lambda_1 Life_{it} + \lambda_2 FE_{it} + \lambda_3 \Delta \ln y_{it} + \lambda_4 \ln FC_{it} + CD + TD + e_{4,it},$$

where GER is the gross enrollment rate and $Life$ is the life expectancy at age 10. Specifically, GER^S is the fraction of the population in the 13- to 17-year-age cohort enrolled in secondary education, and GER^T is the fraction of the population in the 18- to 22-year-age cohort enrolled in tertiary education. Primary education is not considered here because it has been compulsory and its provision is almost free for most of the period and for most of the countries considered in this study.

This specification follows the model of Bils and Klenow (2000) in which the optimal level of schooling depends positively on the present value of the skill wage premium, which in turn depends positively on expected productivity growth and life expectancy, but negatively on the real interest rate. Importantly, schooling depends on life expectancy at the age at which the student enters secondary and tertiary education and not life expectancy at birth because the discounted returns from schooling are positively related to life expectancy at the age at which the decision for secondary schooling is made.

Importantly, the dependent variable is not measured as educational attainment, which is commonly used as a proxy for human capital in conventional growth regressions. Edu-
cational attainment is constructed from gross enrollment rates at the time at which the working population did their education and, as such, is determined at the time when the students enrolled in schools and universities. Gross enrollment rates are used here instead of educational attainment since they reflect schooling at the time the schooling decision is made.

IV. Estimation Method, Data, and Identification Strategy

A. Estimation Method

The models are all estimated in five-year nonoverlapping intervals, and the level data are annual averages within the five-year intervals. The data are pooled across countries to gain efficiency and allow for fixed time effects. Fixed time and country effects are included in all regressions, including the first-stage regressions. Fixed country effect dummies are included in the regressions to cater for time-invariant unobserved heterogeneity, implying that the parameter estimates are driven entirely by the within-country variation of the data.

We estimate a panel generalized instrumental variables specification that accounts for the contemporaneous patterns of correlation between the residuals (see Wooldridge, 2002, for an exposition). That is, the covariance structure allows for conditional correlation between the contemporaneous residuals for cross-sections i and j but restricts residuals in different periods to be uncorrelated. Specifically, we assume that

$$E(e_{it}e_{jt}|X_{it}) = \sigma_{ij},$$

$$E(e_{it}e_{jt}|X_{it}^*) = 0,$$

where $s \neq t$, σ_{ij} is the covariance of the disturbance terms across countries i and j and e is the disturbance term. The White’s procedure is employed to obtain standard errors, which are robust to cross-equation (contemporaneous) correlation and heteroskedasticity.

B. Data Sources and Construction of Variables

The data span the period 1870 to 2009 for the following 21 OECD countries: Canada, the United States, Japan, Australia, New Zealand, Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom (the sources are detailed in the data appendix).

Domestic stock of knowledge (A^p_t) is computed using the perpetual inventory method for patent applications with a depreciation rate of 15%. The economy-wide TFP data, which are used to compute distance to the frontier, are based on the two-factor homogeneous Cobb-Douglas production technology with labor-augmenting technological progress, $Y = K^\alpha (AL)^{1-\alpha}$, where A is TFP. Thus, TFP is computed as $A = (Y/L)(Y/K)^{(1-\alpha)}$, where $(1 - \alpha)$ is estimated as the unweighted average of labor’s income share in country i and the United States. Labor’s income share for each country is in turn estimated as an average during the period for which data are available.

International knowledge spillovers through the channel of imports (IKS) are measured following the formula suggested by Lichtenberg and van Pottelsbergh de la Potterie (1998) as follows:

$$A_t^p = \sum_{j=1}^{21} \left[\frac{m_{ij}}{y_{ij}^*} P^d_j \right], \quad i = 1, 2, \ldots, 21;$$

$$t = 1870, 1871, \ldots, 2009,$$

where m_{ij} is country i’s nominal imports from the exporting country j, y_{ij}^* is exporter j’s nominal GDP, and P^d_j is exporter j’s patent intensity (number of patent applications divided by employment), that is, it is the patent intensity of the 21 OECD countries considered in this study.

The log of Tobin’s q is measured as the deviation of the log of real share prices from a linear time trend, where stock prices are deflated by the GDP deflator. The trend is removed from stock prices to filter out the influence on them of accumulated retained earnings per share. It can be shown that real stock prices increase over time only because of retained earnings that are reinvested in the company. If companies do not retain earnings, real stock prices would collapse to Tobin’s q (see, for exposition, Madsen & Davis, 2006). Under the assumption that the retention ratio and the stock returns are both relatively constant, the log of real stock prices will fluctuate around a linear trend and the deviation of the log of stock prices around this trend will reflect the log of Tobin’s q. Empirically, Barro (1990) finds that the deviation of real stock prices from their trend is a good approximation of Tobin’s q.

Following the literature, FD is measured as the ratios of credit to GDP, bank assets to GDP, and monetary stock to GDP (see, e.g., Levine, 1997; Ang & McKibbin, 2007). The collection of the data has been complicated by the fact that there have been myriad types of financial institutions in existence since 1870 and the credit, assets, and deposits of these institutions have to be added together. Therefore, total assets and credit data have to be put together carefully, keeping in mind that the financial structure is often very different across countries and has been constantly changing over time. Particular knowledge of the financial structure for each individual country is often required. Only rarely are aggregated figures for bank assets and credit available. Furthermore, although data on private credit are available from the IMF’s International Financial Statistics, from around 1950, the data are often not compatible with national sources and often show implausible time profiles. Thus, national sources have been used for data updating whenever possible, to get consistent series.

The credit-GDP ratio is used in the benchmark estimates because it ultimately measures the most important function
of the financial system: lending. Credit is measured as outstanding domestic bank loans to households and the nonfinancial corporate sector at the end of the year. Bank loans encompass lending by commercial banks, savings banks, postal banks, credit unions, mortgage banks, insurance companies, and building societies. The shortcoming of this measure is that it is constructed as the sum of various categories of lending of a myriad of financial institutions that have existed over the course of the past 140 years and is therefore prone to aggregation errors.

Bank assets are defined as the ultimo-year sum of assets of the domestic banking sector. The ratio of bank assets to GDP has the virtue of representing large fractions of banks’ lending activities, thus reflecting the depth and sophistication of a financial system. The downside of this measure is that the interrelation with foreign banks has become an increasing fraction of banks’ assets, particularly after 1995 and, as such, renders it a less useful proxy for banks’ lending to the domestic private sector. Furthermore, since banks are often forced to invest in government assets under financial repression, increasing government financing needs will automatically lead to an expansion of bank assets and, at the same time, potentially curb private lending.

