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sparsity-based techniques
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Guoan Bi,Senior Member, IEEE

Abstract

The exploitation of sparsity has significantly advanced fieéd of radar imaging over
the last few decades, leading to substantial improvementesolution and quality of the
processed images. More recent developments of compresssitg (CS) suggest that statistical
sparsity can lead to further performance benefits by impgosparsity as a statistical prior on
the considered signal. In this article, a comprehensiveeyuis made on recent progress of
statistical sparsity based techniques for various radagery applications. Firstly, we give a
brief review of state-of-the-art sparsity based technigfee radar imagery. Then, we present
a comprehensive review of statistical sparse models anutitdgns as a basis for subsequent
sections where various applications are treated. In paaticowve stress the differences with sparse
regularized models and highlight the advantages of statlsipproaches. Subsequently, we cover
super-resolution imaging, enhanced target imaging, &gosing and moving target imaging,
all of which are treated with statistical sparsity basedhods. We demonstrate how to achieve
desirable improvements by adequately manipulating thssgtal sparse model as compared
with conventional sparsity based methods. Finally, opesstions and potential directions are

identified to motivate future research in the area of radageny.
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. INTRODUCTION

The capability of operating in all-day-night and all-weathconditions has allowed high-
resolution radar imagery to play an important role in botiliein and military remote sensing
applications. The principle of radar imagery is to utilizedeband transmitting signals and
aperture synthesis to obtain the desirable slant-range@sd-range resolution, respectively [1].
However, the processing of wideband signals requires spged analog-to-digital converters at
the receiver. Also, a long coherent processing intervallY@Prequired to obtain high cross-
range resolution, which would inevitably introduce undaislie higher-order Doppler effects. To
overcome the above limitations, sparsity based technifjémve become increasingly important
in radar imagery. Successful applications in recent yeanshe found in [3]-[7] and references
therein. In addition to achieve high-resolution radar iemgvith limited data, sparsity based
techniques can offer additional advantages over convaaitgpectral analysis based techniques,
such as de-noising and side-lobe suppression [3], [4].

In a nutshell, the theory of CS states that a high-dimensisiggal can be accurately and
robustly recovered from its low-dimensional projectiohthe signal is sparse or can be sparsely
represented [8]. The success of CS techniques is the preplaitation and utilization of sparsity.
One obhvious way to solve the problem is to enforce sparsity,to minimize the number of non-
zero entries in the signal. However, the main difficulty invéwy an ¢, minimization problem,
i.e. minimizing the number of its non-zero elements, is gelye NP-hard, which requires an
exhaustive search with intractable computational costiova algorithms have been developed
in CS to obtain an approximate solution to this problem. Imynaadar imagery applications, CS
theory can be conveniently applied due to the natural presehsparsity. In particular, the target
scene of interest is often parsimonious or can be parsimehioepresented by an appropriately
chosen linear basis [3], [4]. Despite the diverse applicetiof sparsity based techniques in radar
imaging, methodologically, these techniques can be suimathinto three main categories.

1) The first category is based on the use of greedy algorithiasiéad to a sparse solution

in an iterative and greedy manner. Often, these algoritreqsiire approximation of the
signal’s support and amplitude by refining the sparse sigstination based on evaluation

of the difference between the recovered signal and the wiens. In [9], for example,
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greedy algorithm based CS is used to operate wide-swath srfodeadar imaging with

reduced measurements. In [10], the authors investigatantierm and non-uniform target
imaging problem with greedy approaches. Although greedgridhms can be conveniently
implemented and have desirable guarantees under somdiongagdihey generally result in
a local optimum, which does not coincide with the sparsesitisn.

2) Another major category of algorithms is a generalizabban ¢; regularized optimization
method, which can be considered as the tightest convexatiaxof the ¢, minimiza-
tion problem. Basis Pursuit (BP) and Basis Pursuit DengigBPDN) [11] are convex
formulations to recover sparse signals in noiseless anslyrenvironments, respectively.
Various approaches have been proposed to solve/ithminimization problem, such as
linear programming and the interior point method. Sincedbjective functions are convex,
it is guaranteed that these algorithms lead to a global aptimHowever, the solution
does not necessarily coincide with the maximally sparsetisol, except that the problem
satisfies some specific conditions. In [12], [13], theregularized optimization is applied
for radar image reconstruction. In [14], [15], phase errorrection and imaging are
formulated within a convex optimization framework. The #atic aperture radar (SAR)
ground moving target problem is also formulated in a spaxitven manner and solved
by convex optimization techniques [5], [16]. Remarkabmppérical results suggest that the
¢1 regularized optimization has substantial improvemen&s gveedy approaches for some
radar imaging problems [3]. However, the regularizatiomapzeter should be carefully
tuned to obtain a desirable performance, but finding an @btselection rule is still an
open problem.

3) The third category of statistical sparsity based methbdgprovides remarkable statistical
advantages over conventional ones. Under certain conditithe resulting algorithm guar-
antees that its global optimum coincides with the maximafparse solution and smooths
the shallow local minimum [18]. Theoretical and empiricabults show that enhanced
performance can be achieved from Bayesian inference overeotional?; regularized
optimization [17], [19]-[21]. This technique is particdla useful in overcoming some
limitations of the above two categories. The advantagesddar imagery applications
include incorporation of flexible prior knowledge, estiiat accuracy improvement, as

well as estimation of error bars.

The main objective in radar imagery applications is to priypatilize one of these methods
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to obtain enhanced imaging performance, which is partibulaseful in situations where the
number of measurements is limited and the signal-to-n@te (SNR) is low. Our objective in
this review article is to present the motivation and ways tifzing statistical sparsity based
radar imaging techniques.

Recent overview articles [3]-[5] focus on sparsity baselhramagery techniques from either a
greedy or regularized perspective. These articles demadaghe importance and effectiveness of
sparsity in radar imagery applications. With the recentettgyment of sparse Bayesian methods
[17], [18], statistical sparsity based techniques haveobmera more promising research area for
radar imagery applications. Compared to the determirsgiEgsity-inducing framework, statistical
sparsity based techniques provide new opportunities tuifgigntly improve the performance of
radar imagery. This is mostly due to the capability of avogdregularization parameter tuning,
providing desirable statistical information and allowifigxible modeling. These advantages are
respectively due to the inherent advantage of the statlstiamework, the desirable statistical
information obtained from the estimation of the full posterdistribution, and the inherent
flexibility of statistical sparse based model. In order tadfé from these advantages, sophisticated
design is required. As a matter of fact, this article is a gooshpanion of recent tutorial articles
on sparsity based radar imagery [3]-[5], but with particidenphasis on sparsity based radar
imagery from a statistical perspective, which is missinghe recent literature.

