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The Race to Improve Radar Imagery: An

overview of recent progress in statistical

sparsity-based techniques
Lifan Zhao, Lu Wang, Lei Yang,Member, IEEE, Abdelhak M. Zoubir,Fellow, IEEE,

Guoan Bi,Senior Member, IEEE

Abstract

The exploitation of sparsity has significantly advanced thefield of radar imaging over

the last few decades, leading to substantial improvements in resolution and quality of the

processed images. More recent developments of compressed sensing (CS) suggest that statistical

sparsity can lead to further performance benefits by imposing sparsity as a statistical prior on

the considered signal. In this article, a comprehensive survey is made on recent progress of

statistical sparsity based techniques for various radar imagery applications. Firstly, we give a

brief review of state-of-the-art sparsity based techniques for radar imagery. Then, we present

a comprehensive review of statistical sparse models and algorithms as a basis for subsequent

sections where various applications are treated. In particular, we stress the differences with sparse

regularized models and highlight the advantages of statistical approaches. Subsequently, we cover

super-resolution imaging, enhanced target imaging, auto-focusing and moving target imaging,

all of which are treated with statistical sparsity based methods. We demonstrate how to achieve

desirable improvements by adequately manipulating the statistical sparse model as compared

with conventional sparsity based methods. Finally, open questions and potential directions are

identified to motivate future research in the area of radar imagery.
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I. INTRODUCTION

The capability of operating in all-day-night and all-weather conditions has allowed high-

resolution radar imagery to play an important role in both civilian and military remote sensing

applications. The principle of radar imagery is to utilize wideband transmitting signals and

aperture synthesis to obtain the desirable slant-range andcross-range resolution, respectively [1].

However, the processing of wideband signals requires high-speed analog-to-digital converters at

the receiver. Also, a long coherent processing interval (CPI) is required to obtain high cross-

range resolution, which would inevitably introduce undesirable higher-order Doppler effects. To

overcome the above limitations, sparsity based techniques[2] have become increasingly important

in radar imagery. Successful applications in recent years can be found in [3]–[7] and references

therein. In addition to achieve high-resolution radar images with limited data, sparsity based

techniques can offer additional advantages over conventional spectral analysis based techniques,

such as de-noising and side-lobe suppression [3], [4].

In a nutshell, the theory of CS states that a high-dimensional signal can be accurately and

robustly recovered from its low-dimensional projections if the signal is sparse or can be sparsely

represented [8]. The success of CS techniques is the proper exploitation and utilization of sparsity.

One obvious way to solve the problem is to enforce sparsity, i.e., to minimize the number of non-

zero entries in the signal. However, the main difficulty in solving an ℓ0 minimization problem,

i.e. minimizing the number of its non-zero elements, is generally NP-hard, which requires an

exhaustive search with intractable computational cost. Various algorithms have been developed

in CS to obtain an approximate solution to this problem. In many radar imagery applications, CS

theory can be conveniently applied due to the natural presence of sparsity. In particular, the target

scene of interest is often parsimonious or can be parsimoniously represented by an appropriately

chosen linear basis [3], [4]. Despite the diverse applications of sparsity based techniques in radar

imaging, methodologically, these techniques can be summarized into three main categories.

1) The first category is based on the use of greedy algorithms that lead to a sparse solution

in an iterative and greedy manner. Often, these algorithms require approximation of the

signal’s support and amplitude by refining the sparse signalestimation based on evaluation

of the difference between the recovered signal and the observations. In [9], for example,
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greedy algorithm based CS is used to operate wide-swath modes for radar imaging with

reduced measurements. In [10], the authors investigate theuniform and non-uniform target

imaging problem with greedy approaches. Although greedy algorithms can be conveniently

implemented and have desirable guarantees under some conditions, they generally result in

a local optimum, which does not coincide with the sparsest solution.

2) Another major category of algorithms is a generalizationof an ℓ1 regularized optimization

method, which can be considered as the tightest convex relaxation of theℓ0 minimiza-

tion problem. Basis Pursuit (BP) and Basis Pursuit Denoising (BPDN) [11] are convex

formulations to recover sparse signals in noiseless and noisy environments, respectively.

Various approaches have been proposed to solve theℓ1 minimization problem, such as

linear programming and the interior point method. Since theobjective functions are convex,

it is guaranteed that these algorithms lead to a global optimum. However, the solution

does not necessarily coincide with the maximally sparse solution, except that the problem

satisfies some specific conditions. In [12], [13], theℓ1 regularized optimization is applied

for radar image reconstruction. In [14], [15], phase error correction and imaging are

formulated within a convex optimization framework. The synthetic aperture radar (SAR)

ground moving target problem is also formulated in a sparsity-driven manner and solved

by convex optimization techniques [5], [16]. Remarkably, empirical results suggest that the

ℓ1 regularized optimization has substantial improvements over greedy approaches for some

radar imaging problems [3]. However, the regularization parameter should be carefully

tuned to obtain a desirable performance, but finding an optimal selection rule is still an

open problem.

3) The third category of statistical sparsity based methods[17] provides remarkable statistical

advantages over conventional ones. Under certain conditions, the resulting algorithm guar-

antees that its global optimum coincides with the maximallysparse solution and smooths

the shallow local minimum [18]. Theoretical and empirical results show that enhanced

performance can be achieved from Bayesian inference over conventionalℓ1 regularized

optimization [17], [19]–[21]. This technique is particularly useful in overcoming some

limitations of the above two categories. The advantages forradar imagery applications

include incorporation of flexible prior knowledge, estimation accuracy improvement, as

well as estimation of error bars.

The main objective in radar imagery applications is to properly utilize one of these methods
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to obtain enhanced imaging performance, which is particularly useful in situations where the

number of measurements is limited and the signal-to-noise ratio (SNR) is low. Our objective in

this review article is to present the motivation and ways of utilizing statistical sparsity based

radar imaging techniques.

Recent overview articles [3]–[5] focus on sparsity based radar imagery techniques from either a

greedy or regularized perspective. These articles demonstrate the importance and effectiveness of

sparsity in radar imagery applications. With the recent development of sparse Bayesian methods

[17], [18], statistical sparsity based techniques have become a more promising research area for

radar imagery applications. Compared to the deterministicsparsity-inducing framework, statistical

sparsity based techniques provide new opportunities to significantly improve the performance of

radar imagery. This is mostly due to the capability of avoiding regularization parameter tuning,

providing desirable statistical information and allowingflexible modeling. These advantages are

respectively due to the inherent advantage of the statistical framework, the desirable statistical

information obtained from the estimation of the full posterior distribution, and the inherent

flexibility of statistical sparse based model. In order to benefit from these advantages, sophisticated

design is required. As a matter of fact, this article is a goodcompanion of recent tutorial articles

on sparsity based radar imagery [3]–[5], but with particular emphasis on sparsity based radar

imagery from a statistical perspective, which is missing inthe recent literature.