Monetary stock is measured as broad money whenever possible to ensure that deposits, which are assumed to be lent out eventually, are a significant fraction of broad money. The benefits of using the monetary stock as a measure of FD is that great effort has been expended by central banks, macroeconomists, and economic historians to measure it, and so it is probably measured with a higher degree of precision than the other measures of FD. One shortcoming of this measure is that it captures only the liability side of banks’ balance sheets and therefore overestimates their willingness to lend in periods in which they hoard cash reserves. During the Great Depression, for example, banks increased their cash holdings in response to increased uncertainty to such an extent that the wedge between lending and money supply increased, as shown in figure 1. Another shortcoming associated with the money-GDP ratio is that it is influenced by the opportunity cost of holding cash or having money in low-yielding term deposits. A final limitation of money as a proxy for FD is that it definitions change over time and across countries, often reflecting financial innovations and data availability issues. These shortcomings and the heavy influence of uncertainty and opportunity costs of holding money on the growth path of the M2-GDP ratio in the period 1929 to 1980, as we will show, suggest that the M2-GDP ratio is probably the least preferred measure of FD among all measures considered here.

Finally, the largest challenge in constructing the FD indicators has been to adjust for implausible and sudden jumps in the data, caused by inconsistencies in the implicit price index for a financial aggregate (credit, money, and bank assets) and the implicit GDP deflator. This inconsistency is widespread across many nominal variables during and immediately after high-inflation periods such as those during and immediately following the world wars in the periods 1914 to 1921 and 1943 to 1947 and the hyperinflation in Austria in 1922, in Germany in 1922 and 1923, and in Greece over the period from 1941 to 1944. Discretionary adjustments are made when these implausible jumps occur, as detailed in the data appendix.

C. Financial Development in Historical Perspective

The time profiles of the FD indicators are displayed in figure 1. Although starting from a very low base, financial deepening was already well underway at the turn of the twentieth century. Rousseau and Sylla (2003) provide a fascinating account of the evolution of FD. It started in the Netherlands in the early seventeenth century and gradually spread to the United Kingdom in the late seventeenth and early eighteenth centuries and then to the United States a century later, and it was an important contributor to productivity growth and the industrial revolutions in these coun-
tries. Rousseau and Sylla (2003) also attribute the post-Meiji Japanese modernization to the financial revolution that followed the Meiji restoration. Although Japan was geographically and culturally isolated from the Western world, it went through a phase of financial modernization that coincided with the Second Industrial Revolution during the second half of the nineteenth century.

The credit-GDP ratio has increased approximately fourteen-fold over the period 1870 to 2010, indicating a significant financial deepening during this period. The periods 1870 to 1930 and 1960 to 2010 represent two long waves of financial modernization that are, to a large degree, driven by financial liberalization (Wray, 2009). However, financial liberalization could not have been the whole story since the growth in the credit-GDP ratio gained strong momentum during the 1960s and 1970s, despite the fact that the financial markets were quite heavily regulated and not loosened up during that period. The post–World War II financial liberalization, which started in the early 1980s and gained momentum in the 1990s, did not increase the growth rates in the credit-GDP ratio up to 2004. The marked increase in that ratio since 2004 has partly been fueled by the asset market run-up that started in the mid-1990s and lasted until 2007, or later, depending on the country in question.

The period 1930 to 1960 represents a period of increasing regulation of the financial sector, following the stock market crash in October 1929. However, increasing regulation was not the only factor keeping the credit ratio from increasing during that period (Wray, 2009). Relatively flat real asset prices during that period kept the collateral values from increasing, and the deterioration of the banks’ asset side during the Great Depression rendered banks cautious in their lending policies.

Although the long-term trend is clearly up for all three FD indicators, there are discrepancies between them at the medium-term frequencies. The most important discrepancy is between the credit-based and the money-based measures of FD in roughly the period 1929 to 1980. The discrepancy is particularly pronounced during the period 1930 to 1948 in which the M2-GDP and the credit-GDP ratios moved in opposite directions, probably reflecting banks’, firms’, and consumers’ increased hoarding of cash balances associated with increasing uncertainty during the Great Depression and World War II. Furthermore, banks were increasingly forced to hold government bonds during World War II, which meant that broad money could increase while credit to the private sector was curbed because the government sector was claiming an increasing share of deposits.

The decline in the M2-GDP ratio during the period 1948 to 1982 is associated with the inflation-induced increasing opportunity costs of holding money and reduced cash holdings of banks as the uncertainty about the macroeconomic environment was normalized after the Great Depression. Furthermore, the more frequent use of nonmonetary bank instruments in the post–World War II period also contributed to the emerging wedge between the M2-GDP ratio and the other FD indicators (Schularick & Taylor, 2012). In other words, banks have increasingly relied on nondeposit funding of lending in the post–World War II period.

D. Instruments

Although indicators of FD are often not instrumented in growth regressions, there are reasons to believe that demand factors may also be influential for FD and therefore that FD is an endogenous variable. As an example of how demand can drive FD, Rajan and Zingales (2003) illustrate how the massive financing requirements of railroads in the United States in the second half of the nineteenth century resulted in significant improvements in the U.S. financial infrastructure. This highlights the importance of instrumenting FD to ensure that their coefficients are unbiased.

Accordingly, the share of agriculture in total income (Agr.Share) and unionization (Un.Mem) are used as instruments to cater for potential endogeneity and the possibility that some unobserved omitted factors influence growth and FD simultaneously. These variables satisfy the criteria for being good instruments since they are sufficiently independent of demand shocks and, as shown in the regression results below, are robust determinants of FD. It is important to note that the choice of instruments was constrained by the difficulties associated with finding instruments that vary over time and are available from 1870 for all 21 countries considered in this study.

Agr.Share, measured as the ratio of agricultural output to economy-wide GDP, proxies the strength of the landed class relative to the urban merchant class. The agricultural share is hypothesized to deter FD because the landed class, or landowners in general, has an interest in maintaining the status quo, whereas the merchant class has an interest in promoting FD in order to lower the entry costs of firms. This hypothesis is consistent with the political economy model of Rajan and Zingales (2003) in which agriculturalists have a large amount of collateral (land) and therefore are in less need of an efficient financial system. The merchants and venture capitalists, by contrast, are heavily dependent on external sources of funding for new projects. Furthermore, as urban sectors grow, the migration of workers from rural to urban areas will put upward pressure on the wages of agricultural workers and, consequently, lower land rent and land prices. It follows that landowners suffer as a result of FD and hence have a great interest in opposing FD.

