<table>
<thead>
<tr>
<th><strong>Title</strong></th>
<th>Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Author(s)</strong></td>
<td>Wang, Chuan; Shi, Weidong; Wang, Xikun; Jiang, Xiaoping; Yang, Yang; Li, Wei; Zhou, Ling</td>
</tr>
<tr>
<td><strong>Date</strong></td>
<td>2017</td>
</tr>
<tr>
<td><strong>URL</strong></td>
<td><a href="http://hdl.handle.net/10220/41936">http://hdl.handle.net/10220/41936</a></td>
</tr>
<tr>
<td><strong>Rights</strong></td>
<td>© 2016 Elsevier Ltd. This is the author created version of a work that has been peer reviewed and accepted for publication by Applied Energy, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [<a href="http://dx.doi.org/10.1016/j.apenergy.2016.11.046">http://dx.doi.org/10.1016/j.apenergy.2016.11.046</a>].</td>
</tr>
</tbody>
</table>
Optimal Design of Multistage Centrifugal Pump Based on the Combined Energy Loss Model and Computational Fluid Dynamics

Chuan Wang\textsuperscript{a,b}, Weidong Shi\textsuperscript{a}, Xikun Wang\textsuperscript{a,b}, Jiang Xiaoping\textsuperscript{a}, Yang Yang\textsuperscript{a}, Wei Li\textsuperscript{a} and Ling Zhou\textsuperscript{a,*}

\textsuperscript{a}Research Center of Fluid Machinery Engineering and Technology
Jiangsu University
Zhenjiang, Jiangsu Province
212013, China

\textsuperscript{b}Maritime Research Centre
Nanyang Technological University
639798, Singapore

\textsuperscript{*}Corresponding author.
E-mail address: lingzhou@ujs.edu.cn

Abstract: This paper proposes a method to optimize the design of a typical multistage centrifugal pump based on energy loss model and Computational Fluid Dynamics (ELM/CFD). Different grid numbers, turbulence models, convergence precisions, and surface roughness are calculated for a typical multistage centrifugal pump. External characteristic experiments are also conducted to benchmark the numerical simulation. Based on the results, the ELM/CFD method was established including various kinds of energy loss in the pump, such as disk friction loss, volumetric leakage loss, interstage leakage loss as well as the hydraulic loss, which occurred at inlet section, outlet section, impeller, diffuser and pump cavity, respectively. The interactive relationships among the different types of energy losses were systematically assessed. Applying suitable setting methods for numerical calculation renders more credible results, and ensuring the integrity of the calculation model is the key contributor to the accuracy of the results. The interstage leakage loss is converted by the disk friction loss; thus, they are positively correlated, that is, the disk friction loss can be reduced.
by decreasing the interstage leakage loss. Concurrently, the volumetric leakage loss is  
egatively correlated with the disk friction loss; thus, increasing the volumetric  
leakage loss can effectively reduce the disk friction loss. The increment of the  
volumetric leakage loss is greater than the decrement of the disk friction loss for  
general centrifugal pumps. This relationship between these types of losses, however,  
does not apply to pumps with significantly low specific speed. Therefore, reducing the  
volumetric leakage and interstage leakage losses is the most effective technique to  
increase the efficiency of general centrifugal pumps. The impeller should be designed  
according to the maximum flow design method, because the inevitable volumetric  
leakage loss will improve the pump efficiency under rated flow condition. Several  
methods have been proposed to improve the pump efficiency.  

**Keywords:** Energy loss model; Pump optimization; Multistage centrifugal pump;  
Computational fluid dynamics.

**1. Introduction**

Pumps are a kind of general machinery with varied applications. According to  
the statistics, pumps’ energy consumption accounts for nearly 22% of the world’s  
energy used by electric motors, so pumps have huge energy consumption and great  
energy saving potential [1-3]. More and more energy saving strategies and end-users  
push industries and researchers to concentrate on improving the pump efficiency [4-5].  
In addition, multistage centrifugal pumps, as fundamental elements for providing  
high-energy liquid, have attracted increasing attention in the past several years [6-10].