We show how this design is to be performed and demonstrate howthe various radar imagery

problems can be formulated within a sparse Bayesian framework to exploit sparsity. We illustrate

in detail why the statistical formulation greatly enhancesthe radar imaging performance in various

practical problems. The introduced framework has much promise for future radar imaging systems

as it provides substantial improvements as well as new opportunities. The notations used in this

article are summarized in Table I.

II. STATISTICAL SPARSITY FORMULATION OF RADAR IMAGERY

We begin our treatment by reviewing the fundamentals of statistical sparsity-inducing models

in radar imagery. We formulate the statistical sparsity based framework and highlight where the

advantages arise from, along with the limitations of statistical sparsity based methods.

A. Data Modeling

In high-resolution radar imagery, the scattering responseof a target of interest is often expressed

as a sum of scatterers’ responses. Without loss of generality, assuming that the radar emits
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TABLE I

NOTATION SUMMARY

Notations

C
M×N The set of a complexM ×N matrix

a, a Scalar and vector

A, Ai·, A·j , An,m Matrix, the i-th row, thej-th column and the(n,m)-th entry of a matrix

(·)T and (·)H Matrix or vector transpose and conjugate transpose

A
−1 Matrix inverse

| · | The absolute value of a scalar

‖·‖
p

The ℓp norm of a vector

‖·‖F The Frobenius norm of a matrix

exp(·) The exponential function

CN (µ,Σ) The complex Gaussian distribution with meanµ and covariance matrixΣ

Beta(a, b) The Beta distribution with parametersa and b

Γ(a, b) The Gamma distribution with parametersa and b

successive pulses with time intervalTr and that there existsK strong scatterers in an imaging

scene, the received radar signal can be given by

sr(t, tn) =

K
∑

k=1

σk · s

(

t−
2Rk(tn)

c

)

+ n(t, tn) (1)

where σk represents the amplitude of thek-th scatterer,c is the speed of light, andRk(tn)

represents the range from the radar to scattererk in slow timetn. The fast time and slow time of

pulsen are denoted by0 ≤ t ≤ Tr andtn = nTr, respectively. To achieve high range resolution,

the emitted series of pulsess(t, tn) are often chosen as linear frequency modulated (LFM) signals,

but other waveforms such as sparse stepped-frequency signals [22], sparse probing-frequency

signals [23], and adaptively optimized signals [24] can also be used for the purpose of improved

imaging performance. To achieve high cross-range resolution, a large aspect angle between the

radar and the target is required during the CPI. Note that sparsity based methods go beyond the

convention in the sense that high range resolution can be obtained with less bandwidth and high

cross-range resolution can be obtained with a reduced coherent processing time.

After pre-processing and arranging the cross-range measurements column-wise, a linear model

is obtained as

Y = AXB+N (2)

whereY ∈ CM×N is the pre-processed radar echoes,X ∈ CM×N is the unknown scattering
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coefficient, andA ∈ CM×M andB ∈ CN×N are the measurement matrices constructed from (1)

for cross-range and range, respectively. In general,A andB are Fourier matrices. There exist,

however, other ways to construct the dictionary other than simply employing the Fourier matrix.

These include the frame based matrix [25] and the matched filter based matrix [26]. Note that the

model in (2) does not yet include the case of under-sampled oran incomplete measurement of

Y. Modifications to capture these are straightforward. A moredetailed discussion on this issue

will be presented in Section III.

In (2), N is assumed to be independently circularly-symmetric complex Gaussian distributed

so that the received signalY follows a complex Gaussian distribution with a likelihood function

given by

p(Y|X, α0) =

M
∏

i=1

N
∏

j=1

CN (Yij |Ai·XB·j, α
−1
0 I) (3)

whereα0 is the noise precision or the reciprocal of the variance.

For the sake of convenient inference for the noise level, we model the noise precision with a

Gamma distribution,

p(α0|v1, v2) = Γ(α0|v1, v2)

wherev1 and v2 are hyper-parameters, often set as trivial values to imposea non-informative

prior on the noise level. The rationale of the Gamma prior forthe noise precision is due to the

likelihood and prior conjugacy [27]. By this modeling, noise level estimation can be naturally

incorporated into the signal estimation task.

In order to obtain a solution for the linear equation in (2), sparsity is often imposed to

constrain the solution space. Unlike convex based approachconstraining the solution space by

regularization, statistical approaches seek posterior estimation to robustly estimate the signalX

by properly imposing sparse priors on the signals to be estimated.

B. Probabilistic Sparse Modeling

In sparsity based radar imaging applications, we impose sparsity on target scattering coefficients

X, i.e., some strong scatterers in the target scene. In other words, most of the coefficients inX

are zeros or nearly zeros due to the fact that the scatterers are sparsely distributed in the imaging

scene. We show statistical ways of imposing sparsity on various radar imaging applications. In

order to impose sparse priors and allow inference, the models need to be carefully designed.

Essentially, the model should have two key characteristicsof sparsity and model conjugacy. In

December 15, 2016 DRAFT



IEEE SIGNAL PROCESSING MAGAZINE, 2016 7

0 XyyY

W
Observed Variable

Unknown Variable

q

Fig. 1. Graphical representation of the scaled Gaussian mixture model (in the frame of solid line) and the spike-and-

slab model (in the frame of broken line).

other words, the constructed model should not only induce sparsity, but also allow convenient

inference of the unknown parameters. Towards this end, a hierarchical model is often utilized

instead of a single layer model. In the sequel, two main classical models, the so-called scaled

Gaussian mixture model and the spike-and-slab model, are briefly reviewed, which is shown in

the frame of the solid line and the broken line in Fig. 1, respectively. In the scaled Gaussian

mixture model, the signal is assumed to follow a Gaussian distribution and its variance is assumed

to follow a particular distribution to induce sparsity and convenient inference. In contrast, in

the spike-and-slab model, the signal is assumed to be a dot product of the support and the

amplitude coefficients, where the support coefficient is hierarchically modeled for the sake of

sparsity achievement.

1) The Scaled Gaussian Mixture Model: Although there exist various models within this

class, we choose to briefly review the three-stage hierarchical model [28] as an example. As

shown in Fig. 1, the sparse signalX is hierarchically constructed.