More importantly, the landed class has a strong incentive to resist economic development because it undermines its power. Using a political economy model, Robinson and Acemoglu (2000) show that the effects of economic change on political power are a key factor in determining whether economic progress will be blocked. Since the landed aristocracy and large landholders before World War II in the countries considered in this study were often influential in politics, they had strong incentives to block economic
advances that would undermine their power. This argument is consistent with a proposition of David Ricardo, who argues that “the interest of the landlord is always opposed to the interest of every other class in the community” (Ricardo, 1951, p. 21). Finally, the more important is the agricultural sector in total economic activity, the larger is the incentive to invest in land as opposed to money and stocks that necessitate financial intermediation.

In summary, we would expect the agricultural share to be influential for FD because of the changing power relationship between the landed class and capitalists. To check the exclusion restriction, that it is actually reduced agricultural share that drives FD and not the other way around, we carry out a Granger causality test between FD (measured as credit/GDP) and Agr.Share on a time series panel with two lags for all countries considered in this study over the period 1870 to 2009 (both variables are measured in five-year intervals). The null hypothesis that Agr.Share does not Granger-cause FD is rejected at the 1% level of significance ($p = 0.003$). On the other hand, the null hypothesis that FD does not Granger-cause Agr.Share cannot be rejected at any conventional levels of significance ($p = 0.628$). This provides strong evidence in favor of the hypothesis that FD is an outcome of changes in agricultural share and not vice versa and therefore gives credence to the use of the agricultural share as an instrument for FD.

Un.Mem, which is measured as the ratio of union membership to economy-wide employment, is hypothesized to be positively associated with FD since unions are allowed in freer societies with little government interference. Although high union membership rates are often associated with union militancy and anticapitalist undercurrents in popular writings, the relationship is often in reverse. France, which is well known for its militant unions, has had union membership rates well below 10% for most of the period considered here, while the Nordic countries, which are not at all renowned for having militant unions, have had membership rates around 60% in the post–World War II period. Furthermore, union membership rates were increasing under the autocratic regimes of Hitler, Franco, and Mussolini, reflecting probusiness attitudes.

Following from the political economy model of Rajan and Zingales (2003), unions have an economic interest in FD because it lowers the rents of incumbent firms and therefore increases labor’s share. This result can also be generated from the general equilibrium model of Blanchard and Giavazzi (2003). They consider an economy with both product and labor market regulations and demonstrate that product market deregulation that lowers entry costs leads to higher real wages and lower unemployment in the long run. Consequently, in the interest of workers, unions will support policies that lower entry costs of firms, such as lowering the cost of funding and easing access to credit, which improve financial efficiency. Overall, union membership rates are inversely related to the degree to which governments interfere with the private sector and therefore are positively associated with the pace of FD. Performing Granger causality tests using the same data sample we find that unionization Granger causes FD but not the other way around.2

The relationships between our instruments and FD are displayed in figures 2 and 3. The variables are measured in natural logs, following the regression models. Figure 2 shows a significant negative relationship between FD and Agr.Share, with a correlation coefficient of 0.6. We maintain the log-log plot for consistency reasons, despite the fact that the association is stronger if the variables are not expressed in logs. Several outliers in the diagram suggest that the impact of Agr.Share on FD becomes muted for very small values of agricultural output shares. Figure 3 shows a close positive relationship between Un.Mem and FD, with a correlation coefficient of 0.40. The evidence presented

2 The null hypothesis that Un.Mem does not Granger-cause FD is rejected at the 2% level of significance ($p = 0.013$). The null hypothesis that FD does not Granger-cause Un.Mem cannot be rejected at any conventional levels of significance ($p = 0.419$). An optimal lag length of six is chosen for the estimations.
above suggests not only that the relationships between the instruments and FD are consistent with our hypothesis but also that they are sufficiently correlated with FD to potentially serve as good instruments for identification.

E. Summary Statistics

Summary statistics of the log of the variables measured in five-year intervals are provided in table 1. The savings rate is not logged because it contains negative values, and some of the variables in table 1 are first introduced in the robustness section. Note that the number of observations is below the full sample for $GERS^S$ and GER_T due to a few 0 entries because secondary schooling in the United Kingdom was not widespread before the early twentieth century and the first established university in New Zealand, the University of Otago, was founded in 1869 and initially had only very few students.

In our study, the use of country fixed effects requires sufficient variability of within-country information. Therefore, it is necessary to examine the degree of between-country and within-country variation in the data. Our main variables of interest do indeed demonstrate a high level of within-country variation. In particular, the ratio of private credit to GDP (logs) shows a between-country standard deviation of 0.590 and a much larger within-country standard deviation of 0.828. The overall standard deviation is 1.009. The within-country standard deviations of the two instruments are also substantially higher than their between-country counterparts, thus providing further support for the use of the fixed-effects (within) estimator.

What is more, by having standard deviations around 1, most of the variables have a sufficient degree of identifying variations to yield efficient parameter estimates. The exceptions are relatively low variations in the investment and the savings rates and comparatively high variations in financial volatility and patent counts. It should also be noted that the instruments exhibit large secular changes. For example, unionization in the United Kingdom dropped from around 45% in 1977 to 22% in 2009, while it increased by 258%, 68%, and 47% in Finland, Denmark, and Sweden, respectively, over the period 1960 to 1993.3

Although the agricultural share has been trending downward for all countries over the period 1870 to 2009, the decline was arrested in many countries in the interwar period, and the share was relatively stable up to 1970, before it started to shrink. Furthermore, the decline in the period 1870 to 2009 has been marked for Portugal (85%) and Spain (70%), but moderate for Belgium (13%), Italy (15%), and the Netherlands (15%).

V. Estimation Results

A. Knowledge Production Function

The results of estimating the knowledge production function are presented in table 2. Consider the first-stage regression in panel B in which the share of agriculture in total income (Agr.Share) and the union membership rate (Un.Mem) are used as instruments. As already noted, country and time fixed effects dummies are included in all regressions, including the first-stage regressions, throughout the paper. The instruments are all consistently highly significant and carry the expected signs, suggesting that these instruments are sufficiently correlated with FD to act as potentially good instruments. Furthermore, the null hypothesis of the overidentification tests reported in panel D cannot be rejected, even at the 10% level, indicating that the

3 However, increasing unionization does not always go hand in hand with financial development. As an example, the post-1977 decline in unionization in the United Kingdom, particularly during the years 1977 to 1995, was associated with increasing financial development during the same period. Although in principle unions have a vested interest in financial development because it lowers rents of incumbent firms and reduces entry costs that would lead to an increase in labor’s share, the United Kingdom’s experience under Margaret Thatcher (1979–1990) was influenced by an ideological desire of her government to deregulate the financial sector and, at the same time, reduce the power of the unions. Therefore, the negative relationship between financial development and the extent of unionization observed in the United Kingdom during this period has to be seen in the light of the strong union militancy in Britain during the 1970s and Thatcher’s commitment to reduce the power of trade unions (Thatcher, 1993).
The average partial R² value for columns 2 to 4 in the structural model is 0.28 (not reported), suggesting that the variation in ideas production can be significantly explained by the variation in FD. The coefficients of the non-FD regressors in the ideas production function are statistically significant and have the expected sign in almost all cases. The coefficients of research intensity are positive and significant in two of the three cases, suggesting that R&D increases the number of product lines and enhances growth only to the extent that it increases the fraction of GDP that is allocated to R&D, as predicted by Schumpeterian growth theory. The coefficients of knowledge stock are highly significant and are very close to 1, indicating the presence of scale effects in ideas production.