At present, there are several methods to improve the pump efficiency, namely,  
test optimization, velocity coefficient optimization, Computational Fluid Dynamics  
(CFD) optimization and energy loss model (ELM) optimization. Being  
semi-theoretical and semi-empirical, test optimization plays an important role in the  
pump design, and orthogonal tests are widely used in the industry. For example, Zhou  
et al. [11] designed 16 impellers with the same diffuser base on the orthogonal table,  
and the best parameter combination for the highest pump efficiency was captured by  
employing the orthogonal tests optimization. In order to improve the efficiency of
stainless steel stamping multistage pump, Wang et al. [12] established the function relationship between the efficiency and three factors of impeller through the quadratic regression orthogonal test. To realize the multiobjective optimization of pump efficiency and cavitation performance, Xu [13] used orthogonal method to carry out the range analysis and studied the influence order of each parameter. Although orthogonal test is very credible and effective for the pump optimization, but it consumes too much time and material because of a series of testing schemes.

Velocity coefficient optimization is a kind of similar conversion method based on lots of excellent hydraulic models, and suitable velocity coefficient should be selected as the basis of pump size according to the specific speed. This method is simple to use, but it’s very difficult to design new excellent hydraulic model due to the limitation of existing models and experience. In 1948, Stepanoff [14] presented the Stepanoff velocity diagram by collecting a large number of measured data, using which pump designer can choose the appropriate geometry parameters of the pump according to its specific speed. Lobanof [15] provided the newest velocity coefficient data to calculate the geometric parameters of centrifugal impeller. Yan et al. [16] solved the Lobanof’s data through numerical analysis. Although velocity coefficient method is rather effective, but it completely depends on the past empirical coefficients.

Computational Fluid Dynamics (CFD) optimization is to guide the pump optimization through the simulation of the three-dimensional incompressible flow field of the pump by means of high performance computer [17-18]. In recent years, researchers have developed this method firstly on the preliminary design with one-dimensional theory and then CFD optimization. Goto et al. [19] presented the hydraulic design method of centrifugal impeller based on the whole three-dimensional inverse problem design. Passrucker [20] designed inversely the axial plane projection and blade molded line of impeller by using CFD. Zhou et al. [21] simulated the internal flow of a new type of three-dimensional surface return diffuser to improve the hydrodynamic performance of the deep-well centrifugal pump. Although this method is very convenient to optimize the pump efficiency, but it entirely relies on the high-performance computer and experienced technicians using CFD.
The core idea of energy loss model (ELM) optimization is to build the relationships between the geometrical parameters and the various kinds of energy losses in the pump, with an ultimate goal to minimize the total energy loss. The energy losses in the pump are composed of mechanical loss, leakage loss and hydraulic loss. The mechanical loss refers to the energy loss due to the mechanical friction in the pump, including the disk friction loss, bearing friction loss and shaft seal friction loss. The leakage loss refers to the energy loss because of clearance leakage in the pump, including the leakage loss at front ring, rear ring and balance mechanism. The hydraulic loss refers to the energy loss through the various components in the pump, including the inlet section, outlet section, impeller, diffuser and pump cavity. It should be noted that the leakage loss at front ring and rear ring are also called the volumetric leakage loss and the interstage leakage loss, respectively. Due to the complex turbulent flow in the pump, it is very difficult to exactly calculate all the kinds of energy losses in theory, but researchers have deduced many semi-theoretical formulas to estimate the energy losses. For instance, the National Engineering Laboratory of Britain (NELB) applied successfully the ELM optimization in the design of centrifugal pump and mixed-flow pump [22]. Yuan et al. [23] established the predicted ELS of centrifugal pump according to the flow channel centerline method of NELB. Based on the hydraulic loss in the pump, Neumann [24] built the relationship between the geometric parameters and the hydraulic parameters such as flow coefficient, head coefficient and velocity coefficient. Li [25] generalized the Neumann’s method to all the blade-pump, and proposed the correction measure for all the blade-pump under the un-design working condition in the principle of minimizing the sum of all the energy losses. Although there are a great number of semi-theoretical formulas for ELM, it is worth asking whether the formulas are accurate or not, either by experimental or numerical methods.