• In the first stage, the sparse signalX is modeled with a complex Gaussian distribution,

p(X|α) =

M
∏

i=1

N
∏

j=1

CN (Xij |0, αij). (4)

• In the second stage, we find the distribution of the varianceα of the scattering coefficient

X. It is assumed to follow an independent Gamma distribution since it is the conjugate prior

of a Gaussian distribution, and thus, it makes inference tractable [27],

p(αij |λ) =
M
∏

i=1

N
∏

j=1

Γ(αij |η, λ) (5)

Combining (4) and (5), it can be shown that the marginalized distribution ofXij is a complex

Laplace distribution, which is known to be a suitable model for sparsity [2].
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TABLE II

SUMMARY OF THE SCALED GAUSSIAN M IXTURE FOR SPARSEMODELING

Scaled Gaussian Mixture Model

Number of Stages Model Specification Marginalized Distribution

Two Stages

Gaussian-Jeffery [29] No Closed-form Representation

Gaussian-Gamma [30] Laplace Distribution

Gaussian-Inverse-Gamma [17] Student’s t Distribution

Gaussian-Exponential [31] Double Exponential Distribution

Gaussian-Half-Cauchy [32] No Closed-form Representation

Three Stages Gaussian-Gamma-Gamma [33] Laplace Distribution

• In the third stage, we choose the Gamma distribution

p(λ|v3, v4) = Γ(λ|v3, v4) (6)

in order to inferλ that controls sparsity of the prior during the learning fromthe data.

There are many variants of the hierarchical model, which canall be summarized as scaled

Gaussian mixture models in Table II.

2) The Spike-and-Slab Model: In contrast, the spike-and-slab model is another popular ap-

proach to model the support and amplitude of sparse signals.In particular, the prior of the

sparse signal is expressed as a mixture of a point probability distribution (spike) and a Gaussian

distribution (slab),

p(X|W, β) =

M
∏

i=1

N
∏

j=1

[(1−Wij) · δ(Xij) +Wij · CN (Xij |0, βij)] (7)

whereδ is the point probability mass centered at0, W is the support coefficient, andβ controls

the amplitude of coefficientX. The support coefficientW determines the sparsity profile of the

signal and the amplitude coefficientβ controls the amplitude of the signal.

• In the first stage, the support coefficientW is modeled by a Bernoulli distribution,

p(W|q) =
M
∏

i=1

N
∏

j=1

q
Wij

ij (1− qij)
(1−Wij)

whereqij is the probability ofWij = 1 and1− qij is the probability ofWij = 0. Note that

in the spike-and-slab model, sparsity can be obtained by imposing a prior such that most

of the entries inW are zeros. In other words, the probability of an entry being zero should
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be larger than the probability of an entry being non-zero. Inorder to conveniently estimate

parameterqij , a Beta distribution is imposed onqij,

p(qij) = Beta(qij|e, f)

wheree andf are hyper-parameters to be set as trivial values. The reasonof selecting Beta

distribution is for its conjugacy to Bernoulli distribution [27]. In some applications, their

values can be specified by some prior information.

• In the second stage, the coefficientβ that controls the amplitude follows a complex Gaussian

distribution,

p(β) =

M
∏

i=1

N
∏

j=1

CN (βij |0, v0).

To allow for inference ofv0, it can be modeled by a Gamma distribution. In particular,

unlike in the Gaussian mixture model, a single variance parameterv0 is assumed. This is

because sparsity has already been captured by the Bernoulli-Beta model in the first stage.

Based on the two stage model, this spike-and-slab model can therefore impose sparsity on

the signal.

In summary, these two classical models are frequently utilized and modified in statistical

sparsity based radar imagery. In the latter part of this article, we will demonstrate ways to fully

utilize these two models for desirable improvements in specific applications.

3) Connections With Convex Optimization: The conventional sparsity regularization based

methods can be interpreted from a Bayesian perspective. TheLaplace distribution, which is a

popular choice as a sparse prior [2], is imposed on the signalX. Then, the maximuma posterior

(MAP) technique is utilized for parameter estimation. It can be shown that theℓ1 regularized

method corresponds to the MAP estimation with a Gaussian likelihood and a Laplace prior [18],

X̂ = argmax
X

p(Y|X)p(X)

p(Y)

= argmin
X

‖Y −AXB‖2F + λ

N
∑

i=1

‖X·i‖1. (8)

This strategy, however, can only provide point estimation of X without any higher-order statistical

information. In contrast, the full posterior, including higher-order statistical information, can be

obtained in a statistical sparse framework due to the hierarchical model. This main difference

allows statistical sparsity based methods to perform better in many tasks. For example, incorpo-

rating a more sophisticated prior on the signals provides flexibility of the hierarchical Bayesian

model. This is not the case in the regularized framework.
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In summary, the statistical sparsity based models, such as the scaled Gaussian mixture and the

spike-and-slab model, avoid the laborious tuning of the regularization parameterλ in (8). These

methods are also flexible in view of choosing different priors and provide higher-order statistical

information in the posterior distribution (due to the Bayesian inference). In the latter sections of

this article, we will show ways to properly manipulate the statistical sparse model so as to make

use of these desirable properties.

C. Bayesian Inference

Based on the formulated probabilistic model, the remainingtask is to infer the parameters.

We recall the graphical representation in Fig. 1, where all the unknown variables are required to

be estimated. Based on the likelihood ofY and a scaled Gaussian or a spike-and-slab prior, the

posterior distribution can be expressed according to the Bayesian theorem,

p(Θ|Y) =
p(Θ)p(Y|Θ)

p(Y)
(9)

whereΘ is a set of all the parameters to be estimated, i.e., the unknown parameters in Fig. 1.

However, one major difficulty is that the marginalized distribution cannot be explicitly calculated

due to the intractability of the integralp(Y) =
∫

Θ
p(Θ)p(Y|Θ)dΘ and thus the posterior

distribution in (9) is not attainable. Although MAP estimation can be obtained from this model,

the full posterior is more desirable, as it provides a more accurate description of the estimated

parameter.

Because the exact inference is not attainable from this model, two classical inference techniques

known as the Markov chain Monte Carlo (MCMC) method and the variational Bayesian (VB)

method are often used to approximate the posterior from sampling and optimization, respectively.

In this way, the approximated posterior can be obtained at a cost of increased computational com-

plexity compared with other sparse signal recovery methods. The MCMC method is accurate when

the number of samples becomes large, while the VB method provides a desirable approximation

with a reasonable computational complexity.

1) The Markov Chain Monte Carlo Method: This method is a popular approach to approxi-

mate the posterior by sampling. MCMC is a strategy for generating samples, while the equilibrium

distribution of the Markov chain is the same as the desired probability distribution [34]. The most

widely used MCMC algorithms are the Metropolis-Hastings and the Gibbs sampling algorithms

[27]. Under the assumption that all the conditional distributions are available, Gibbs sampling is
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easily applicable. In fact, the Gibbs sampling method can beconsidered as a special case of the

Metropolis-Hastings algorithm if the conditional distributions are provided [34].

Since the conditional distribution is available in our graphical model as shown in Fig. 1, we

will briefly review the Gibbs sampling method. In this approach, sequential sampling of the

conditional distribution, expressed as

Θi ∼ p(Θi|Θk 6=i,Y), (10)

is performed. Therefore, the algorithm iterates until the desirable posterior is obtained. A more

detailed description of the algorithm can be found in [34] and references therein.