This significance of research intensity and knowledge stock in ideas production has two important implications.
First, it implies that R&D intensity has permanent, or at least highly persistent, growth effects. Thus, productivity is growing at a constant rate in steady state due to R&D as long as R&D is kept to a constant fraction of GDP. Second, FD has either permanent or close to permanent productivity growth effects, a result that is crucial because it shows that the findings of permanent growth effects of FD in the literature are initiated from ideas production. That is, FD has permanent growth effects because it influences ideas production directly and because of the presence of scale effects in ideas production. This result is important as it solves the paradox that FD is often assumed to transmit to growth through the savings-investment channel in the literature despite investment being highly unlikely to have permanent growth effects due to diminishing returns to capital.

Turning to the spillover variables, R&D intensity spillover through imports is significant in all cases. Thus, the higher is the research intensity among country i’s trading partners, the higher is country i’s ideas production, highlighting the importance of importing from countries with high research intensity. The coefficients of distance to the frontier are also positive and significant determinants of innovative output in all cases. Thus, the farther away that a country is from the frontier, the more advantage it can take in absorbing and developing the ideas created at the frontier. The coefficients of the interaction between research intensity and DTF are significant at the 1% level in one out of the three cases, giving some credence to Howitt’s (2000) model that suggests that highly research-active countries are more capable of exploiting and developing frontier technology to their own advantage.

As an alternative test of the exclusion restriction, panel C in table 2 reports the regression results where agricultural share is treated as an exogenous variable instead of as an instrument (note that we cannot treat unionization as an exogenous variable in the structural regressions at the same time because it is used as an instrument). The underlying principle of this test is simple. If $Agr.Share$ has a direct effect on ideas production and therefore violates exclusion restrictions, we would expect its coefficient to be significant. On the other hand, if it is found to be statistically insignificant, then it is established that it affects ideas production via FD, thus giving credence to our approach that $Agr.Share$ is a valid instrument for FD. Only the coefficients of $Agr.Share$ and FD are reported in panel C to conserve space.

The coefficients of FD are all significant, and the coefficients of $Agr.Share$ are all insignificant. We repeated this exercise by treating unionization as an exogenous variable in the structural regressions (the results are not shown). The coefficients of unionization were all insignificant at any conventional levels and the coefficients of FD were all significant at the 1% level in the structural regressions. These results indicate that all our instruments influence ideas production through FD and, therefore, that the exclusion restrictions are satisfied.

B. Savings Function

The results of estimating the savings function are presented in table 3. The coefficients of the share of agriculture in total income ($Agr.Share$) and the union membership rate ($Un Mem$) in the first-stage regressions are all highly significant and have signs consistent with our predictions. The overidentification tests reported in panel D suggest that the overidentifying restriction assumption is satisfied. Regarding the structural estimates, savings are significantly positive functions of the growth in per capita income and therefore consistent with the predictions of the model of Carroll et al. (2000) that high growth rates are associated with high savings because of habit persistence. The coefficients of the age dependency rate are negative and significant in all cases, which is consistent with the predictions of the life cycle hypothesis that individuals save during their working years and dissave beyond their working years. The coefficients of the real interest rate are all positive and significant, suggesting that the substitution effect dominates the income effect.

Turning to FD, the coefficients of FD are consistently highly significant, regardless of whether control variables are excluded from the regressions (first column) or whether FD is measured by credit, money, or bank assets relative to nominal GDP (columns 2 to 4). The quantitative effects of FD on savings are substantial. Dividing the coefficient of FD of 0.02 (baseline regression) by the mean savings rate of 0.115 yields the elasticity value of 0.17. Thus, a 10% increase in FD would increase savings by 1.7%. Since FD quadrupled over the period 1870 to 1913, for example, this development has resulted in a 68%, or an 8 percentage point increase in the savings rate, and therefore can account for a large fraction of the increase in savings during the same period. FD also explains a high fraction of the variation in savings. The average partial R^2 value for FD in the regressions in columns 2 to 4 in the structural model is 0.63 (not reported), suggesting that 60% of the variation in savings can be explained by the variation in FD.

How do our results compare with the findings in the literature? For a cross-country sample of 29 countries, Levine and Zervos (1998) find that a 1 percentage point increase in the initial credit-GDP ratio is associated with a 3.8 percentage point increase in savings, which is a stronger economic effect than what has been found here. Beck et al. (2000) estimate a coefficient of the credit-GDP ratio of 0.21 in their savings function, which is quite close to our estimates. It should be noted, however, that while they document a positive correlation between savings rates and financial development, their estimates are sensitive to the measurement of financial development and the estimators used.

Finally, the coefficients of FD remain highly significant when the agricultural share is treated as exogenous and the coefficient of agricultural share is insignificant in the structural regressions, indicating that the exclusion restriction is satisfied (panel C in table 3). Repeating this exercise by
treated unionization as an exogenous variable in the structural regressions yields the same results (the results are not reported). This again suggests that our instruments have an impact on saving through FD, thus fulfilling the exclusion restrictions.

C. Investment Function

The estimated results for the Tobin’s q model of investment are presented in table 4. The coefficients of $Agr.Share$ and $Un.Mem$ in the first-stage regressions are all highly significant and of the expected sign, and the overidentification tests in panel D are all insignificant, indicating that the exclusion restrictions are satisfied. Turning to the structural regressions in panel B, we see that the coefficients of Tobin’s q are significant in only one case, while the coefficients of income growth are highly significant, a result that is consistent with the findings in the literature (see Chirinko, 1993; Greasley & Madsen, 2006). The coefficients of FD are consistently statistically significant regardless of how FD is measured and whether or not the control variables are included in the regressions. This result is consistent with the finding of Madsen and Carrington (2012) that bank lending is by far the most important driver of investment in the US.