As reviewed above, each of the four optimization methods has its own pros and cons. Test optimization is accurate and reliable, but is time-and resource-consuming. Velocity coefficient optimization is simple and effective, but it is rather difficult to develop new excellent hydraulic model. ELM optimization is based on strict
mathematical theory, but its accuracy is hard to ensure because a lot of internal energy losses are deduced by semi-theoretical formulas. CFD optimization is not restricted by physical model and test apparatus, which saves time and money substantially, but due to the lack of standards for judging whether CFD results are accurate or not, it has to be validated against experimental results. Moreover, most of current numerical calculations can only predict the pump’s overall performance, and fall short in detailed analysis of the various kinds of energy losses in the pump.

Therefore, in this paper we propose to combine the ELM optimization and CFD optimization together, namely ELM-CFD. By employing numerical simulations, all the kinds of energy losses in a typical multistage centrifugal pump are calculated to assess their individual or combined effects on the pump performance. The optimal design were obtained by the combining method of ELM-CFD and verified by prototype test. This paper provides certain guidance for the optimization of multistage centrifugal pumps.

2. Setting methods for numerical calculation

CFD is suitable for simulating the internal flow field of rotating machinery. Nevertheless, the numerical settings of CFD should be selected appropriately to ensure the reliability of results. Therefore, a series of numerical calculations for a typical multistage centrifugal pump were performed using different grid numbers, turbulence models, convergence precisions, and surface roughness.

2.1 Hydraulic design of the impeller and diffuser

Impellers and diffusers are the core components of centrifugal pumps. The geometric parameters of impellers and diffusers can be obtained using velocity coefficient method, as shown in Table 1. The inlet angle of positive diffuser blades has a small value of $\alpha_3 = 5^\circ$ to extend the flow channel of the positive diffuser. Reducing the outlet angle of the negative diffuser blade will help obtain a steeper head-flow rate curve, lower maximum shaft power [26-27]. Thus, the outlet angle of the negative diffuser blades was set to 50°. Table 1 shows that the two-dimensional models of the impeller and diffuser can be obtained, as respectively shown in Figures 1 and 2.
Tab. 1 Basic geometric parameters of the pump

<table>
<thead>
<tr>
<th>Geometric parameter</th>
<th>Value</th>
<th>Geometric parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet diameter of the impeller $D_1$ (mm)</td>
<td>20</td>
<td>Outlet width of the impeller blade $b_2$ (mm)</td>
<td>3</td>
</tr>
<tr>
<td>Hub diameter of the impeller $D_{hb}$ (mm)</td>
<td>33.5</td>
<td>Number of positive diffuser blades $Z_p$</td>
<td>9</td>
</tr>
<tr>
<td>Outlet diameter of the impeller $D_2$ (mm)</td>
<td>108</td>
<td>Number of negative diffuser blades $Z_n$</td>
<td>9</td>
</tr>
<tr>
<td>Inlet angle of the impeller blade $\beta_1$ (°)</td>
<td>40</td>
<td>Inlet diameter of the positive diffuser $D_3$ (mm)</td>
<td>109</td>
</tr>
<tr>
<td>Outlet angle of the impeller blade $\beta_2$ (°)</td>
<td>15</td>
<td>Inlet angle of the positive diffuser blade $\alpha_3$ (°)</td>
<td>5</td>
</tr>
<tr>
<td>Wrap angle of the impeller blade $\theta_w$ (°)</td>
<td>150</td>
<td>Outlet angle of the negative diffuser blade $\alpha_6$ (°)</td>
<td>50</td>
</tr>
<tr>
<td>Number of the impeller blades $Z$</td>
<td>8</td>
<td>Rated flow $Q_r$ (m$^3$/h)</td>
<td>3.3</td>
</tr>
</tbody>
</table>
(c) Front or rear ring, impeller, diffuser, and pump cavity; (d) Front and rear rings, impeller, diffuser, and pump cavity.

Only the impeller and diffuser were considered for calculation model (a), ignoring the losses of disk friction and volumetric leakage. Pump cavity was added to calculation model (b), still ignoring volumetric leakage loss was still. A portion of the volumetric leakage loss was disregarded for calculation (c) because only one of the two rings was considered. The entire flow field of the multistage pump was considered in calculation model (d); thus, the numerical result of this model was closer to the actual value than those of the preceding three calculation models.