2) The Variational Bayesian Method: The main idea of this method is to approximate the

true posterior with proper assumption. The assumption herein is that the approximated posterior

has a factorisable form,

q(Θ) =

k
∏

i=1

q(Θi). (11)

This is known as the mean-field assumption [27]. The objective is to find a factorisableq(Θ)

which is as close as the true posteriorp(Θ|Y). The closeness of the estimated posterior to the

true one in the variational Bayesian (VB) method is measuredby the Kullback-Leibler (KL)

divergence, and thus the optimal approximated posterior isobtained by minimizing the following

KL divergence,

q∗(Θ) = argmin
q(Θ)

∫

q(Θ) ln
q(Θ)

p(Θ|Y)
dΘ. (12)

Based on (11) and (12), it can be shown that the approximated posterior for each of the variables

can be calculated as [27], [35],

q∗(Θi) = exp
{

〈ln p(Θ,Y)〉q(Θ\Θi)

}

(13)

where〈·〉q(·) represents expectation with respect to the probability density functionq(·).

In the MCMC implemented statistical sparsity based methods, sampling procedure is required

for each step during iterations. In contrast, the VB implemented statistical sparsity based methods

require calculating matrix inversion in each step during iterations. Notably, the sampling procedure

and matrix inversion calculation would generally induce high computational complexity for

MCMC and VB, respectively. Due to these reasons, the statistical sparsity based methods generally

cost more computations than the non-statistical approaches. The MCMC method can achieve

better estimation accuracy than the VB method, but at a higher computational expense. In a

practical application, one should choose the method according to its computational cost tolerance.
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To conclude this section, we summarize the key advantages ofstatistical sparsity based methods

as follows:

• avoiding regularization parameter tuning. Parameter tuning is not required in statistical

sparsity based methods, which will be demonstrated in all the applications reviewed in

this article.

• providing full posterior. With this capability, desirableimprovements can be achieved by

properly manipulating the statistical model, particularly as shown in Sections V and VI.

• flexible modeling. Since the model is constructed probabilistically, encoding the prior can

be carried out in a rather flexible way, which will be demonstrated in Section IV.

Despite their remarkable advantages, the key limitations of the statistical sparsity based methods

lie primarily in:

• high computational complexity. The generally required computational cost of statistical

sparsity based methods is higher than that required by greedy or regularized methods.

• sparsity assumption. The success of almost all sparsity based methods depends on the

existence of sparsity or compressibility. If the radar target scene does not exhibit sparsity,

modifications should be made to allow a sparse representation [3], [5].

III. SUPER-RESOLUTION RADAR IMAGERY

In conventional Fourier based radar imagery, the resolutions in cross-range and slant-range

are bounded by the Rayleigh limit, which can be overcome by super-resolution techniques. In

general, super-resolution radar imaging can be well formulated as an inverse problem, where

the scattering field is required to be inversely estimated from the received radar echoes. This

problem is ill-posed since it requires estimation of high-dimensional signals from low-dimensional

observations. Recent advances in super-resolution radar imagery consider this problem from

a sparsity perspective and obtain its solution by either greedy or regularized methods, see a

review of state-of-the-art works in [3], [5]. Although empirical results have demonstrated superior

performance of sparsity based algorithms over conventional spectral analysis based methods, their

success often requires careful selection of key parameters.

To alleviate this drawback, super-resolution imagery techniques have been developed more

recently in a statistical sparsity based framework. Herein, the radar returns and the target scattering

coefficient are modeled probabilistically, and the formulated models have the advantage to be free

of laborious parameter tuning. Assuming pre-processing procedures have been carried out, the
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t

tn

Q

P

Fig. 2. The obtained data arrangement.

super-resolution radar imaging problem can be explicitly formulated to be under-determined,

Y = Φ1AXBΦ2 +N (14)

whereY ∈ CP×Q is the pre-processed data,X ∈ CN×M is the unknown sparse scattering

coefficient,N ∈ CP×Q is the noise, andΦ1 ∈ CP×N andΦ2 ∈ CM×Q represent the cross-range

and the slant-range under-sampling matrices, respectively. The data arrangement is shown in Fig.

2 with P ≤ N andQ ≤ M , where each column represents the accumulated echoes from each

range cell. An important message herein is that the matricesΦ1A andBΦ2 should be carefully

designed to achieve desirable properties, such as a low mutual coherence or a certain restricted

isometry property (RIP) [2]. To achieve these goals, the emitting signal waveform or the under-

sampling patterns should be appropriately designed, whereexamples can be found in [13], [36].

More specifically, the so-calledAlltop sequences are utilized in [36] as emitting signals, which

is proved to practically achieve the lower bound of maximum mutual coherence. In contrast,

the authors in [13] investigated different under-samplingpatterns to obtain low maximal mutual

coherence and achieve radar data compression purpose.

1) In an attempt to obtaining super cross-range resolution for radar imaging, a scheme was

proposed in [37]. By setting the under-sampling matrixΦ2 to identity and carrying out

proper pre-processing, a degenerated model of (14) has beenproposed,

Y = Φ1AX+N

whereY ∈ CP×M is the cross-range under-sampled data. The matrixΦ1A is constructed

as a partial Fourier matrix, whose property was investigated empirically in [38].
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2) Similarly, in an attempt to obtain super range resolution, probing frequency based signals

have been proposed to obtain under-sampled data in range dimension. The mathematical

model can be expressed as

Y = XBΦ2 +N

whereY ∈ CN×Q is the range under-sampled data. In particular, the maximumcoherence

condition ofBΦ2 is shown in [39]. Apart from the advantage of data compression, this

strategy can greatly simplify the radar system design by avoiding emitting wideband signals.

3) In the scenario of obtaining both super cross-range and range resolution, the under-sampling

matrices for cross-range and range areΦ1 and Φ2, respectively. The authors in [40]

proposed a random sampling scheme for both slant-range and cross-range dimensions,

where random selection is carried out in each dimension. This scheme is particularly useful

for reducing data storage costs in various radar imagery applications.

To impose sparsity on the target scene, the above-reviewed works employed a scaled Gaussian

mixture model to induce sparsity as well as to avoid parameter tuning. Empirical experimental

results found in [37], [40], [41] demonstrate that the statistical sparsity model obtains cleaner

images without parameter tuning, as compared to other sparse regularized based methods [40].

Additionally, the statistical sparsity based methods havebeen empirically shown to be less

sensitive to noise and clutter in radar imaging.