The importance of FD as a determinant of investment is signified by the magnitude of the coefficients of FD, indicating that a 10% increase in FD results in a 0.2% increase in the investment rate. Therefore, the twenty-fold increase in the credit ratio for the average country in the sample over the period 1870 to 2009 has resulted in a 40% increase in the I-K ratio over the same period. Thus, FD has been a powerful force behind the increase in the I-K ratio over the considered period. This result is also supported by a high partial R^2 value of 45%, which indicates that FD contributes significantly to explaining variations in the I-K ratio (results are not shown).

Finally, the coefficients of FD remain significant when the agricultural share is treated as exogenous and the coefficient of agricultural share is insignificant in the structural regressions, indicating that agricultural share has no direct impact on the I-K ratio (panel C in table 4). The results are consistent when we treat unionization as an exogenous variable in the structural regressions (the results are not shown).

Our results are comparable with the post–World War II results in the literature. Levine and Zervos (1998) find, for a cross-country sample of 41 countries, that a 1 percentage point increase in the initial credit-GDP ratio is associated with an increase in the capital stock growth rate of 0.014%. Beck et al. (2000) find the coefficient of the credit ratio in their capital growth model to be between 2.8 and 3.4,
implying that the approximately 25 percentage point increase in the credit ratio in the period 1870 to 1913 is associated with capital stock growth of between 70% and 85%. The findings of Beck et al. (2000), however, are sensitive to the use of different financial development indicators and econometric techniques. Finally, based on GMM estimates for a panel of countries, Benhabib and Spiegel (2000) estimate the coefficient of the financial sector’s liquid liabilities relative to GDP to be approximately 0.1, when fixed effects dummies are excluded from the regressions. This implies that a 10 percentage point increase in the investment-GDP ratio is associated with a 1 percentage point increase in the investment ratio, suggesting that the approximately 25 percentage point increase in the credit ratio in the period 1870 to 1913 in our sample has resulted in a 2.5 percentage point increase in the investment ratio over the same period.

D. Schooling Function

Schooling regressions are presented in tables 5 and 6. Consider first the regressions for secondary gross enrollment rates in table 5. The coefficients of all the instruments in the first-stage regressions are, again, highly significant and have signs consistent with our predictions. In the structural regressions, the coefficients of per capita income growth are significant in only one of the three cases, indicating that increasing income may have made only a minimal contribution to the increase in secondary education over the past 140 years.

The coefficients of life expectancy at age 10 are positive and significant, and the coefficients of real interest rates are all statistically significant and have the expected negative sign. Increasing real interest rates lowers schooling because the wage premium associated with secondary schooling is discounted at a higher rate and consequently lowers the present value of the excess earnings from schooling. However, it is possible that the negative coefficients of the real interest rate may have been driven by inflation fluctuations and that gross enrollment rates are positive functions of the inflation rate as precautionary savings increase in periods of uncertainty.

The coefficients of FD are highly significant in all cases, and the magnitude is 0.3 in the baseline regression, implying that the 24-fold increase in credit-based FD over the period from 1870 to 2009, has resulted in a sevenfold increase in the secondary schooling enrollment rate. While this increase may seem implausibly high, it has to be recognized that secondary gross enrollment rates were 2.4% in 1870, and therefore the sevenfold increase is only a fraction of the actual almost 36-fold increase over the period 1870 to 2009. Quantitatively, life expectancy at the age of 10 has been even more influential than FD for secondary schooling. It has increased by 53% on average over the period

Table 4.—Financial Development and Investment, Equation (10)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>(1) Restricted Model</th>
<th>(2) Benchmark Model</th>
<th>(3) FD = Bank Assets/GDP</th>
<th>(4) FD = Money Supply/GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(I/K)_it</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>−2.081***</td>
<td>−2.322***</td>
<td>−2.267***</td>
<td>−2.239***</td>
</tr>
<tr>
<td></td>
<td>(0.050)</td>
<td>(0.033)</td>
<td>(0.018)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>lnq_t</td>
<td>0.001*</td>
<td>0.071</td>
<td>0.059</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.045)</td>
<td>(0.048)</td>
<td></td>
</tr>
<tr>
<td>Δlnq_t</td>
<td>0.139***</td>
<td>0.144***</td>
<td>0.145***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.020)</td>
<td>(0.020)</td>
<td></td>
</tr>
<tr>
<td>lnFD_t</td>
<td>0.021***</td>
<td>0.018***</td>
<td>0.017***</td>
<td>0.016***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>lnAgr.Share_t</td>
<td>−0.229***</td>
<td>−0.219***</td>
<td>−0.217***</td>
<td>−0.126***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.009)</td>
<td>(0.010)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>lnUn.Mem_t</td>
<td>0.355***</td>
<td>0.354***</td>
<td>0.345***</td>
<td>0.172***</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.008)</td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>lnFD_t</td>
<td>0.072***</td>
<td>0.032***</td>
<td>0.017*</td>
<td>0.085***</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.016)</td>
<td>(0.009)</td>
<td>(0.027)</td>
</tr>
</tbody>
</table>

A. Second-Stage Regressions

B. First-Stage Regressions

C. 2SLS Treating lnAgr.Share_t as Exogenous

D. Diagnostic Statistics

<table>
<thead>
<tr>
<th>First-stage F-test for excluded IVs</th>
<th>2,913.12</th>
<th>2,725.64</th>
<th>1,772.82</th>
<th>1,534.93</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-stage R²</td>
<td>0.668</td>
<td>0.669</td>
<td>0.716</td>
<td>0.629</td>
</tr>
<tr>
<td>First-stage partial R²</td>
<td></td>
<td>0.495</td>
<td>0.236</td>
<td>0.129</td>
</tr>
<tr>
<td>Overidentification test statistic</td>
<td>2.039</td>
<td>1.534</td>
<td>3.316</td>
<td>0.307</td>
</tr>
<tr>
<td>[p = 0.361]</td>
<td>[p = 0.465]</td>
<td>[p = 0.191]</td>
<td>[p = 0.858]</td>
<td></td>
</tr>
<tr>
<td>Number of observations</td>
<td>588</td>
<td>588</td>
<td>588</td>
<td>588</td>
</tr>
</tbody>
</table>

See the notes to table 2. The dependent variable is the logs of total domestic investment over total domestic capital stock (ln(I/K)_it). Figures in parentheses are robust standard errors. Significant at *10%, **5%, ***1%.
from 1870 to 2009, implying that increasing life expectancy has been responsible for an approximately 36% increase in secondary gross enrollment rates in the baseline regression. The significance of FD in this model is supported by the partial R^2, which shows that FD alone accounts for 30% of the variation in the secondary school enrollment rate (results are not shown).