2.3 Establishing the calculation domain

The stage number of multistage centrifugal pumps depends on user demands. If the flow field of the calculation model with all the stage is simulated, the grid number becomes too large to meet the requirements of a practical engineering application. In addition, multistage centrifugal pumps are more complicated than single-stage centrifugal pumps. The swirling of the inlet flow of the impellers, except for the first one, is caused by the outlet flow of diffusers. The two-stage pump was selected in this study considering the increase of grid number with the increase of the pump stage.

Figure 4 shows that the calculation domain of the two-stage pump includes the inlet section, two impellers, two pump cavities, two diffusers, two front rings, two rear rings, and the outlet section. The lengths of the inlet and outlet sections are respectively five and four times of the diameter of the impeller.

Fig. 4 Calculation domain of the two-stage pump
This analysis suggests that the predicted external characteristics of the multistage pump depend on the parameters of the two-stage pump, which are shown as follows:

\[
H = H_m + H_1 + (N-1)H_2 + H_{out} \tag{1}
\]

\[
P = P_1 + (N-1)P_2 \tag{2}
\]

\[
\eta = \frac{\rho g Q H}{P} \tag{3}
\]

where \( H \) is the total head of the multistage pump (in m); \( H_m \) is the loss head of the inlet section (in m); \( H_1 \) is the head of the first stage (in m); \( H_2 \) is the head of the second stage (in m); \( H_{out} \) is the loss head of the outlet section (in m); \( Q \) is the flow rate (in m\(^3\)/h); \( P \), \( P_1 \), and \( P_2 \) are the shaft power values of the multistage pump, and the first and second stages (in W), respectively; and \( \eta \) is the efficiency of the multistage pump. The calculation results are then translated (through an appropriate procedure) to extrapolate the five-stage pump, for which the experimental data are available and discussed hereinafter.

2.4 Analyzing grid independence

The calculation domain should be discretized before simulation based on grids. In this study, the calculation domain was divided into structured grids by ICEM CFD software. Theoretically, the calculating errors would decrease gradually with an increase in grid number; however, too many grids would pose prohibitive demands on computational resources and time. Five grid sizes (\( G \)) with the same numerical settings were selected to determine the appropriate grid number. The results under different flow conditions of \( Q = 2.64, 3.3 \) and \( 3.96 \) m\(^3\)/h are shown in Table 2. Due to that the pump generally works under nearly rated flow condition, so small flow condition and large flow condition are not included herein.

It can be seen that the grid size minimally influences the numerical results, and the overall difference is within 2%. The efficiency \( \eta \) and total head \( H \) are slightly high when the grid size is relatively large (\( G \geq 1.0 \) mm) and are basically stable when \( G \leq 0.8 \) mm. \( G \) is set to 0.8 mm after considering the computational accuracy and time, and the structured grids of the calculation domain are shown in Figure 5. Of course,
0.8 mm grid size is not a universal principle that can be applied to all scenarios, because the grid size completely depends on the size of the calculation model and the requirement of the grid quality. In principle, grid independence should be made to obtain a suitable grid size for any new calculation models.

Tab. 2 Grid independence test of the pump under different flow conditions

<table>
<thead>
<tr>
<th>Grid size $G$ (mm)</th>
<th>1.5</th>
<th>1.2</th>
<th>1.0</th>
<th>0.8</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid number</td>
<td>1321154</td>
<td>1773142</td>
<td>2399892</td>
<td>3674514</td>
<td>4839030</td>
</tr>
<tr>
<td>Nodes</td>
<td>1146888</td>
<td>1537022</td>
<td>2091526</td>
<td>3233200</td>
<td>4289372</td>
</tr>
<tr>
<td>Efficiency $\eta$ of $Q = 2.64$ m$^3$/h (%)</td>
<td>40.73</td>
<td>40.12</td>
<td>39.73</td>
<td>39.55</td>
<td>39.51</td>
</tr>
<tr>
<td>Efficiency $\eta$ of $Q = 3.3$ m$^3$/h (%)</td>
<td>42.19</td>
<td>41.79</td>
<td>41.43</td>
<td>41.13</td>
<td>41.15</td>
</tr>
<tr>
<td>Efficiency $\eta$ of $Q = 3.96$ m$^3$/h (%)</td>
<td>41.64</td>
<td>40.84</td>
<td>40.47</td>
<td>40.26</td>
<td>40.22</td>
</tr>
<tr>
<td>Head $H$ of $Q = 2.64$ m$^3$/h (m)</td>
<td>48.27</td>
<td>48.04</td>
<td>47.71</td>
<td>47.68</td>
<td>47.64</td>
</tr>
<tr>
<td>Head $H$ of $Q = 3.3$ m$^3$/h (m)</td>
<td>42.11</td>
<td>41.99</td>
<td>41.62</td>
<td>41.62</td>
<td>41.64</td>
</tr>
<tr>
<td>Head $H$ of $Q = 3.96$ m$^3$/h (m)</td>
<td>35.68</td>
<td>35.32</td>
<td>35.07</td>
<td>35.02</td>
<td>35.06</td>
</tr>
</tbody>
</table>