We show how this design is to be performed and demonstratetiwarious radar imagery
problems can be formulated within a sparse Bayesian frametocexploit sparsity. We illustrate
in detail why the statistical formulation greatly enhanttesradar imaging performance in various
practical problems. The introduced framework has much wefor future radar imaging systems
as it provides substantial improvements as well as new oppities. The notations used in this

article are summarized in Table |I.

I[I. STATISTICAL SPARSITY FORMULATION OF RADAR IMAGERY

We begin our treatment by reviewing the fundamentals ofsttedl sparsity-inducing models
in radar imagery. We formulate the statistical sparsityeldasamework and highlight where the

advantages arise from, along with the limitations of stiati$ sparsity based methods.

A. Data Modeling

In high-resolution radar imagery, the scattering respafsgarget of interest is often expressed

as a sum of scatterers’ responses. Without loss of gengrasuming that the radar emits
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TABLE |

NOTATION SUMMARY

Notations
CcM*N The set of a compleXd/ x N matrix
a, a Scalar and vector

A A A ALy Matrix, the i-th row, thej-th column and th&n, m)-th entry of a matrix
()" and ()" Matrix or vector transpose and conjugate transpose
Al Matrix inverse

| -] The absolute value of a scalar

-, The ¢, norm of a vector
Il = The Frobenius norm of a matrix
exp(+) The exponential function
CN(u,X) The complex Gaussian distribution with megnand covariance matrix
Beta(a, b) The Beta distribution with parametesisand b
I'(a,b) The Gamma distribution with parametersand b

successive pulses with time intervBl and that there exist& strong scatterers in an imaging
scene, the received radar signal can be given by

K
setytn) =) ok s <t - %> + n(t, ty) (1)
k=1

C

where o), represents the amplitude of theth scattererc is the speed of light, and?(t,)
represents the range from the radar to scatteiarslow timet,,. The fast time and slow time of
pulsen are denoted by < t < T, andt,, = nT,., respectively. To achieve high range resolution,
the emitted series of pulse§, t,,) are often chosen as linear frequency modulated (LFM) signal
but other waveforms such as sparse stepped-frequencyisiigzd, sparse probing-frequency
signals [23], and adaptively optimized signals [24] cam dle used for the purpose of improved
imaging performance. To achieve high cross-range resoluti large aspect angle between the
radar and the target is required during the CPI. Note thatsgpdased methods go beyond the
convention in the sense that high range resolution can kanaat with less bandwidth and high
cross-range resolution can be obtained with a reduced enhprocessing time.

After pre-processing and arranging the cross-range me&nts column-wise, a linear model
is obtained as

Y =AXB+N (2)

whereY € CM*! s the pre-processed radar echo¥se CM*¥ is the unknown scattering
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coefficient, andA € CM*M andB e CV*¥ are the measurement matrices constructed from (1)
for cross-range and range, respectively. In genekagnd B are Fourier matrices. There exist,
however, other ways to construct the dictionary other tharply employing the Fourier matrix.
These include the frame based matrix [25] and the matched fiised matrix [26]. Note that the
model in (2) does not yet include the case of under-sampleahdncomplete measurement of
Y. Modifications to capture these are straightforward. A mieiled discussion on this issue
will be presented in Section lll.

In (2), N is assumed to be independently circularly-symmetric cem@aussian distributed
so that the received signa follows a complex Gaussian distribution with a likelihoath€tion

given by
M N

p(Y[X,a0) = [[ [ CN (Y| Ai XB.j, 07 'T) (3)

i=1j=1
whereqy is the noise precision or the reciprocal of the variance.
For the sake of convenient inference for the noise level, weehthe noise precision with a

Gamma distribution,

p(aolvr, v2) = T'(ap|vr, v2)

wherewv; and vy are hyper-parameters, often set as trivial values to imposen-informative
prior on the noise level. The rationale of the Gamma priortfer noise precision is due to the
likelihood and prior conjugacy [27]. By this modeling, neitevel estimation can be naturally
incorporated into the signal estimation task.

In order to obtain a solution for the linear equation in (amsity is often imposed to
constrain the solution space. Unlike convex based approanhtraining the solution space by
regularization, statistical approaches seek posteriimaton to robustly estimate the signxl

by properly imposing sparse priors on the signals to be estich

B. Probabilistic Sparse Modeling

In sparsity based radar imaging applications, we imposesgpan target scattering coefficients
X, i.e., some strong scatterers in the target scene. In otbatsywmost of the coefficients K
are zeros or nearly zeros due to the fact that the scattaegparsely distributed in the imaging
scene. We show statistical ways of imposing sparsity orouarradar imaging applications. In
order to impose sparse priors and allow inference, the rsodeéd to be carefully designed.

Essentially, the model should have two key characteristicsparsity and model conjugacy. In
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) .
(=) O bserved Variable

\ Unknown Variable

Fig. 1. Graphical representation of the scaled Gaussiatureixnodel (in the frame of solid line) and the spike-and-

slab model (in the frame of broken line).

other words, the constructed model should not only indu@esHy, but also allow convenient
inference of the unknown parameters. Towards this end, rarclical model is often utilized
instead of a single layer model. In the sequel, two main mabksnodels, the so-called scaled
Gaussian mixture model and the spike-and-slab model, &#éybreviewed, which is shown in
the frame of the solid line and the broken line in Fig. 1, resipely. In the scaled Gaussian
mixture model, the signal is assumed to follow a Gaussidaniloigion and its variance is assumed
to follow a particular distribution to induce sparsity andngenient inference. In contrast, in
the spike-and-slab model, the signal is assumed to be a dougr of the support and the
amplitude coefficients, where the support coefficient igarghically modeled for the sake of
sparsity achievement.

1) The Scaled Gaussian Mixture Model: Although there exist various models within this
class, we choose to briefly review the three-stage hiereatimodel [28] as an example. As

shown in Fig. 1, the sparse sigri¥l is hierarchically constructed.

« In the first stage, the sparse sigilis modeled with a complex Gaussian distribution,
M N

p(X|er) = HHCN X310, aij). (4)

i=1j=1
« In the second stage, we find the distribution of the variamoef the scattering coefficient
X. It is assumed to follow an independent Gamma distributinoesit is the conjugate prior
of a Gaussian distribution, and thus, it makes inferencetalde [27],
p(aij|A) = HHF a;j|n, ) (5)
i=1j=1
Combining (4) and (5), it can be shown that the marginalizettidution of X;; is a complex

Laplace distribution, which is known to be a suitable moaeldparsity [2].
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TABLE I

SUMMARY OF THE SCALED GAUSSIAN MIXTURE FOR SPARSEMODELING

Scaled Gaussian Mixture Model

Number of Stages Model Specification Marginalized Distribution
Gaussian-Jeffery [29] No Closed-form Representation
Gaussian-Gamma [30] Laplace Distribution
Two Stages Gaussian-Inverse-Gamma [17]  Student’s t Distribution

Gaussian-Exponential [31] | Double Exponential Distributior]

Gaussian-Half-Cauchy [32] | No Closed-form Representation

Three Stages | Gaussian-Gamma-Gamma [33] Laplace Distribution

« In the third stage, we choose the Gamma distribution
p(Alvg, vg) = T'(AJvs, v4) (6)

in order to infer\ that controls sparsity of the prior during the learning frtme data.