Regressions for tertiary gross enrollment rates are presented in table 6. The coefficients of $Agr.Share$ and $Un.Mem$ in the first-stage regressions are all highly significant and have the expected signs. The coefficients of FD are, again, highly significant in all cases, reinforcing the results in table 5 that FD is influential for schooling. The coefficient of FD is 1.7 in the baseline regression, implying that the 24-fold increase in credit-based FD over the period from 1870 to 2009 has resulted in a 41-fold increase in the tertiary schooling enrollment rate. This impact, again, has to be seen in the light of the minuscule $GERT$ back in 1870, typically close to 0.5. Thus, the 41-fold increase would mean that $GERT$ would increase from, say, 0.5 to 20.5.

The control variables are, again, mostly significant. The coefficients of the real interest rate and life expectancy at age 10 are all highly significant and of the expected sign, and the coefficients of income growth are significant in two of the three cases. Compared to GER^S, the marginal contribution of FD in explaining the variation in GER^T after taking into account the effects of income growth, life expectancy, and interest rates is much higher in this case, at 54% (results are not shown).

The result that FD is influential for schooling is consistent with the finding in the microeconomic literature that credit constraints hamper schooling (see, for a survey, Lochner & Monge-Naranjo, 2012). The macroeconomic evidence, however, is sparse and tends to focus on credit constraints, which are to some extent related to FD. Calibrating the Ben-Porath model of human capital investment, Córdoba and Ripoll (2013) show that introducing credit constraints significantly improves the ability of a Ben-Porath model to explain the cross-country variation in the average years of schooling. Estimating the effects of FD on school enrollment for developing countries, De Gregorio (1996) finds a coefficient of the credit/GDP ratio of 0.18 in the $GERT$ regression and a coefficient of 1.19 for the GER^S regression. Benhabib and Spiegel (2000) find the coefficient of the credit ratio to be an insignificant determinant of the change in educational attainment in their panel estimates. However, since educational attainment is determined by past gross enrollment rates, it is not surprising that they fail to find any significant relationship.
Common to the secondary and tertiary schooling regressions is that the coefficients of FD remain highly significant when the agricultural share is treated as exogenous and the coefficient of agricultural share is insignificant in the structural regressions, indicating that the assumption of the exclusion restriction is not violated (panel C in tables 5 and 6). The results, again, do not vary when we consider unionization as an exogenous variable in the structural regressions.

VI. Robustness Checks

This section tests the robustness of the baseline results to the use of alternative estimators, the consideration of stock market–based indicators of FD, the allowance of disequilibria in asset markets, and the split of estimation periods. FD is measured by credit to the private sector in all regressions in this section to save space. Most important, the qualitative aspects of the results are invariant when FD is based on bank assets and broad money.

A. Using Different Estimators

Thus far, the results have been based on the 2SLS fixed-effect SUR estimator. The regressions in table 1A in the online appendix consider several alternative estimators, including OLS, GMM, and 3SLS, to check the sensitivity of the results to the choice of estimator. Consider first the ideas production function in panel I in table A1 in the online appendix. The coefficients of FD are all significant at least at the 5% level, and the coefficients of knowledge stock are all highly significant and very close to 1 except for the system GMM estimates. This gives further support to the hypothesis that FD has permanent growth effects. For the system GMM estimates, the coefficient of knowledge stock is 1.16, suggesting increasing returns to knowledge stock. This implies that the production of new knowledge rises more than proportionally with the existing knowledge stock; thus, advances in FD create ever-increasing growth rather than converging to a balanced growth path. This result is empirically implausible, which may be due to some of the problems associated with the system GMM estimator, such as overfitting and sensitivity to the lag length (see, for discussion, Roodman, 2009).

The coefficient of FD remains highly significant in the saving function estimates (panel II), and the coefficients of age dependency and growth remain significant in most cases. The coefficient of FD also remains significant in all the investment regressions (panel III), and growth also remains significant in all cases, while Tobin’s q is significant in only two cases. Finally, the coefficient of FD is consistently significant in the schooling regressions regardless of whether secondary or tertiary GER is the dependent vari-

<table>
<thead>
<tr>
<th>Dependent Variable = lnGER$_t$</th>
<th>(1) Restricted model</th>
<th>(2) Benchmark model</th>
<th>(3) $FD = \text{bank assets/GDP}$</th>
<th>(4) $FD = \text{money supply/GDP}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2.436)</td>
<td>(0.632)</td>
<td>(0.625)</td>
<td>(1.232)</td>
</tr>
<tr>
<td>$\Delta \ln \gamma_t$</td>
<td>0.174***</td>
<td>0.355***</td>
<td>0.640</td>
<td>0.360</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.074)</td>
<td>(0.034)</td>
<td>(0.054)</td>
</tr>
<tr>
<td>$\ln \text{Life}_t$</td>
<td>1.448***</td>
<td>7.066***</td>
<td>2.728***</td>
<td>0.061***</td>
</tr>
<tr>
<td></td>
<td>(0.146)</td>
<td>(0.209)</td>
<td>(0.279)</td>
<td></td>
</tr>
<tr>
<td>real int rate_t, 1,000</td>
<td>-0.303***</td>
<td>-0.117***</td>
<td>-0.333***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.016)</td>
<td>(0.020)</td>
<td></td>
</tr>
<tr>
<td>$\ln \text{FD}_t$</td>
<td>0.729***</td>
<td>1.674***</td>
<td>0.940***</td>
<td>1.709***</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.048)</td>
<td>(0.084)</td>
<td></td>
</tr>
<tr>
<td>A. Second-Stage Regressions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \text{Agr. Share}_t$</td>
<td>-0.151***</td>
<td>-0.063***</td>
<td>-0.293***</td>
<td>-0.394***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.015)</td>
<td>(0.012)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>$\ln \text{Un. Mem}_t$</td>
<td>0.181***</td>
<td>0.131***</td>
<td>0.362***</td>
<td>0.061***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>B. First-Stage Regressions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \text{Agr. Share}_t$</td>
<td>-0.006</td>
<td>-0.277</td>
<td>0.573</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.229)</td>
<td>(0.455)</td>
<td>(0.030)</td>
</tr>
<tr>
<td>$\ln \text{FD}_t$</td>
<td>0.677***</td>
<td>0.875***</td>
<td>1.870***</td>
<td>1.890***</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.565)</td>
<td>(0.334)</td>
<td>(0.100)</td>
</tr>
<tr>
<td>C. 2SLS Treating $\Delta \text{Agr. Share}_t$ as Exogenous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln \text{Agr. Share}_t$</td>
<td>0.006</td>
<td>-0.277</td>
<td>0.573</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.229)</td>
<td>(0.455)</td>
<td>(0.030)</td>
</tr>
<tr>
<td>C. 2SLS Treating $\Delta \text{Agr. Share}_t$ as Exogenous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln \text{FD}_t$</td>
<td>0.677***</td>
<td>0.875***</td>
<td>1.870***</td>
<td>1.890***</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.565)</td>
<td>(0.334)</td>
<td>(0.100)</td>
</tr>
<tr>
<td>D. Diagnostic Statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-stage F-test for excluded IVs</td>
<td>960.53</td>
<td>145.23</td>
<td>1,100.02</td>
<td>867.77</td>
</tr>
<tr>
<td>First-stage R^2</td>
<td>0.732</td>
<td>0.749</td>
<td>0.561</td>
<td>0.437</td>
</tr>
<tr>
<td>First-stage partial R^2</td>
<td>-</td>
<td>0.573</td>
<td>0.468</td>
<td>0.308</td>
</tr>
<tr>
<td>Overidentification test statistic</td>
<td>2.813</td>
<td>0.428</td>
<td>1.444</td>
<td>0.765</td>
</tr>
<tr>
<td></td>
<td>[p = 0.245]</td>
<td>[p = 0.808]</td>
<td>[p = 0.486]</td>
<td>[p = 0.682]</td>
</tr>
<tr>
<td>Number of observations</td>
<td>587</td>
<td>587</td>
<td>587</td>
<td>587</td>
</tr>
</tbody>
</table>