2.5 Selecting the turbulence model

A universal turbulence model that is applicable for all flow problems has not yet been formulated; thus, scholars have selected different turbulence models for different
turbulent flows. In this study, numerical calculations were performed with ANSYS CFX software, which provides a number of turbulence models. Among the turbulence models, $k$-$\varepsilon$ and $k$-$\omega$ are known to be the most suitable for the internal flow of rotating machines. Therefore, five models, i.e., standard $k$-$\varepsilon$, RNG $k$-$\varepsilon$, BSL $k$-$\omega$, standard $k$-$\omega$, and SST $k$-$\omega$, were selected, and their results were compared with the experimental results. Table 3 shows the numerical and experimental results of the pump with different turbulent models under different flow conditions of $Q = 2.64, 3.3$ and $3.96$ m$^3$/h. It can be found that, after comprehensive comparison, the prediction by standard $k$-$\varepsilon$ model is closest to the experimental data; thus, this model was selected in this study.

<table>
<thead>
<tr>
<th>Turbulence model</th>
<th>Standard $k$-$\varepsilon$</th>
<th>RNG $k$-$\varepsilon$</th>
<th>BSL $k$-$\omega$</th>
<th>Standard $k$-$\omega$</th>
<th>SST $k$-$\omega$</th>
<th>Test value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency $\eta$ of $Q = 2.64$ m$^3$/h (%)</td>
<td>39.55</td>
<td>39.84</td>
<td>43.87</td>
<td>43.22</td>
<td>42.53</td>
<td>39.36</td>
</tr>
<tr>
<td>Efficiency $\eta$ of $Q = 3.3$ m$^3$/h (%)</td>
<td>41.13</td>
<td>41.28</td>
<td>44.96</td>
<td>44.55</td>
<td>44.59</td>
<td>40.73</td>
</tr>
<tr>
<td>Efficiency $\eta$ of $Q = 3.96$ m$^3$/h (%)</td>
<td>40.26</td>
<td>40.49</td>
<td>43.14</td>
<td>42.67</td>
<td>42.15</td>
<td>38.21</td>
</tr>
<tr>
<td>Head $H$ of $Q = 2.64$ m$^3$/h (m)</td>
<td>47.68</td>
<td>48.04</td>
<td>51.73</td>
<td>51.41</td>
<td>51.56</td>
<td>49.62</td>
</tr>
<tr>
<td>Head $H$ of $Q = 3.3$ m$^3$/h (m)</td>
<td>41.62</td>
<td>41.12</td>
<td>43.54</td>
<td>43.46</td>
<td>43.50</td>
<td>41.87</td>
</tr>
<tr>
<td>Head $H$ of $Q = 3.96$ m$^3$/h (m)</td>
<td>35.02</td>
<td>35.41</td>
<td>38.49</td>
<td>38.16</td>
<td>37.72</td>
<td>33.69</td>
</tr>
</tbody>
</table>

2.6 Selecting the convergence precision

Three convergence precisions ($10^{-3}$, $10^{-4}$, and $10^{-5}$) were selected to determine a suitable convergence criterion. As shown in Table 4, the numerical results are considerably lower than the experimental results when the convergence precision is $10^{-3}$. By contrast, the numerical results tend to be stable when the convergence precision is lower than $10^{-4}$. Therefore, $10^{-5}$ was selected as the value of convergence precision in this study.