There are many variants of the hierarchical model, which @lame summarized as scaled
Gaussian mixture models in Table II.

2) The Spike-and-Slab Model: In contrast, the spike-and-slab model is another popular ap
proach to model the support and amplitude of sparse sighalparticular, the prior of the
sparse signal is expressed as a mixture of a point probadistribution (spike) and a Gaussian

distribution (slab),
M N

p(XIW,8) = T TT1(x = Wij) - 6(Xij) + Wi - CN (X510, B;5)] ()

i=1j=1
whereé is the point probability mass centered0atW is the support coefficient, an@ controls
the amplitude of coefficienK. The support coefficienW determines the sparsity profile of the

signal and the amplitude coefficieftcontrols the amplitude of the signal.
« In the first stage, the support coefficié®t is modeled by a Bernoulli distribution,

M N

Wi -W;;

pWla) = [[ [ (1= @)™
i=1j=1

whereg;; is the probability ofW;; = 1 and1 — ¢;; is the probability ofW;; = 0. Note that
in the spike-and-slab model, sparsity can be obtained by$ing a prior such that most

of the entries inW are zeros. In other words, the probability of an entry beieg zshould
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be larger than the probability of an entry being non-zerooriaer to conveniently estimate

parameter;;, a Beta distribution is imposed ap;,

p(gij) = Beta(gijle, f)

wheree and f are hyper-parameters to be set as trivial values. The reafssglecting Beta
distribution is for its conjugacy to Bernoulli distributio[27]. In some applications, their
values can be specified by some prior information.

« In the second stage, the coefficighthat controls the amplitude follows a complex Gaussian

distribution,
M N

p(B) =[] ] cN(Bi;10,v0).

i=1j=1
To allow for inference ofvy, it can be modeled by a Gamma distribution. In particular,
unlike in the Gaussian mixture model, a single variance matarv, is assumed. This is
because sparsity has already been captured by the BerBetdlimodel in the first stage.
Based on the two stage model, this spike-and-slab modelhsarefore impose sparsity on
the signal.

In summary, these two classical models are frequentlyzatlliand modified in statistical
sparsity based radar imagery. In the latter part of thiclastive will demonstrate ways to fully
utilize these two models for desirable improvements in gjpeapplications.

3) Connections With Convex Optimization: The conventional sparsity regularization based
methods can be interpreted from a Bayesian perspective L&pkce distribution, which is a
popular choice as a sparse prior [2], is imposed on the si§ndlhen, the maximuma posterior
(MAP) technique is utilized for parameter estimation. Ihdae shown that thé; regularized
method corresponds to the MAP estimation with a GaussiatiHitod and a Laplace prior [18],

: p(Y[X)p(X)
X = argm}zgxw

N
. 2
= argm);nuY—AXB||F+A§;||X.Z-||1. (8)
1=
This strategy, however, can only provide point estimatibXavithout any higher-order statistical

information. In contrast, the full posterior, includingghier-order statistical information, can be
obtained in a statistical sparse framework due to the hikieal model. This main difference
allows statistical sparsity based methods to perform battenany tasks. For example, incorpo-
rating a more sophisticated prior on the signals provideghildy of the hierarchical Bayesian

model. This is not the case in the regularized framework.
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In summary, the statistical sparsity based models, sucheasdaled Gaussian mixture and the
spike-and-slab model, avoid the laborious tuning of thail@ggation parametek in (8). These
methods are also flexible in view of choosing different m@iand provide higher-order statistical
information in the posterior distribution (due to the Bagasinference). In the latter sections of
this article, we will show ways to properly manipulate thatistical sparse model so as to make

use of these desirable properties.

C. Bayesian Inference

Based on the formulated probabilistic model, the remairtagk is to infer the parameters.
We recall the graphical representation in Fig. 1, wheretalunknown variables are required to
be estimated. Based on the likelihood'¥fand a scaled Gaussian or a spike-and-slab prior, the
posterior distribution can be expressed according to thee&an theorem,
p(©)p(Y[O)

p(Y)
where® is a set of all the parameters to be estimated, i.e., the umkmparameters in Fig. 1.

p(O[Y) = (9)

However, one major difficulty is that the marginalized disition cannot be explicitly calculated
due to the intractability of the integral(Y) = [gp(®)p(Y|©)d® and thus the posterior
distribution in (9) is not attainable. Although MAP estinaat can be obtained from this model,
the full posterior is more desirable, as it provides a moreueate description of the estimated
parameter.

Because the exact inference is not attainable from this mtvde classical inference techniques
known as the Markov chain Monte Carlo (MCMC) method and theatianal Bayesian (VB)
method are often used to approximate the posterior from kagngnd optimization, respectively.
In this way, the approximated posterior can be obtained asaaf increased computational com-
plexity compared with other sparse signal recovery methblds MCMC method is accurate when
the number of samples becomes large, while the VB methoddes\a desirable approximation
with a reasonable computational complexity.

1) The Markov Chain Monte Carlo Method: This method is a popular approach to approxi-
mate the posterior by sampling. MCMC is a strategy for geilmergdamples, while the equilibrium
distribution of the Markov chain is the same as the desirethqility distribution [34]. The most
widely used MCMC algorithms are the Metropolis-Hastings #ime Gibbs sampling algorithms

[27]. Under the assumption that all the conditional disttibns are available, Gibbs sampling is
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easily applicable. In fact, the Gibbs sampling method cacdesidered as a special case of the
Metropolis-Hastings algorithm if the conditional disuiibns are provided [34].

Since the conditional distribution is available in our drayal model as shown in Fig. 1, we
will briefly review the Gibbs sampling method. In this appbasequential sampling of the

conditional distribution, expressed as
©; ~ p(©;|Orxi, Y), (10)

is performed. Therefore, the algorithm iterates until tlesidhble posterior is obtained. A more
detailed description of the algorithm can be found in [344 aeferences therein.