See the notes to table 2. The dependent variable is the gross enrollment rate for tertiary education. Figures in parentheses are robust standard errors. Significant at *10%, **5%, ***1%.
able, and life expectancy at age 10 is also a consistently highly significant determinant of schooling (panels IV and V). In summary, FD remains a robust and highly significant determinant of the outcome variables when alternative estimators are used.

It should be highlighted that while the qualitative aspects of the estimates provided by these alternative estimators do not differ significantly from the baseline results, some of the coefficients do vary across different estimation techniques. In particular, the magnitudes of the coefficients on FD are generally lower in the OLS estimates. This is consistent with the fact that indicators of FD are often measured with errors, which would create an attenuation bias in the OLS estimates. Sizes of the system GMM and 3SLS estimates on FD do not show any systematic difference from the baseline IV-2SLS estimates. However, in common with the previous case, these estimates are systematically larger than their OLS counterparts, suggesting the presence of attenuated bias in the OLS estimates due to measurement errors of FD.

B. Using the Schularick-Taylor Credit Ratio

This section reports regression results in which FD is based on the ratio of private credit to GDP compiled by Schularick and Taylor (2012) over the period 1870 to 2008 for fourteen countries (the United States, Canada, Australia, Denmark, France, Germany, Italy, Japan, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom). These data serve as a robustness check on data that are compiled from alternative and overlapping sources to our data. We report only the results based on the credit ratio since we use these data in our baseline regressions and because we arrive at almost similar results when we use the other two series collected by Schularick and Taylor (2012): the ratio of broad money to GDP and the ratio of bank assets to GDP.

The coefficients of FD are all highly significant in the regressions for all outcome variables and are close to the coefficients in the baseline regressions (see table A2 in the online appendix). The significance of the other regressors is quite similar to those in the baseline regressions. This finding is not surprising since the Schularick-Taylor measure and our private-credit ratio show a strong correlation of 0.68. The significance of these results is not only that our baseline results are robust to alternative data sources but also to a smaller subset of countries in our sample. Finally, coefficients of the instruments in the first-stage regressions, which are not reported, are all significant and carry the signs in line with our priors. The overidentification test results also do not suggest any evidence that the exclusion restrictions are violated.

C. Using Stock Market–Based Indicators of FD

The FD indicators used in the previous section have been bank based and therefore relate predominantly to the banking sector as the intermediating sector through its provision of credit, directly or indirectly, through banks’ asset or liability positions on their balance sheets. Thus, the FD indicators used thus far exclude intermediation through stock markets and may not give a complete picture of the effects of FD on outcome variables. To overcome this omission, the ratio of stock market capitalization to GDP and stock market volatility are used as indicators for market-based FD.

Stock market capitalization is probably the most widely used market-based measure of FD (Levine, 1997), while stock price volatility is proposed and used by Levine and Zervos (1998) as a measure of the influence of gyrations in the stock market on growth and therefore whether volatility hinders investment and resource allocation. We have also used the ratios of stock market total value traded to both GDP and stock market capitalization. However, to conserve space, the estimates are not reported here since they provide similar findings.

The stock market capitalization-to-GDP ratio, SMC, is included as the sole FD indicator in the regression in column 2 in table A2 in the online appendix. Stock market capitalization is measured as the value of listed companies on domestic stock exchanges, and the data are compiled from various national and international sources. The value of nonresidential capital stock is predominantly used to backdate and interpolate the missing data. The coefficients of SMC are all highly significant, and the magnitudes of the coefficients are comparable to the results in the baseline regressions. Furthermore, coefficients of the instruments in the first-round regressions were highly significant, and the overidentification tests were all insignificant (results not shown), a result that applies to all regressions in table A3 in the online appendix.

The significance of SMC begs the question whether it is a complement or a substitute to the credit-based measure of FD. To investigate this issue, the credit-based measure of FD and SMC are included jointly in the regressions in column 3 in the table. The coefficient of the credit-based FD is consistently highly significant and, perhaps surprising, it has, on average, not lost its economic significance when SMC is included in the regressions. The coefficients of SMC are significant in the schooling regressions; however, they are insignificant in the ideas production and the savings and investment models, suggesting that bank credit is a more important source of finance compared to the stock market in these cases.

Finally, stock market volatility (FV) is included as the FD variable in the regression in the last column, where stock market volatility is measured as the standard deviation of monthly stock prices within the year. The coefficients of FV are consistently negative and statistically significant, showing potential downsides of FD. In other words, a highly developed financial system may be more prone to financial crises, as signified by high stock market volatility. The question is the extent to which stock market volatility reflects malfunctioning of the stock market. From an option-pricing
D. Ten-Year Interval Estimates

The models are also estimated using ten-year nonoverlapping observations in the first column of table A3 in the online appendix to check whether the previous results, based on five-year interval data, have been overly influenced by outliers and movements at business cycle frequencies. Note, however, that the SUR regressions require the number of time periods to exceed the number of cross-section units, a requirement that is satisfied in the five-year interval but not in the ten-year interval regressions. In the five-year interval regressions, we have used a covariance structure that allows for conditional correlation between the contemporaneous residuals for any two cross-sections, but residuals in different periods are restricted to be uncorrelated. This type of covariance structure is commonly referred to as clustering by period, given that observations for a given period are correlated to form a cluster. In the ten-year interval regressions, we cluster by cross-section to satisfy the requirement that the number of cross-section units must exceed the number of time periods. Specifically, a covariance structure that allows for heteroskedasticity and serial correlation between the residuals for a given cross section is used; however, the residuals in different cross sections are restricted to be uncorrelated.