<table>
<thead>
<tr>
<th>Convergence precision</th>
<th>$10^{-3}$</th>
<th>$10^{-4}$</th>
<th>$10^{-5}$</th>
<th>Test value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency $\eta$ of $Q = 2.64$ m$^3$/h (%)</td>
<td>35.43</td>
<td>39.42</td>
<td>39.55</td>
<td>39.36</td>
</tr>
</tbody>
</table>
2.7 Influence of surface roughness on the pump performance

Different values of surface roughness ($\mu = 0, 1, 10, 20, 40, 80 \mu m$) were selected for the numerical calculation of the pump to study the influence of surface roughness on the performance of the pump. The results under different flow conditions are presented in Table 5, wherein $H$ and $\eta$ continue to decrease with an increase in $\mu$; however, the decrease rate of $\eta$ is significantly greater than that of $H$, indicating that the pump shaft power is also increasing. In addition, $\eta$ and $H$ decreases quickly when $\mu$ is low, but their reduction decelerates with the increase of $\mu$. When $\mu$ increases from 0 $\mu m$ to 80 $\mu m$ for the pump under rated flow condition of $Q = 3.3 \ m^3/h$, $\eta$ decreases from 41.67% to 28.96%, and $H$ decreases from 41.83 m to 35.91 m, with their amplitudes decreasing by 31.06% and 14.19%, respectively. These results demonstrate the significant influence of surface roughness on the numerical results. Therefore, suitable surface roughness should be selected according to the material properties in CFD; otherwise, significant deviations may occur. In this study, the pump was made of polyphenol oxidase and stainless steel, and the value of $\mu$ was usually within 1 $\mu m$. Therefore, 1 $\mu m$ was finally selected as the value of surface roughness in the present study. Actually, the surface roughness has significant influence on the numerical results, which was generally underestimated in the past. Sometimes, the value of surface roughness is only selected according to the annotation of the 2D processing chart by many researchers, which might deviates significantly from the actual values of the real machining parts. Therefore, suitable surface roughness should be selected according to the material properties in CFD; otherwise, significant deviations may occur.

| Efficiency $\eta$ of $Q = 3.3 \ m^3/h$ (%) | 37.21 | 41.02 | 41.13 | 40.73 |
| Efficiency $\eta$ of $Q = 3.96 \ m^3/h$ (%) | 34.29 | 40.19 | 40.26 | 38.21 |
| Head $H$ of $Q = 2.64 \ m^3/h$ (m) | 46.87 | 47.61 | 47.68 | 49.62 |
| Head $H$ of $Q = 3.3 \ m^3/h$ (m) | 40.62 | 41.60 | 41.62 | 41.87 |
| Head $H$ of $Q = 3.96 \ m^3/h$ (m) | 32.82 | 35.09 | 35.02 | 33.69 |

Tab. 5 Efficiency and head of the pump with different surface roughness under different flow conditions
2.8 Setting of boundary conditions

The impeller and shroud in the pump chamber were based on the rotating reference frame, whereas the other sub-domains were based on the stationary reference frame throughout the entire calculation domains. The interfaces between the impeller and its adjacent sub-domains were set to “Frozen Rotor” mode, and the other interfaces were set to “General Connection” mode. Moreover, the non-slip walls were selected as the wall boundaries. The open inlet and mass outflow were selected as the inlet and outlet boundaries.

2.9 Comparison between the numerical and experimental results

All field numerical calculations for the two-stage pump were performed with 0.8 mm grid size, Standard \( k-\varepsilon \) turbulence model, \( 10^{-5} \) convergence precision, and 1 \( \mu m \) surface roughness based on the above research. The simulations were performed at five flow points (\( Q = 1.65, 2.64, 3.3, 3.96, 5.4 \) m\(^3\)/h). At the same time, the hydraulic models were shown to a pump company in Fujian Province, and a five-stage centrifugal pump was manufactured. Then, the pump was sent to the Mechanical Products Testing Center of the Fujian Academy of Mechanical Sciences for performance testing. As shown in Figure 6, the test rig is an open-type system, which is composed of two parts—acquisition and water circulation systems. A turbine flowmeter was used to measure the flow rate \( Q \) with a precision of ±0.3%. The pump speed \( n \) was measured by a tachometer (PROVA RM-1500, Taiwan) with a precision of ±0.04%. During the experiment, two pressure transmitters (CYG1401, China) with a precision of ±0.2% were used to measure the inlet and outlet pressures.