2) The Variational Bayesian Method: The main idea of this method is to approximate the
true posterior with proper assumption. The assumptionimésethat the approximated posterior

has a factorisable form, .
9(®) =[] a(©)). (11)
i=1

This is known as the mean-field assumption [27]. The objedsvto find a factorisable(®)
which is as close as the true posterig®|Y). The closeness of the estimated posterior to the
true one in the variational Bayesian (VB) method is measungdhe Kullback-Leibler (KL)
divergence, and thus the optimal approximated posteriobiained by minimizing the following

KL divergence,

* = arg min n 9(©)
7" (©) = aqg(@) /q(@)l p(('-)]Y)d@' (12)

Based on (11) and (12), it can be shown that the approximaistgor for each of the variables

can be calculated as [27], [35],

7(©) = exp { (1p(©,Y)) 010, } (13)

where(->q(,) represents expectation with respect to the probabilitysitiefiunction ¢(-).

In the MCMC implemented statistical sparsity based methsdspling procedure is required
for each step during iterations. In contrast, the VB impletad statistical sparsity based methods
require calculating matrix inversion in each step duriegations. Notably, the sampling procedure
and matrix inversion calculation would generally inducghhicomputational complexity for
MCMC and VB, respectively. Due to these reasons, the statisparsity based methods generally
cost more computations than the non-statistical appr@achee MCMC method can achieve
better estimation accuracy than the VB method, but at a higbenputational expense. In a

practical application, one should choose the method aouptd its computational cost tolerance.
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To conclude this section, we summarize the key advantageatidgtical sparsity based methods

as follows:

« avoiding regularization parameter tuning. Parameterntyns not required in statistical
sparsity based methods, which will be demonstrated in &l applications reviewed in
this article.

« providing full posterior. With this capability, desirablmprovements can be achieved by
properly manipulating the statistical model, particylass shown in Sections V and VI.

« flexible modeling. Since the model is constructed probsitlly, encoding the prior can
be carried out in a rather flexible way, which will be demoat&d in Section IV.

Despite their remarkable advantages, the key limitatidribe statistical sparsity based methods
lie primarily in:

« high computational complexity. The generally required patational cost of statistical
sparsity based methods is higher than that required by greecegularized methods.

« sparsity assumption. The success of almost all sparsitgdbasethods depends on the
existence of sparsity or compressibility. If the radar ¢éargcene does not exhibit sparsity,

modifications should be made to allow a sparse represemtgg]p[5].

I1l. SUPER-RESOLUTION RADAR IMAGERY

In conventional Fourier based radar imagery, the resolatio cross-range and slant-range
are bounded by the Rayleigh limit, which can be overcome lpestesolution techniques. In
general, super-resolution radar imaging can be well foated as an inverse problem, where
the scattering field is required to be inversely estimatednfithe received radar echoes. This
problem is ill-posed since it requires estimation of higmensional signals from low-dimensional
observations. Recent advances in super-resolution radagery consider this problem from
a sparsity perspective and obtain its solution by eitheedyeor regularized methods, see a
review of state-of-the-art works in [3], [5]. Although emipal results have demonstrated superior
performance of sparsity based algorithms over conventapectral analysis based methods, their
success often requires careful selection of key parameters

To alleviate this drawback, super-resolution imagery mégqes have been developed more
recently in a statistical sparsity based framework. Hetimradar returns and the target scattering
coefficient are modeled probabilistically, and the forntedemodels have the advantage to be free

of laborious parameter tuning. Assuming pre-processingguures have been carried out, the
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Fig. 2. The obtained data arrangement.

super-resolution radar imaging problem can be explictiyriulated to be under-determined,
Y =P, AXB®, + N (14)

whereY € CP*@ is the pre-processed datX, ¢ CV*M js the unknown sparse scattering
coefficient, N € CP*€ is the noise, an@®, € C”*" and®, € CM*? represent the cross-range
and the slant-range under-sampling matrices, respegtiveé data arrangement is shown in Fig.
2 with P < N and@ < M, where each column represents the accumulated echoes &dm e
range cell. An important message herein is that the matdees andB®, should be carefully
designed to achieve desirable properties, such as a lowainctherence or a certain restricted
isometry property (RIP) [2]. To achieve these goals, thetténgi signal waveform or the under-
sampling patterns should be appropriately designed, wiveaeples can be found in [13], [36].
More specifically, the so-calledlltop sequences are utilized in [36] as emitting signals, which
is proved to practically achieve the lower bound of maximumtual coherence. In contrast,
the authors in [13] investigated different under-sampliadterns to obtain low maximal mutual

coherence and achieve radar data compression purpose.

1) In an attempt to obtaining super cross-range resolutimrrddar imaging, a scheme was
proposed in [37]. By setting the under-sampling matix to identity and carrying out

proper pre-processing, a degenerated model of (14) hasfreponsed,
Y =9, AX+N

whereY e CP*M s the cross-range under-sampled data. The mdigiA is constructed

as a partial Fourier matrix, whose property was investjampirically in [38].
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2) Similarly, in an attempt to obtain super range resolytgnobing frequency based signals
have been proposed to obtain under-sampled data in rangansiiom. The mathematical
model can be expressed as

Y =XB®y, + N

whereY € CV*€ is the range under-sampled data. In particular, the maximoinerence
condition of B®5 is shown in [39]. Apart from the advantage of data compresdiois
strategy can greatly simplify the radar system design bydawp emitting wideband signals.
3) In the scenario of obtaining both super cross-range amgkreesolution, the under-sampling
matrices for cross-range and range d@e¢ and ®,, respectively. The authors in [40]
proposed a random sampling scheme for both slant-range @sd-ange dimensions,
where random selection is carried out in each dimensiors 3¢tieme is particularly useful

for reducing data storage costs in various radar imagerjicapipns.

To impose sparsity on the target scene, the above-reviewekksvemployed a scaled Gaussian
mixture model to induce sparsity as well as to avoid parantetgng. Empirical experimental
results found in [37], [40], [41] demonstrate that the stital sparsity model obtains cleaner
images without parameter tuning, as compared to other spagularized based methods [40].
Additionally, the statistical sparsity based methods hbeen empirically shown to be less
sensitive to noise and clutter in radar imaging.

Remark: In [37], [40], [41] discussed above, multiplicatispeckle noise in radar imagery has
not been considered. In presence of speckle noise, therpenfize of sparsity based methods
would be compromised. For this particular problem, the argthn [3], [13] proposed to used
£1 norm of the scene’s gradient in addition #p norm of the scene to obtain de-speckled radar
image. To the best of our knowledge, the de-speckling proliteradar imaging has not yet been
specifically considered under the statistical sparsityeldsamework. However, similar idea of
exploiting gradient sparsity along with sparsity has beewvppsed in a statistical framework,
where example can be found in [42]. An immediate advantageldvbe that the formulated
statistical sparsity based method could be free of reqddrparameter tuning process, where
good performances could be readily attainable.