Common to the instruments in the first-stage regressions in column 1 of the table is that their coefficients are significant and carry consistent signs and the overidentification tests do not indicate that the overidentification restrictions are violated at conventional significance levels (the results are not shown). The coefficient of FD remains consistently highly significant in all models: knowledge production, savings, investment, and secondary as well as tertiary education. Most of the control variables also remain significant. From this it can be concluded that the baseline regression results have not been significantly influenced by the business cycles or outliers that go beyond five-year intervals and that the results are robust to clustering by cross section as opposed to clustering by period.

E. Allowing for Disequilibrium in the Housing Market

The deviation of house prices from their fundamental value, \(HPD \), is included as a control variable in the regressions in column 2. This variable is included essentially to counter the effects of potential disequilibria in financial markets on the outcome variables. The almost uninterrupted economic upturn from 1995 to 2008, for example, is often attributed to the asset market run-up, particularly the house price appreciation (Madsen, 2012; “Stagnant Thinking,” 2013). Since housing collateral is increasing in house prices, it follows that mortgage lending, a large proportion of credit to the private sector, may go hand-in-hand with house prices and, consequently, influences the outcome variables through house prices.

To cater for that, we include the deviation of house prices from their fundamental value in the regressions, noting that the deviations of stock prices from their fundamental value are not considered because they are already included as Tobin’s \(q \) in the investment regressions (for discussion of fundamental value of stocks, see Madsen & Davis, 2006). The fundamental value of house prices is measured by the building deflator under the hypothesis that the fundamental value of replaceable assets is determined by acquisition costs (see, for exposition, Madsen, 2012).

The coefficients of FD remain statistically highly significant in all the regressions, and their magnitude remains close to those in the baseline regressions when the deviation of house prices from their fundamental values, \(HPD \), is included as a control variable. \(HPD \) is significant in the regressions except for the investment function. Ideas production may be negatively related to \(HPD \) because talents are driven into the financial sector during asset price booms. Savings are probably negatively affected by \(HPD \) because home owners feel wealthier when house prices exceed their equilibrium and realign their consumption to their permanent income and because myopic consumers increase their consumption when lending standards are lenient during house price booms. Secondary schooling is negatively related to \(HPD \), whereas tertiary education is positively related to \(HPD \). A possible explanation for the latter finding is that financially constrained parents of would-be students use home equity collateral to finance their children’s tertiary education and that tertiary education, at least to some extent, is a luxury good. Why the coefficient of \(HPD \) is negative in the secondary education regression is more difficult to explain, and this may reflect some spurious correlations.

F. Pre- and Post–World War II Regressions

Covering a period of 140 years renders it likely that there have been structural changes in the relationship between FD and the outcome variables. Patrick (1966), for example, argues that the supply side is the dominant force behind FD in early stages of industrialization, while demand becomes a more important factor as the economy develops. To investigate this issue, the baseline models are regressed in the pre– and post–World War II periods. This war marks a period in which growth rates start increasing as a consequence of structural changes in OECD economies and a surge in
educational attainment and innovative activity. The regression results are reported in the last two columns in table A3 in the online appendix. The coefficients of FD are all highly significant and have the expected signs in both periods; however, the magnitude of the coefficient of FD is higher in the post–World War II regressions than in the pre–World War II regressions, except for secondary gross enrollment. This difference may partly reflect an attenuation bias in the pre–World War II estimates because the data quality deteriorates as we go back in time and partly be a manifestation of stronger economic effects of FD in the post–World War II period as credit has become a more vital part of economic development. For example, increasing relative costs of innovation and schooling because of slow productivity advances in these sectors and the fact that innovations have become increasingly complicated have rendered schooling and innovation more dependent on credit.

VII. Conclusion

Based on a newly constructed data set for OECD countries over the past 140 years, this paper has tested the channels through which FD influences growth. Data for OECD countries were used because they are available far back in time, thus ensuring that the parameter estimates are not driven by unobserved cross-country heterogeneity, a paramount problem when the African countries are included in cross-section data samples. Ideas production, savings, investment, and schooling were examined as the principal transmission channels, following the predictions of endogenous growth models. Previous research on FD has almost entirely focused on savings and investment and has not paid much attention to human capital and R&D, although these are the fundamental drivers of growth in endogenous growth models.

Unionization and agricultural share were used as instruments for FD since they are highly correlated with FD, have the signs in line with our predictions, and satisfy the exclusion restrictions. Credit to the private sector, broad money, bank assets, stock market total value traded, stock market capitalization, and stock price volatility were used to construct measures of FD to ensure that the results were not sensitive to the choice of FD indicator.

The results showed that FD is a highly significant determinant of growth through ideas production, savings, investment, and secondary and tertiary gross enrollment rates. Sensitivity analysis showed that the results were extraordinarily robust to exclusion of any of the two instruments from the first-stage regression, change in estimation period, various alternative estimators (OLS, system GMM, and 3SLS), estimates in ten-year intervals as opposed to regressions in five-year intervals, allowance for the influence of secular deviations in house prices from their long-run equilibrium, and using the data on FD by Schularick and Taylor (2012). From this it can be concluded that FD has been influential for economic development through its different phases in OECD countries since the onset of the Second Industrial Revolution.

One of the most important contributions of the paper is that it shows that FD has been a driving force behind ideas production, as well as secondary and tertiary education. The finding of positive effects of FD on gross enrollment rates implies that productivity growth is affected by FD, with a considerable time lag through this channel, since schooling first influences productivity when a student cohort joins the workforce, an effect that is difficult to capture in standard growth regressions. Second, the findings of significant effects of FD on ideas production and constant returns to ideas production reinforce the evidence of permanent growth effects of FD found in almost all of the literature on finance and growth. Furthermore, simulations, which are reported and discussed in the online appendix, showed that ideas production has been the most important channel through which FD has been transmitted to growth over the past 140 years and that it has contributed 0.43% to the average annual growth rate in the OECD countries over the same period, well above the 0.18% contribution from savings. These findings suggest that ideas production should take a central place in the discussion of the nexus between FD and growth, as opposed to investment and savings, since neither of these have any permanent growth effects.

REFERENCES