The comparisons between the numerical and experimental results are presented

<table>
<thead>
<tr>
<th>Roughness ( \mu ) (( \mu m ))</th>
<th>0</th>
<th>1</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>80</th>
<th>Test value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency ( \eta ) of ( Q = 2.64 ) m(^3)/h (%)</td>
<td>40.04</td>
<td>39.55</td>
<td>36.13</td>
<td>34.01</td>
<td>31.74</td>
<td>28.28</td>
<td>39.36</td>
</tr>
<tr>
<td>Efficiency ( \eta ) of ( Q = 3.3 ) m(^3)/h (%)</td>
<td>41.67</td>
<td>41.13</td>
<td>37.71</td>
<td>35.34</td>
<td>32.46</td>
<td>28.96</td>
<td>40.73</td>
</tr>
<tr>
<td>Efficiency ( \eta ) of ( Q = 3.96 ) m(^3)/h (%)</td>
<td>40.86</td>
<td>40.26</td>
<td>35.82</td>
<td>33.63</td>
<td>30.38</td>
<td>26.22</td>
<td>38.21</td>
</tr>
<tr>
<td>Head ( H ) of ( Q = 2.64 ) m(^3)/h (m)</td>
<td>47.88</td>
<td>47.68</td>
<td>46.41</td>
<td>45.49</td>
<td>44.46</td>
<td>42.58</td>
<td>49.62</td>
</tr>
<tr>
<td>Head ( H ) of ( Q = 3.3 ) m(^3)/h (m)</td>
<td>41.83</td>
<td>41.62</td>
<td>40.27</td>
<td>39.25</td>
<td>37.83</td>
<td>35.91</td>
<td>41.87</td>
</tr>
<tr>
<td>Head ( H ) of ( Q = 3.96 ) m(^3)/h (m)</td>
<td>35.28</td>
<td>35.02</td>
<td>33.44</td>
<td>32.27</td>
<td>30.43</td>
<td>28.26</td>
<td>33.69</td>
</tr>
</tbody>
</table>
in Figure 7. Generally, the predicted $H$ and $\eta$ are in good agreement with the experimental results at different flow conditions, and they nearly coincide under a rated flow condition of $Q = 3.3 \text{ m}^3/\text{h}$. Some discrepancies exist between the numerical and experimental results because of the flow separation or recirculation in the pump under the non-rated flow conditions, but the deviations are still within 3%. The results show that the performances of the multistage centrifugal pump can be credibly predicted using CFD through the entire calculation model and appropriate numerical setting method.

![Fig. 6 Schematic diagram of the test rig](image)

![Fig. 7 Numerical and experimental results of the head ($H$) and efficiency ($\eta$) of the pump in relation to roughness ($Q$)](image)

3. CFD-based assessment of energy losses

3.1 Concept formulas of energy loss model
Based on the foregoing study of numerical setting methods, a loss model method was established to determine the relationships among the different types of energy losses in a multistage centrifugal pump.

First, the efficiency of the multistage pump was divided into three types of component efficiencies. With the mechanical friction loss disregarded, the formulas for component efficiency are as follows:

\[ P = P_m + P_h \]  \hspace{1cm} (4)

\[ P_m = P_{1m} + (N - 1)P_{2m} \]  \hspace{1cm} (5)

\[ P_h = P_{1h} + (N - 1)P_{2h} \]  \hspace{1cm} (6)

\[ q = \frac{q_1 + (N - 1)q_2}{N} \]  \hspace{1cm} (7)

\[ \eta_m = 1 - \frac{P_m}{P} \]  \hspace{1cm} (8)

\[ \eta_v = \frac{Q}{Q + q} \]  \hspace{1cm} (9)

\[ \eta_h = \frac{\eta}{\eta_m \eta_v} \]  \hspace{1cm} (10)