In summary, there are two important points to be noted hdrsth; the success of statistical
sparsity based methods depends on the proper selectiomplisg patterns, which is also the
case for conventional sparsity based methods. In facistitat sparsity based methods are less

sensitive to highly correlated measurement matrices imduzy some sampling patterns than

December 15, 2016 DRAFT



IEEE SIGNAL PROCESSING MAGAZINE, 2016 15

sparsity regularized methods. A detailed analysis can baddn [43] and references therein.
Secondly, a trade-off between design convenience andrpaaface is to be properly balanced,

depending on performance requirements for super-resaliri the problem at hand.

IV. ENHANCED TARGET IMAGERY BY EXPLOITING STRUCTURED SPARSITY

Cross-range cell

<«—{|9238uey

Pattern (a) Pattern (b) Pattern (c)

Fig. 3. First-order continuity patterns.

In the previous section, we have demonstrated that staisgparsity could lead to improve-
ments over deterministic sparsity in super-resolutiorarachagery. In order to carry out sparse
estimation, the scaled Gaussian mixture is imposed on th#esog coefficients, which are
assumed to be independently distributed. However, in jgectargets in radar images always
exhibit strong spatial correlation due to the fact that d tamget is physically continuous [39],
[44]-[46]. To be more concrete, for example, the radar retfirom a tank or an airplane will often
exhibit strong spatial correlation, i.e., non-zero valsedtterers in the target region continuously
residing in the range and/or cross-range dimensions. Ties@menon motivated the research in
[39], [45], [46], which properly modifies the statisticalaspe model. In these works, continuity
in the target scene is exploited by incorporating a coreélatrior in a probabilistic framework.
In the sequel, we review methods that impose first-order aglden-order correlations on the

sparse scattering coefficients.

A. First Order Correlation

In [39], [44], [45], a maodification in spike-and-slab modwiwas made so as to impose first-
order spatial correlation of the coefficients. The reasanctwoosing the spike-and-slab prior
rather than the scaled Gaussian mixture is because imposimglation on the support of the
sparse signal is more accurate and justifiable than impdsing the amplitude of the sparse
signal. As discussed in Section I, the sparsity patterrhefgignal is determined bW in the

spike-and-slab model in (7), where the paramagteontrols the probability oW being non-zero.
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Fig. 4. Radar Images obtained by (a) range-Doppler algaritRDA) under noise; (b) RDA using one half of the
measurements; (c) af regularized method using one half of the measurements; f{u$teorder continuity method
[39] using one half of the measurements

Therefore, a straightforward way to impose a continuityopon the signal can be carried out
directly onW. However, this treatment deviates from the original intamto perform a flexible
statistical modeling step. For this particular reasonsisuggested in [39], [45] to encode the
first-order structural information on in an intermediate way rather than straightforwardly on
W. The key modification is to replace the single Beta prior fargmeterq by a set of Beta
priors that consist of three different sets of parametgrs, fk}kzovlyg, S0 as to capture strongly
independent, strongly continuous and non-informativergrirespectively.
More concretely, the proposed sparsity patterns that eageucontinuity as well as preserve
sparsity in [39], [45] are summarized as follows:
« Strong rejection: if the first-order neighborhoodsX¥,,, are all zero, it would be highly
possible thak,,,,, is also zero due to the continuity of the target scene. Tl Brita(eq, fo)
with ey < fy is utilized to make the probability,,,, of W,,,, = 0 being large. This means
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that the absence of a first-order neighborhood implies thestigated scatterer being zero
with a high probability. It is noted that this rejection pati can eliminate the undesired
isolated speckles or artifacts in the radar image.

« Strong acceptance: if any of the continuity patternsXoy,, in Fig. 3 is observed, the prior
that a non-zero valued,,, arises with a high possibility should be imposed. This step
imposes continuity of the target image. In this case, therfBeta(es, f1) with e; > f;
enforces the probability,,,, of W,,, = 1 to be large and, thus the scatterer under test can
be accepted. This implies that the occurrence of any paitefig. 3 leads to one that is
non-zero with a high probability. This pattern enforcegfingler correlation of the scattering
coefficient and, therefore continuity of the target.

« Weak rejection: apart from the scenario of strong rejectiond acceptance patterns, a
non-informative prior is imposed on any other neighborhpatterns forX,,,. The prior
Beta(es, f2) with es = f5 is used to impose a non-informative prior @p,,. This appro-
priately allows the model to be effective in imposing theoprivhenever necessary and to

remain non-informative whenever no strong rejection oregtance patterns appeatr.

By adaptively selecting from different Beta hyper-priotise statistical model can either en-
courage continuity or independence, apart from mere dpaisi this manner, the structured
information can be flexibly incorporated to obtain concatetd imagery results. A key component
in incorporating the prior is that it is imposed on the parteng rather than directly orw.
The underlying motivation for this formulation is that itmsore flexible to impose a probabilistic
belief rather than a rigid suppow.

In Fig. 4, the real Yak-42 data are used to test different ritfgons, where the radar image
obtained with all measurements is shown in Fig. 4 (a) forreafee purposes. In general, there
are two issues to be considered in the evaluation of radagamarirstly, how well the target is
concentrated, i.e., more true scatterers preserved inatiyettregion and less artifact recovered
outside the target region. Secondly, how well the radar emadocused, i.e., lower side-lobed and
noise. As shown in Fig. 4 (b), the radar image obtained by dmge-Doppler algorithm (RDA)
method is highly corrupted by noise. Although theregularized approach can achieve better
performance than RDA by exploiting sparsity, the obtaireaddt image is not well concentrated
and artifacts around the target are not removed, as showrgindHc). Notably, the method
in [39] that exploits first-order continuity patterns perfes best, as shown in Fig. 4 (d). More

specifically, the first-order continuity method in [39] oatforms the/; regularized approach in
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terms of radar target concentration and artifact removad, ia even clearer than the reference

image, obtained with all measurements as shown in Fig. 4 (a).

B. Higher-Order Correlations

It can be observed that a real radar image generally exHilgtser-order correlations than
simply horizontal or vertical correlations, exploited i89], [45]. This motivates an extension
of the first-order method. To formulate a generalized fraorkwa more sophisticated model
is developed in [46] that captures higher-order corretetidbased on Markov Random Fields
(MRF). The MRF model is widely used in image processing fopasing structural constraints
on the image. This work presents a unified framework of inoafing more complex structural
information in the target scene, as compared with the siffipte-order approach. In Fig. 5,
the construction of the MRF model is presented, where a skoater neighborhood system is
employed. This model allows continuity from four directin.e., horizontally, vertically3r /4
and1r/4 diagonally. The authors argue that adopting second-orde¥ Mnables the capture of

correlations of the investigated scatterer with its ndaseght neighbors, as shown in Fig. 5.