Remark: In [37], [40], [41] discussed above, multiplicative speckle noise in radar imagery has

not been considered. In presence of speckle noise, the performance of sparsity based methods

would be compromised. For this particular problem, the authors in [3], [13] proposed to used

ℓ1 norm of the scene’s gradient in addition toℓ1 norm of the scene to obtain de-speckled radar

image. To the best of our knowledge, the de-speckling problem in radar imaging has not yet been

specifically considered under the statistical sparsity based framework. However, similar idea of

exploiting gradient sparsity along with sparsity has been proposed in a statistical framework,

where example can be found in [42]. An immediate advantage would be that the formulated

statistical sparsity based method could be free of regularized parameter tuning process, where

good performances could be readily attainable.

In summary, there are two important points to be noted here. Firstly, the success of statistical

sparsity based methods depends on the proper selection of sampling patterns, which is also the

case for conventional sparsity based methods. In fact, statistical sparsity based methods are less

sensitive to highly correlated measurement matrices induced by some sampling patterns than
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sparsity regularized methods. A detailed analysis can be found in [43] and references therein.

Secondly, a trade-off between design convenience and performance is to be properly balanced,

depending on performance requirements for super-resolution in the problem at hand.

IV. ENHANCED TARGET IMAGERY BY EXPLOITING STRUCTURED SPARSITY

Pattern (a)
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Pattern (b) Pattern (c)

Fig. 3. First-order continuity patterns.

In the previous section, we have demonstrated that statistical sparsity could lead to improve-

ments over deterministic sparsity in super-resolution radar imagery. In order to carry out sparse

estimation, the scaled Gaussian mixture is imposed on the scattering coefficients, which are

assumed to be independently distributed. However, in practice, targets in radar images always

exhibit strong spatial correlation due to the fact that a real target is physically continuous [39],

[44]–[46]. To be more concrete, for example, the radar returns from a tank or an airplane will often

exhibit strong spatial correlation, i.e., non-zero valuedscatterers in the target region continuously

residing in the range and/or cross-range dimensions. This phenomenon motivated the research in

[39], [45], [46], which properly modifies the statistical sparse model. In these works, continuity

in the target scene is exploited by incorporating a correlated prior in a probabilistic framework.

In the sequel, we review methods that impose first-order and higher-order correlations on the

sparse scattering coefficients.

A. First Order Correlation

In [39], [44], [45], a modification in spike-and-slab modeling was made so as to impose first-

order spatial correlation of the coefficients. The reason for choosing the spike-and-slab prior

rather than the scaled Gaussian mixture is because imposingcorrelation on the support of the

sparse signal is more accurate and justifiable than imposingit on the amplitude of the sparse

signal. As discussed in Section II, the sparsity pattern of the signal is determined byW in the

spike-and-slab model in (7), where the parameterq controls the probability ofW being non-zero.
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Fig. 4. Radar Images obtained by (a) range-Doppler algorithm (RDA) under noise; (b) RDA using one half of the

measurements; (c) anℓ1 regularized method using one half of the measurements; (d) afirst-order continuity method

[39] using one half of the measurements

Therefore, a straightforward way to impose a continuity prior on the signal can be carried out

directly onW. However, this treatment deviates from the original intention to perform a flexible

statistical modeling step. For this particular reason, it is suggested in [39], [45] to encode the

first-order structural information onq in an intermediate way rather than straightforwardly on

W. The key modification is to replace the single Beta prior for parameterq by a set of Beta

priors that consist of three different sets of parameters,{ek, fk}k=0,1,2, so as to capture strongly

independent, strongly continuous and non-informative priors, respectively.

More concretely, the proposed sparsity patterns that encourage continuity as well as preserve

sparsity in [39], [45] are summarized as follows:

• Strong rejection: if the first-order neighborhoods ofXmn are all zero, it would be highly

possible thatXmn is also zero due to the continuity of the target scene. The priorBeta(e0, f0)

with e0 < f0 is utilized to make the probabilityqmn of Wmn = 0 being large. This means
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that the absence of a first-order neighborhood implies the investigated scatterer being zero

with a high probability. It is noted that this rejection pattern can eliminate the undesired

isolated speckles or artifacts in the radar image.

• Strong acceptance: if any of the continuity patterns forXmn in Fig. 3 is observed, the prior

that a non-zero valuedamn arises with a high possibility should be imposed. This step

imposes continuity of the target image. In this case, the prior Beta(e1, f1) with e1 > f1

enforces the probabilityqmn of Wmn = 1 to be large and, thus the scatterer under test can

be accepted. This implies that the occurrence of any patternin Fig. 3 leads to one that is

non-zero with a high probability. This pattern enforces first-order correlation of the scattering

coefficient and, therefore continuity of the target.

• Weak rejection: apart from the scenario of strong rejectionand acceptance patterns, a

non-informative prior is imposed on any other neighborhoodpatterns forXmn. The prior

Beta(e2, f2) with e2 = f2 is used to impose a non-informative prior onqmn. This appro-

priately allows the model to be effective in imposing the prior whenever necessary and to

remain non-informative whenever no strong rejection or acceptance patterns appear.

By adaptively selecting from different Beta hyper-priors,the statistical model can either en-

courage continuity or independence, apart from mere sparsity. In this manner, the structured

information can be flexibly incorporated to obtain concentrated imagery results. A key component

in incorporating the prior is that it is imposed on the parameter q rather than directly onW.

The underlying motivation for this formulation is that it ismore flexible to impose a probabilistic

belief rather than a rigid supportW.

In Fig. 4, the real Yak-42 data are used to test different algorithms, where the radar image

obtained with all measurements is shown in Fig. 4 (a) for reference purposes. In general, there

are two issues to be considered in the evaluation of radar images. Firstly, how well the target is

concentrated, i.e., more true scatterers preserved in the target region and less artifact recovered

outside the target region. Secondly, how well the radar image is focused, i.e., lower side-lobed and

noise. As shown in Fig. 4 (b), the radar image obtained by the range-Doppler algorithm (RDA)

method is highly corrupted by noise. Although theℓ1 regularized approach can achieve better

performance than RDA by exploiting sparsity, the obtained target image is not well concentrated

and artifacts around the target are not removed, as shown in Fig. 4 (c). Notably, the method

in [39] that exploits first-order continuity patterns performs best, as shown in Fig. 4 (d). More

specifically, the first-order continuity method in [39] outperforms theℓ1 regularized approach in
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terms of radar target concentration and artifact removal, and is even clearer than the reference

image, obtained with all measurements as shown in Fig. 4 (a).

B. Higher-Order Correlations

It can be observed that a real radar image generally exhibitshigher-order correlations than

simply horizontal or vertical correlations, exploited in [39], [45]. This motivates an extension

of the first-order method. To formulate a generalized framework, a more sophisticated model

is developed in [46] that captures higher-order correlations based on Markov Random Fields

(MRF). The MRF model is widely used in image processing for imposing structural constraints

on the image. This work presents a unified framework of incorporating more complex structural

information in the target scene, as compared with the simplefirst-order approach. In Fig. 5,

the construction of the MRF model is presented, where a second-order neighborhood system is

employed. This model allows continuity from four directions, i.e., horizontally, vertically,3π/4

and1π/4 diagonally. The authors argue that adopting second-order MRF enables the capture of

correlations of the investigated scatterer with its nearest eight neighbors, as shown in Fig. 5.