O 0 OO O N
N\ N\ / NN

o
O O O O O Neighbors of site i

site
M ) 0 e
U/ v v 9 /
~ ~ ~ -~ -~ ——Typesofcliques
o o O O O/
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singleton horizontal vertical diagonal 3rt/4 diagonal /4

Fig. 5. An example of a second-order MRF model, where eiglghii®rs are considered.

To impose continuity of the target scene, the authors in ¢isider a more general structured
sparse prior as compared with that in [39], [45]. A more cadogiéd continuity prior has
been proposed by modifying the spike-and-slab modelingetteb preserve the weak scatterers.
Moreover, the hyper-parameter selection in [39], [45] i®ided by adopting an MRF prior

since all the parameters can be automatically inferreds Thia very desirable feature for
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Fig. 6. Comparison of radar images with a quarter of the fudasurements and SNR=5dB obtained by (ayan

regularized method; (b) a method in [39] using a quarter efrtfteasurements; (c) a method in [46].

statistical inference. Based on this model, the authord@ngvariational Bayesian expectation
maximization (VBEM) method for inference, where an improvwate of convergence can be
obtained, as compared with the method in [39], [45]. As comiee earlier, the VB based
method generally requires less computational complekiiy tthe MCMC based one.

In Fig. 6, we can observe that both the first-order continuaitgthod in [39], [45] and the
second-order continuity method in [46] produce much enbdnadar images in the sense of
less noise and better concentrated target region, compégtedhe ¢; regularized method. As
shown in Fig. 6 (b) and (c), the second-order continuity damethod performs much better than
the first-order one in terms of removing the undesirableaigadl artifacts and preserving weak

scatterers outside and within the target region, respalgtiore importantly, the computational
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time of the second-order continuity method is much less thah of the first-order one [46].

All the above demonstrates how, by incorporating struttpréors in addition to sparsity,
a statistical framework provides superior performance @apared to a merely sparsity based
framework. The major advantage of these approaches is liegitdan statistically impose the
structured sparsity on the signal in a rather flexible wayictvtallows the algorithm to adapt
the structured sparse estimation in a data-driven mannene Iglpecifically, in all the introduced
models, the structural information is not directly imposedthe sparse signal itself, but on the

probability distribution that determines the sparsityfpeo

V. STATISTICAL SPARSITY BASED AUTOFOCUSTECHNIQUES INRADAR IMAGERY

The CS based radar imagery techniques discussed in theopsesections generally depend
on the premise that pre-processing procedures, such as catignigration correction and phase
adjustment have been perfectly conducted. Unfortunatieiy,is not a valid assumption from a
practical viewpoint, since the motion of the target canroplecisely compensated in coarse pre-
processing stages. If these errors are not properly cedamt compensated for before carrying
out any CS based algorithms, the reconstructed radar insagetiwell concentrated.

Recently, phase error correction has been considered Imingia sparse recovery technique,
where alternating; regularized approaches [14] are proposed to obtain moresémtimages. In
these methods, the sparse scattering coefficient and thee @teors are iteratively estimated to
induce sparsity, and obtain a focused radar image. Althabhgke methods have demonstrated
remarkable improvements over the conventional autofoecisniques, these regularization based
methods might converge to a shallow local minimum duringitd@tive procedure. The alternate
optimization between the sparse scattering coefficientt@gphase error would inevitably result
in error propagation [47]. More concretely, the alternapdimization scheme would introduce
errors since the estimation accuracy of one parameter antialy influences that of another
parameter. This issue is particularly severe with underpded data and in low SNR conditions.
To appropriately overcome the above limitations, highehetion imagery and phase error cor-
rection have been formulated in a statistical sparsity ¢hasedel [47]—-[49]. In this formulation,
probabilistic models are imposed on the signal to encodesgpdn a statistical way. Subsequent

parameter estimation is conducted within a sparse Bayéssaning framework [19], [47].
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Fig. 7. Radar imaging with 25 pulse50% of the full measurements and SNR=20dB). (a) random phase, €b)

RDA method, (c) a method in [47] (without uncertainty infation) NMSEx = —4.0294dB, MSE, = 0.4019),
(d) a method in [47] (with uncertainty informationNMSEx = —12.4399dB, MSE, = 0.0059).

A. Statistical Sparsity Based Autofocus

Assuming that the phase error in radar imagery exhibitseamgariance [15], the mathematical
model can be stated as

Y = E®;AX + N. (15)

where E = diag(e’#1,...,e/%7) denotes the phase error matrix, which is a diagonal matrix
representing cross-range variant phase errors. In [4€],atlithors utilize the scale Gaussian
mixture model to impose sparsity 38. The estimation oX, « and X is obtained individually
since they are task-specific parameters, while estimation,cand E is performed in a global
manner due to the task-invariant property.

According to the graphical model [47], the paramet&s,«, A and «g, can be conveniently

estimated, which is similar to that in the scaled Gaussiaxtiure model introduced previously.
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Fig. 8. Radar imagery results with one half of the measurésnebtained by (a) RDA, (b) a method in [14], and
(c) a method in [47].

The most straightforward way to obtain an estimate of thespharrorE is to maximize the

expected log-likelihood function as,

~

E= arg];nin (—Inp(Y, X, o, A E)>q(X)q(a)q()\)' (16)

The above problem is a strictly convex optimization with aseld-form solution. By solving the
optimization problem in (16), the updating formula can béaoied [49]. As a matter of fact,
this updating rule for phase error is rather similar to thiathe regularized approach in [14],
[15], because the updating formula only uses the first-ondgment ofX to estimateE and the

obtained covariance matriX: of X does not appear in this updating rule. In other words, this
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formulation deviates from the original intention of utifig higher-order statistical information
in the first place.

In order to properly utilize the uncertainty informatiohetwork in [47] proposes to incorporate
the obtained covariance matr® in the estimation of phase errors to obtain enhanced acgurac
Towards this end, the phase error is deliberately modeledasnplex parameter; + jb; rather
than explicitly modeling the phase error&$€:. By introducing this complex parameter instead of
the angle parameter;, we will see that the uncertainty information can be natyrakorporated
in the algorithm to achieve enhanced estimation accurady of each iteration. In the derived
updating formula in [47], it can be seen th8t which contains uncertainty information, can be
incorporated into the estimation of the phase error parankt It is demonstrated in [47] that
by replacing the true phase error parameters with compddxed error parameters, the resulting
scheme could utilize the estimation uncertainty inforotand obtain a performance gain as
compared with regularized sparsity based autofocus tqabsi