Neighbors of site i

site i

singleton horizontal vertical diagonal 3 /4 diagonal /4

Types of cliques

Fig. 5. An example of a second-order MRF model, where eight neighbors are considered.

To impose continuity of the target scene, the authors in [46]consider a more general structured

sparse prior as compared with that in [39], [45]. A more complicated continuity prior has

been proposed by modifying the spike-and-slab modeling to better preserve the weak scatterers.

Moreover, the hyper-parameter selection in [39], [45] is avoided by adopting an MRF prior

since all the parameters can be automatically inferred. This is a very desirable feature for
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Fig. 6. Comparison of radar images with a quarter of the full measurements and SNR=5dB obtained by (a) anℓ1

regularized method; (b) a method in [39] using a quarter of the measurements; (c) a method in [46].

statistical inference. Based on this model, the authors employ a variational Bayesian expectation

maximization (VBEM) method for inference, where an improved rate of convergence can be

obtained, as compared with the method in [39], [45]. As commented earlier, the VB based

method generally requires less computational complexity than the MCMC based one.

In Fig. 6, we can observe that both the first-order continuitymethod in [39], [45] and the

second-order continuity method in [46] produce much enhanced radar images in the sense of

less noise and better concentrated target region, comparedwith the ℓ1 regularized method. As

shown in Fig. 6 (b) and (c), the second-order continuity based method performs much better than

the first-order one in terms of removing the undesirable isolated artifacts and preserving weak

scatterers outside and within the target region, respectively. More importantly, the computational
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time of the second-order continuity method is much less thanthat of the first-order one [46].

All the above demonstrates how, by incorporating structural priors in addition to sparsity,

a statistical framework provides superior performance as compared to a merely sparsity based

framework. The major advantage of these approaches is that they can statistically impose the

structured sparsity on the signal in a rather flexible way, which allows the algorithm to adapt

the structured sparse estimation in a data-driven manner. More specifically, in all the introduced

models, the structural information is not directly imposedon the sparse signal itself, but on the

probability distribution that determines the sparsity profile.

V. STATISTICAL SPARSITY BASED AUTOFOCUSTECHNIQUES IN RADAR IMAGERY

The CS based radar imagery techniques discussed in the previous sections generally depend

on the premise that pre-processing procedures, such as range cell migration correction and phase

adjustment have been perfectly conducted. Unfortunately,this is not a valid assumption from a

practical viewpoint, since the motion of the target cannot be precisely compensated in coarse pre-

processing stages. If these errors are not properly corrected or compensated for before carrying

out any CS based algorithms, the reconstructed radar image is not well concentrated.

Recently, phase error correction has been considered by utilizing a sparse recovery technique,

where alternatingℓ1 regularized approaches [14] are proposed to obtain more focused images. In

these methods, the sparse scattering coefficient and the phase errors are iteratively estimated to

induce sparsity, and obtain a focused radar image. Althoughthese methods have demonstrated

remarkable improvements over the conventional autofocus techniques, these regularization based

methods might converge to a shallow local minimum during theiterative procedure. The alternate

optimization between the sparse scattering coefficient andthe phase error would inevitably result

in error propagation [47]. More concretely, the alternate optimization scheme would introduce

errors since the estimation accuracy of one parameter substantially influences that of another

parameter. This issue is particularly severe with under-sampled data and in low SNR conditions.

To appropriately overcome the above limitations, high-resolution imagery and phase error cor-

rection have been formulated in a statistical sparsity based model [47]–[49]. In this formulation,

probabilistic models are imposed on the signal to encode sparsity in a statistical way. Subsequent

parameter estimation is conducted within a sparse Bayesianlearning framework [19], [47].
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Fig. 7. Radar imaging with 25 pulses (50% of the full measurements and SNR=20dB). (a) random phase error, (b)

RDA method, (c) a method in [47] (without uncertainty information) (NMSEX = −4.0294dB, MSEϕ = 0.4019),

(d) a method in [47] (with uncertainty information) (NMSEX = −12.4399dB, MSEϕ = 0.0059).

A. Statistical Sparsity Based Autofocus

Assuming that the phase error in radar imagery exhibits range invariance [15], the mathematical

model can be stated as

Y = EΦ1AX+N. (15)

where E = diag(ejϕ1 , ..., ejϕP ) denotes the phase error matrix, which is a diagonal matrix

representing cross-range variant phase errors. In [47], the authors utilize the scale Gaussian

mixture model to impose sparsity onX. The estimation ofX, α andλ is obtained individually

since they are task-specific parameters, while estimation of α0 andE is performed in a global

manner due to the task-invariant property.

According to the graphical model [47], the parameters,X, α, λ andα0, can be conveniently

estimated, which is similar to that in the scaled Gaussian mixture model introduced previously.
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Fig. 8. Radar imagery results with one half of the measurements obtained by (a) RDA, (b) a method in [14], and

(c) a method in [47].

The most straightforward way to obtain an estimate of the phase errorE is to maximize the

expected log-likelihood function as,

Ê = argmin
E

〈−ln p(Y,X,α,λ;E)〉q(X)q(α)q(λ). (16)

The above problem is a strictly convex optimization with a closed-form solution. By solving the

optimization problem in (16), the updating formula can be obtained [49]. As a matter of fact,

this updating rule for phase error is rather similar to that of the regularized approach in [14],

[15], because the updating formula only uses the first-ordermoment ofX to estimateE and the

obtained covariance matrixΣ of X does not appear in this updating rule. In other words, this
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formulation deviates from the original intention of utilizing higher-order statistical information

in the first place.

In order to properly utilize the uncertainty information, the work in [47] proposes to incorporate

the obtained covariance matrixΣ in the estimation of phase errors to obtain enhanced accuracy.

Towards this end, the phase error is deliberately modeled asa complex parameterai+ jbi rather

than explicitly modeling the phase error asejϕi . By introducing this complex parameter instead of

the angle parameterϕi, we will see that the uncertainty information can be naturally incorporated

in the algorithm to achieve enhanced estimation accuracy ofE in each iteration. In the derived

updating formula in [47], it can be seen thatΣ, which contains uncertainty information, can be

incorporated into the estimation of the phase error parameter E. It is demonstrated in [47] that

by replacing the true phase error parameters with complex-valued error parameters, the resulting

scheme could utilize the estimation uncertainty information and obtain a performance gain as

compared with regularized sparsity based autofocus techniques.

In Fig. 7, an illustrative example is presented to evaluate the performance of the updating rule

without and with high-order uncertainty information. In this simulation, a total of11 scatterers are

present in the imaging scene. In Fig. 7(a), the random phase error is shown. In Fig. 7(c) and (d), it

can be seen that both updating rules lead to a more focused image compared with the RDA method

shown in Fig. 7(b). In particular, the updating rule withoututilizing the uncertainty information

leads to a less focused image, where undesirable side-lobe effects exist for almost all the scatterers

on the imaging scene. In contrast, the image obtained by the updating rule utilizing the uncertainty

information is well focused with substantially suppressedside-lobe effects. Quantitative evaluation

also demonstrates that the radar image in Fig. 7 (d) providesa lowerNMSEX as well asMSEϕ

than those obtained in Fig. 7 (c) due to the inherent ability to utilize the uncertainty information of

estimation ofX. This validates the motivation of utilizing the uncertainty information to achieve

higher estimation accuracy, and therefore better recovered radar image. This work is also validated

using the Yak-42 data. As observed from Fig. 8(a), directly applying the RDA method can barely

lead to a concentrated image. In Fig. 8(b), the image obtained by ℓ1 presents a reasonable profile

of the airplane. However, it is still blurred and some of the true scatterers are not recovered

correctly. In contrast, the method in [47] obtains a better concentrated image and removes most

of the undesirable artifacts as seen from Fig. 8(c). With these comparisons, we conclude that the

proper utilization of uncertainty information substantially enhances the performance in autofocus

applications.
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The statistical treatment of the sparsity based algorithm can properly utilize uncertainty in-

formation during iterations to improve the estimation accuracy. In fact, we have demonstrated

how this uncertainty information can be properly used throughout this particular application.

Compared with the regularized approach, the statistical sparsity based algorithms do not require

the time-consuming parameter tuning for improved performance as those in theℓ1 regularized

alternating methods.

B. Autofocus Meets Structured Sparsity

The basic idea in [47] is to iteratively estimate the sparse scatterer coefficients and the phase

error to jointly induce sparsity. However, The objective ofradar imaging is to obtain the most con-

centrated radar image rather than the sparsest one. Therefore, a merely sparsity-inducing scheme

may result in undesirable image results, because it only considers sparsity as the performance

measure. More concretely, the weak scatterers cannot be well-preserved and background noise

cannot be desirably reduced with a simple sparsity constraint. A possible solution to obtain a more

concentrated radar image rather than a mere sparse one is to exploit structured sparsity. In [49], the

sparse Bayesian model is sophisticatedly modified to exploit structural sparsity. More specifically,

the spatial consistency along range cells is exploited. Therefore, the framework can simultaneously

cope with structured sparse signal recovery and phase errorcorrection in an integrated manner.

The focused high-resolution radar image can be obtained by iteratively estimating the sparse

scatterer coefficients and phase errors to jointly obtain a structured sparse solution.

Due to the utilization of the structured sparse constraint,the proposed method preserves the

target region and alleviates the over-shrinkage problem, compared to the previously presented

sparsity-driven auto-focus approaches. The superior performance of the structured sparsity based

technique is shown in Fig. 9. Compared with other approaches, the structured sparsity based

autofocus method achieves a better concentrated image withmore coefficients recovered in the

target region with different under-sampling ratios.

VI. STATISTICAL SPARSITY BASEDSAR GROUND MOVING TARGET IMAGING

Imaging ground moving targets in synthetic aperture radar has become increasingly important.

Conventionally, in imaging a potentially moving target, hypotheses of the target motion are

constructed to match the signal by a filter bank [50]. In the scenario of closely located targets,

however, their responses cannot be well distinguished fromeach other. Recent advances of sparsity

based SAR ground moving target imaging (GMTIm) [5], [51] suggest that sparsity can be properly
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Fig. 9. Radar imagery results with SNR= 5dB using (a)ℓ1 regularized method, (b) TV+ℓ1 regularized method, (c)

statistical sparsity based method in [47], and (d) statistical structured sparsity based method in [49].

exploited to enable multi-target processing and higher accuracy. This application is rather different

from the previously introduced ones, since the received radar echoes can no longer be simply

modeled as a sum of harmonics, but rather as multi-componentLFM signals with unknown chirp

rates. Therefore, the key challenge in SAR GMTIm is to properly formulate a mathematical

model that allows a sparse representation of the images for moving targets. In [51], the signal

model is constructed as a sparse linear model, where an over-complete dictionary is constructed

by using a discretized velocity grid. Although empirical results demonstrate the success of the

method, its performance is inhibited by the discretizationerrors in the dictionary. In this section,
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we will briefly review two recent works based on statistical sparsity from different angles.

In [52], a statistical framework is formulated to obtain themoving target image, which could

avoid the construction of a large over-complete dictionary. In particular, this work considers aK

channel synthetic aperture radar system withF passes, collecting data fromP azimuth angles

andQ range cells. The complex-valued raw SAR image is decomposedas follows [52],

Yp,f = Ep,f ◦ (Lp,f + Sp,f +Np,f), p = 1, ..., P and f = 1, ..., F (17)

whereYp,f ∈ CQ×K denotes the raw SAR image at azimuthp and passf , Ep,f ∈ CQ×K is

the corresponding spatial-temporal calibration error,Lp,f ∈ CQ×K represents background clutter,

Sp,f ∈ CQ×K represents the moving target andNp,f ∈ CQ×K models noise. Since the number

of parameters to be estimated is much larger than the number of observationsY, proper priors

must be selected for each of these parameters. The interested reader is referred to [52] for more

details. Here, we only highlight the key statistical modelsin this formulation.

• The clutterLp,f is decomposed into a sum of a pass-invariant background termBp and a

pass-specific speckle termXp,f . Assuming that the background clutterBp can be represented

by one of the several classes such as road or buildings, a complex Gaussian prior is used for

Bp with a set of unknown covariance matrices that account for different classes, where each

covariance matrix is modeled as an inverse Wishart distribution. Similarly, the pass-specific

speckle termXp,f is modeled probabilistically.

• Since the moving target is assumed to be sparse in the raw SAR image domain, a modified

spike-and-slab model models sparsity as well as moving target signatures. More specifically,

the sparsity is modeled by a Bernoulli-Beta distribution and the moving target signature is

modeled as a complex Gaussian-Inverse-Wishart distribution. The rationale of this modeling

is to allow a rather tractable inference.

• An additional constraint can be imposed on the hyper-parameters of the sparse moving

target to encourage a smooth trajectory. It is noted that this smooth prior is constructed

by modifying the Beta distribution instead of the support parameter directly, where this

manipulation can be rather flexible in encoding the prior information in a probabilistic

sense.