In Fig. 7, an illustrative example is presented to evalulag¢eperformance of the updating rule
without and with high-order uncertainty information. Ingisimulation, a total of1 scatterers are
present in the imaging scene. In Fig. 7(a), the random phageis shown. In Fig. 7(c) and (d), it
can be seen that both updating rules lead to a more focuseg iomempared with the RDA method
shown in Fig. 7(b). In particular, the updating rule withauilizing the uncertainty information
leads to a less focused image, where undesirable side-iglotseexist for almost all the scatterers
on the imaging scene. In contrast, the image obtained bygtating rule utilizing the uncertainty
information is well focused with substantially suppressielé-lobe effects. Quantitative evaluation
also demonstrates that the radar image in Fig. 7 (d) prosadesrer NMSEx as well asMSE,,
than those obtained in Fig. 7 (c) due to the inherent abilitytilize the uncertainty information of
estimation ofX. This validates the motivation of utilizing the uncertgimformation to achieve
higher estimation accuracy, and therefore better recdvaiar image. This work is also validated
using the Yak-42 data. As observed from Fig. 8(a), direqtlylging the RDA method can barely
lead to a concentrated image. In Fig. 8(b), the image olddiye/; presents a reasonable profile
of the airplane. However, it is still blurred and some of theetscatterers are not recovered
correctly. In contrast, the method in [47] obtains a bettaroentrated image and removes most
of the undesirable artifacts as seen from Fig. 8(c). Witls¢heomparisons, we conclude that the
proper utilization of uncertainty information substalifi‘gnhances the performance in autofocus

applications.
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The statistical treatment of the sparsity based algoritlam groperly utilize uncertainty in-
formation during iterations to improve the estimation aecy. In fact, we have demonstrated
how this uncertainty information can be properly used tgtmut this particular application.
Compared with the regularized approach, the statisticalsiy based algorithms do not require
the time-consuming parameter tuning for improved perforoeaas those in thé, regularized

alternating methods.

B. Autofocus Meets Structured Sparsity

The basic idea in [47] is to iteratively estimate the sparsdterer coefficients and the phase
error to jointly induce sparsity. However, The objectiveadar imaging is to obtain the most con-
centrated radar image rather than the sparsest one. Treerafmerely sparsity-inducing scheme
may result in undesirable image results, because it onlgiders sparsity as the performance
measure. More concretely, the weak scatterers cannot Hepreskrved and background noise
cannot be desirably reduced with a simple sparsity comstraipossible solution to obtain a more
concentrated radar image rather than a mere sparse onexj@ad structured sparsity. In [49], the
sparse Bayesian model is sophisticatedly modified to eixgtiictural sparsity. More specifically,
the spatial consistency along range cells is exploitedrdfbee, the framework can simultaneously
cope with structured sparse signal recovery and phase esrogction in an integrated manner.
The focused high-resolution radar image can be obtaineddrstively estimating the sparse
scatterer coefficients and phase errors to jointly obtaitriecired sparse solution.

Due to the utilization of the structured sparse constrdirg, proposed method preserves the
target region and alleviates the over-shrinkage problesmpared to the previously presented
sparsity-driven auto-focus approaches. The superioppaénce of the structured sparsity based
technigue is shown in Fig. 9. Compared with other approacthes structured sparsity based
autofocus method achieves a better concentrated imagemwth coefficients recovered in the

target region with different under-sampling ratios.

V1. STATISTICAL SPARSITY BASEDSAR GROUND MOVING TARGET IMAGING

Imaging ground moving targets in synthetic aperture radartiecome increasingly important.
Conventionally, in imaging a potentially moving target,playheses of the target motion are
constructed to match the signal by a filter bank [50]. In thenseio of closely located targets,
however, their responses cannot be well distinguished &aah other. Recent advances of sparsity

based SAR ground moving target imaging (GMTIm) [5], [51] gasgt that sparsity can be properly
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Fig. 9. Radar imagery results with SNR= 5dB using {ayegularized method, (b) TV regularized method, (c)
statistical sparsity based method in [47], and (d) statiststructured sparsity based method in [49].

exploited to enable multi-target processing and higheuay. This application is rather different
from the previously introduced ones, since the receivearathoes can no longer be simply
modeled as a sum of harmonics, but rather as multi-compdrévitsignals with unknown chirp
rates. Therefore, the key challenge in SAR GMTIm is to prhpésrmulate a mathematical
model that allows a sparse representation of the images doing targets. In [51], the signal
model is constructed as a sparse linear model, where ancowgplete dictionary is constructed
by using a discretized velocity grid. Although empiricabuéis demonstrate the success of the

method, its performance is inhibited by the discretizatorors in the dictionary. In this section,
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we will briefly review two recent works based on statisticpasity from different angles.

In [52], a statistical framework is formulated to obtain tmeving target image, which could
avoid the construction of a large over-complete dictionamparticular, this work considers &
channel synthetic aperture radar system witlpasses, collecting data frod azimuth angles

and @ range cells. The complex-valued raw SAR image is decompasddllows [52],
Yp7fZEpva(vaf—l—SpJ—i-Np’f), p=1,...,P and f=1,...,F (17)

whereY, ; € C?*K denotes the raw SAR image at azimyttand passf, E, j € C?*K is
the corresponding spatial-temporal calibration erfgy, € C@*K represents background clutter,
S,.; € CO*K represents the moving target any, ; € C¢*X models noise. Since the number
of parameters to be estimated is much larger than the nunitmrservationsY, proper priors
must be selected for each of these parameters. The intgmestder is referred to [52] for more

details. Here, we only highlight the key statistical modelshis formulation.

o The clutterL, ; is decomposed into a sum of a pass-invariant background Byrand a
pass-specific speckle terk, ;. Assuming that the background clutiBy, can be represented
by one of the several classes such as road or buildings, alexi@@aussian prior is used for
B, with a set of unknown covariance matrices that account fiberéint classes, where each
covariance matrix is modeled as an inverse Wishart digtabuSimilarly, the pass-specific
speckle termX,, ; is modeled probabilistically.

« Since the moving target is assumed to be sparse in the raw B@gei domain, a modified
spike-and-slab model models sparsity as well as movingtaignatures. More specifically,
the sparsity is modeled by a Bernoulli-Beta distributior dlne moving target signature is
modeled as a complex Gaussian-Inverse-Wishart distoibuiihe rationale of this modeling
is to allow a rather tractable inference.

« An additional constraint can be imposed on the hyper-patensieof the sparse moving
target to encourage a smooth trajectory. It is noted that $hiooth prior is constructed
by modifying the Beta distribution instead of the supportaoaeter directly, where this
manipulation can be rather flexible in encoding the priowoinfation in a probabilistic

sense.

Since the work in [52] utilizes the decomposition of a raw Sikage, the construction of the
dictionary as in [51] can be avoided. Since this method imfdated in a statistical framework,

the algorithm could utilize the uncertainty informationtained in one parameter to enhance the
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estimation of other parameters subsequently. These blspeoperties of the statistical sparsity
based method have led to substantial improvements oveentional methods.