Since the work in [52] utilizes the decomposition of a raw SARimage, the construction of the

dictionary as in [51] can be avoided. Since this method is formulated in a statistical framework,

the algorithm could utilize the uncertainty information obtained in one parameter to enhance the
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estimation of other parameters subsequently. These desirable properties of the statistical sparsity

based method have led to substantial improvements over conventional methods.

Another approach for the SAR GMTIm problem is based on formulating a parametric model,

where statistical sparsity is enforced [53]. In this work, the clutter is assumed to have been

suppressed by off-the-shelf methods, and an initial representation of the received signal is firstly

carried out by utilizing LV’s distribution (LVD) [54], which is a novel TFR for representing LFM

signals. However, the resolution of the LVD representationis constrained by the CPI of the target

and its discretized grid [54]. It should be noted that the limited accuracy of the LVD representation

may cause an unfocused target response, and thus a degraded target image. To deal with this

challenge within a statistical sparsity based framework, dynamical refinement is suggested for

an accurate estimation of the chirp rate in [55]. In particular, this dynamic refinement iteratively

refines the initializedγi by LVD and the sparse target coefficient. In this way, the estimation

accuracy can be improved in a statistical sparsity framework, and therefore, a concentrated moving

target image can be obtained. ConsideringP azimuth andQ range cells, the clutter suppressed

signal model can be formulated as [55],

Y = EA(γ1, ...,γK)X+N (18)

whereY ∈ CP×Q is the clutter suppressed data,E ∈ CP×P represents the unknown phase

errors,X ∈ CKN×Q models the sparse moving target to be estimated,γi, i = 1, ...,K, is

a set of parameters in the dictionary to be estimated andK is the number of moving targets.

As described earlier, the dictionaryA(γ1, ...,γK) ∈ CP×KN is an over-complete one. It is

constructed by concatenatingK sub-dictionary, where each sub-dictionary is constructedby an

LFM matrix with chirp rateγi. In this work [55], a scaled Gaussian mixture distribution is used

to model sparsity. Similar to the work covered in Section V, statistical information is utilized to

estimate the error parameterE and the chirp rateγi, where the error propagation problem during

iteration is reduced [47], [55].

In Fig. 10, the canonical Gotcha data set is used for validation, and an example of the Durango

target image is given to demonstrate the performance. Due tothe movement of the target, the

original image is substantially blurred, as observed from 10(a). After representing the received

signal by LVD, theℓ1-norm regularization method and the conventional sparse Bayesian method

are applied to obtain the moving target images as shown in Fig. 10 (b) and (c), respectively. It

can be seen that theℓ1 regularized method and the sparse Bayesian method cannot properly focus

the target image due to the representation error in LVD. In contrast, the statistical sparsity based
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Fig. 10. Durango target image. (a) Original image; (b) imageobtained byℓ1-norm regularization; (c) image obtained

by conventional statistical sparsity based method; (d) image obtained by parametric and dynamic statistical sparsity

based method in [55]

method with refinement leads to the best imaging performancein terms of better concentration

and desirable noise suppression, as shown in Fig. 10(d). In particular, the target image is focused

within a 5m× 5m area that is in accordance with the Durango truth with a size of 5m× 2m.
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VII. SUMMARY AND FUTURE DIRECTIONS

A. Summary

Sparsity based techniques have been reviewed from a statistical perspective, along with their

recent advances in radar imagery. In various applications,it has been shown that improved per-

formance can be obtained by adequately utilizing a statistical sparse model. These improvements

obtained in the reviewed applications were largely dependent on the following core ingredients.

1) Probabilistic modeling by incorporating flexible priorsin the signal, is one of the most

remarkable advantages over deterministic approaches. Theadvantageous characteristics of

the statistical framework are that it is rather flexible. In this way, the formulation could

model a particular structure in a probabilistic way and alsoallows for fitting with the

likelihood.

2) The utilization of uncertainty information during parameter estimation is important for a

performance gain. Particularly, in conventional approaches, the error estimated in one stage

can lead to a degraded performance in the subsequent stages.In the statistical framework,

the signal estimation is conducted in a statistical manner,where the obtained statistics

indicate the uncertainty in the signal estimation. Therefore, the estimation could be more

accurate.

By properly manipulating the statistical sparsity models,a performance gain could be obtained.

B. Future Directions

Since the statistical sparsity based methods are very attractive, it would be very interesting to

investigate the following problems in the future.

• Computational complexity.The statistical sparsity based methods operate in an iterative

manner, where the number of iterations and the computational cost in each iteration de-

termine the computational cost. Compared to the conventional Fourier based approach for

radar imaging, the computational complexity is much higher. It is therefore imperative to

develop fast algorithms, which could decrease the computational complexity or obtain fast

convergence. The fast algorithms would be particularly useful for many radar applications

requiring real-time processing.

• Motion compensation errors.In high-resolution radar imaging problem, a large coherent

processing interval (CPI) is required. Then, the target movement becomes a problem as the

radar line-of-sight dramatically changes. In such a scenario, even after carrying out coarse
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motion compensation, range cell migration (RCM) and phase error would still be present in

the radar echoes. Then, the dictionary allowing sparse representation would become more

complicated, where the proposed imaging algorithm should also be able to correct RCM

and phase errors. The main challenge is to properly obtain the approximated solution in the

presence of a more complicated model. Towards this end, it would be particularly suitable

to exploit statistical sparsity to limit error propagation. One possible way of coping with

this challenge is to encode priors on the error parameters toproperly regularize the solution

space.

• Temporal correlation in SAR GMTIm.Conventionally, most SAR GMTIm algorithms focus

on image formation of the moving target at one particular time instant. However, it is

important to also monitor the movement of the moving target.Since the targets motion and

imaging background are time-varying, simply generating one single frame image cannot

provide time varying characteristics of the moving target.Therefore, it is necessary to develop

temporal SAR GMTIm based on the statistical sparsity based framework, which is promising

research direction in SAR-GMTIm technology. In fact, Sandia Laboratory has successfully

realized Video-SAR GMTIm, where the processed results havebeen released on their official

website. In particular, the temporal SAR GMTIm is a good candidate for applications in

complicated urban scenes, where improved performance is valuable. The statistical sparsity

based framework for moving target imaging in urban environments could be formulated

to include the temporal smoothness constraint during the radar passes and to cope with a

complicated background.

• Improved classification performance.An important objective of radar imagery is to classify

different types of targets automatically and accurately. One should capture more structural

features during target imaging by utilizing the training information obtained from the recog-

nition stage, which will in turn greatly benefit automatic target recognition (ATR). More

precisely, radar imagery should be discriminative enough for target recognition purposes.

One promising future work is to incorporate appropriate priors in a statistical framework to

perform discriminative radar imagery.

In summary, statistical sparsity-driven techniques have been shown to be very promising for

radar imagery due to their flexibility and good statistical properties. It is expected that these

applications will immensely benefit from the more recent theoretical advances in this area.
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