Another approach for the SAR GMTIm problem is based on foatiud) a parametric model,
where statistical sparsity is enforced [53]. In this worke tclutter is assumed to have been
suppressed by off-the-shelf methods, and an initial regorasgion of the received signal is firstly
carried out by utilizing LV’s distribution (LVD) [54], whib is a novel TFR for representing LFM
signals. However, the resolution of the LVD representaisoconstrained by the CPI of the target
and its discretized grid [54]. It should be noted that theatkieh accuracy of the LVD representation
may cause an unfocused target response, and thus a degaagletdimage. To deal with this
challenge within a statistical sparsity based framewosiadnical refinement is suggested for
an accurate estimation of the chirp rate in [55]. In paracuthis dynamic refinement iteratively
refines the initializedy; by LVD and the sparse target coefficient. In this way, thengstion
accuracy can be improved in a statistical sparsity framkyaord therefore, a concentrated moving
target image can be obtained. Consideridgazimuth and) range cells, the clutter suppressed

signal model can be formulated as [55],
Y =EA(v{, ... 7)) X+ N (18)

whereY € CP*€? s the clutter suppressed daf®, ¢ C”*” represents the unknown phase
errors, X € CKNx®@ models the sparse moving target to be estimated, i = 1,..., K, is

a set of parameters in the dictionary to be estimated &nid the number of moving targets.
As described earlier, the dictionatd(~,,...,vx) € CP*EN is an over-complete one. It is
constructed by concatenatig sub-dictionary, where each sub-dictionary is construtigdn
LFM matrix with chirp ratey;. In this work [55], a scaled Gaussian mixture distributisrused
to model sparsity. Similar to the work covered in Section tefistical information is utilized to
estimate the error paramet®rand the chirp rate;, where the error propagation problem during
iteration is reduced [47], [55].

In Fig. 10, the canonical Gotcha data set is used for vatidatind an example of the Durango
target image is given to demonstrate the performance. Dubetanovement of the target, the
original image is substantially blurred, as observed frad(al After representing the received
signal by LVD, the/;-norm regularization method and the conventional sparse&an method
are applied to obtain the moving target images as shown inlEigb) and (c), respectively. It
can be seen that thig regularized method and the sparse Bayesian method caropsrjy focus

the target image due to the representation error in LVD. Imrest, the statistical sparsity based
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Fig. 10. Durango target image. (a) Original image; (b) imagtined by/;-norm regularization; (c) image obtained
by conventional statistical sparsity based method; (d)genabtained by parametric and dynamic statistical sparsity
based method in [55]

method with refinement leads to the best imaging performamderms of better concentration
and desirable noise suppression, as shown in Fig. 10(daricplar, the target image is focused

within a 5m x 5m area that is in accordance with the Durango truth with a sfzZenox 2m.
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VIl. SUMMARY AND FUTURE DIRECTIONS
A. Summary

Sparsity based techniques have been reviewed from a is@ltiserspective, along with their
recent advances in radar imagery. In various applicatibrig|gs been shown that improved per-
formance can be obtained by adequately utilizing a stedistiparse model. These improvements

obtained in the reviewed applications were largely depende the following core ingredients.

1) Probabilistic modeling by incorporating flexible priors the signal, is one of the most
remarkable advantages over deterministic approachesadventageous characteristics of
the statistical framework are that it is rather flexible. histway, the formulation could
model a particular structure in a probabilistic way and ad#lows for fitting with the
likelihood.

2) The utilization of uncertainty information during parater estimation is important for a
performance gain. Particularly, in conventional appreachhe error estimated in one stage
can lead to a degraded performance in the subsequent shagks. statistical framework,
the signal estimation is conducted in a statistical manwiere the obtained statistics
indicate the uncertainty in the signal estimation. Thaefthe estimation could be more

accurate.

By properly manipulating the statistical sparsity modelgerformance gain could be obtained.

B. Future Directions

Since the statistical sparsity based methods are verycttiait would be very interesting to

investigate the following problems in the future.

« Computational complexityThe statistical sparsity based methods operate in an ivterat
manner, where the number of iterations and the computdtoost in each iteration de-
termine the computational cost. Compared to the conveattiBaurier based approach for
radar imaging, the computational complexity is much higlieis therefore imperative to
develop fast algorithms, which could decrease the comipuattcomplexity or obtain fast
convergence. The fast algorithms would be particularliyfulder many radar applications
requiring real-time processing.

« Motion compensation errordn high-resolution radar imaging problem, a large coherent
processing interval (CPI) is required. Then, the target enoent becomes a problem as the

radar line-of-sight dramatically changes. In such a sdéenawen after carrying out coarse
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motion compensation, range cell migration (RCM) and phasz evould still be present in
the radar echoes. Then, the dictionary allowing sparseeseptation would become more
complicated, where the proposed imaging algorithm sholdd be able to correct RCM
and phase errors. The main challenge is to properly obtaimpiproximated solution in the
presence of a more complicated model. Towards this end, uldvoe particularly suitable
to exploit statistical sparsity to limit error propagaticdbne possible way of coping with
this challenge is to encode priors on the error parametgosajoerly regularize the solution
space.

« Temporal correlation in SAR GMTIn€Conventionally, most SAR GMTIm algorithms focus
on image formation of the moving target at one particularetimstant. However, it is
important to also monitor the movement of the moving tar§étce the targets motion and
imaging background are time-varying, simply generating single frame image cannot
provide time varying characteristics of the moving targéierefore, it is necessary to develop
temporal SAR GMTIm based on the statistical sparsity bassddwork, which is promising
research direction in SAR-GMTIm technology. In fact, Sanbaboratory has successfully
realized Video-SAR GMTIm, where the processed results baen released on their official
website. In particular, the temporal SAR GMTIm is a good cdatk for applications in
complicated urban scenes, where improved performancduahla. The statistical sparsity
based framework for moving target imaging in urban envirenta could be formulated
to include the temporal smoothness constraint during tharrpasses and to cope with a
complicated background.

« Improved classification performanc&n important objective of radar imagery is to classify
different types of targets automatically and accuratelye Ghould capture more structural
features during target imaging by utilizing the trainindpimation obtained from the recog-
nition stage, which will in turn greatly benefit automatieget recognition (ATR). More
precisely, radar imagery should be discriminative enoughtdirget recognition purposes.
One promising future work is to incorporate appropriat®rwin a statistical framework to

perform discriminative radar imagery.

In summary, statistical sparsity-driven techniques hasenbshown to be very promising for
radar imagery due to their flexibility and good statisticabgerties. It is expected that these

applications will immensely benefit from the more recenbtiedical advances in this area.
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