where \( P \) is the shaft power of the multistage pump (in W), \( P_m \) is the loss of disk friction power of the multistage pump (in W), \( P_h \) is the hydraulic power of the multistage pump (in W), \( P_{1m} \) is the loss of disk friction power at the first stage pump (in W), \( P_{2m} \) is the loss of disk friction power at the second stage pump (in W), \( P_{1h} \) is the hydraulic power of the second-stage pump (in W), \( P_{2h} \) is the hydraulic power of the second-stage pump (in W), \( q \) is the average ring leakage amount of the multistage pump (in m³/h), \( q_1 \) is the ring leakage amount of the first-stage pump (in m³/h), \( q_2 \) is the ring leakage amount of the second-stage pump (in m³/h), \( \eta_m \) is mechanical efficiency, \( \eta_v \) is volumetric efficiency, and \( \eta_h \) is hydraulic efficiency.

Second, the total shaft power of the multistage pump was divided into several energy losses, which is as follows:
\[ P_h = P_v + P_u + \Delta P_h = \rho g (Q + q) H_t \] (11)

\[ P_r = \rho g q H_i = \rho g q (H + h) \] (12)

\[ P_u = \rho g Q H \] (13)

\[ \Delta P_h = \rho g Q h \] (14)

\[ h = H_{in} + h_{ip} + h_{df} + h_{ca} + H_{out} \] (15)

Substituting Equation (15) into Equation (14) yields:

\[ \Delta P_h = \rho g Q (H_{in} + h_{ip} + h_{df} + h_{ca} + H_{out}) = \Delta P_{in} + \Delta P_{ip} + \Delta P_{df} + \Delta P_{ca} + \Delta P_{out} \] (16)

Then, substituting Equations (11) and (16) into Equation (4) yields:

\[ P = P_m + P_v + P_u + \Delta P_{in} + \Delta P_{ip} + \Delta P_{df} + \Delta P_{ca} + \Delta P_{out} \] (17)

where \( P_v \) is loss of volumetric leakage power (in W), \( P_u \) is working power (in W), \( \Delta P_h \) is hydraulic loss power (in W), \( \Delta P_{in} \) is the hydraulic loss power of the inlet section (in W), \( \Delta P_{ip} \) is the hydraulic loss power of the impeller (in W), \( \Delta P_{df} \) is the hydraulic loss power of the diffuser (in W), \( \Delta P_{ca} \) is the hydraulic loss power of the pump cavity (in W), \( \Delta P_{out} \) is the hydraulic loss power of the outlet section (in W), \( H_t \) is the theoretical head of the multistage pump (in m), \( h \) is the hydraulic loss head of the unit fluid through the pump (in m), \( h_{ip} \) is the hydraulic loss head of the unit fluid through the impeller (in m), \( h_{df} \) is the hydraulic loss head of the unit fluid through the diffuser (in m), and \( h_{ca} \) is the hydraulic loss head of unit of the unit fluid through the pump cavity (in m).

### 3.2 Performance comparison of different calculation models under rated flow condition

Figure 3 shows that the four calculation models (i.e., without pump cavity, without front ring or rear ring, without front ring, and with 1 mm front ring) gradually considered the losses of hydraulic, friction disk, and interstage leakage at the rear ring, and the volumetric leakage loss at the front ring. The four models were denoted by \( M_1, M_2, M_3, \) and \( M_6 \), and two additional models, one with 0.25 mm front ring and the other with 0.5 mm front ring, were denoted by \( M_4 \) and \( M_5 \).
respectively. The numerical results under rated flow condition are shown in Table 6 and Table 7.

### Tab. 6 Pump performance in the different calculation models under rated flow condition

<table>
<thead>
<tr>
<th>Type</th>
<th>( M )</th>
<th>( H ) (m)</th>
<th>( P ) (W)</th>
<th>( q ) (m³/h)</th>
<th>( \eta_m ) (%)</th>
<th>( \eta_r ) (%)</th>
<th>( \eta_h ) (%)</th>
<th>( \eta ) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without pump cavity</td>
<td>1</td>
<td>50.97</td>
<td>707.04</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>64.76</td>
<td>64.76</td>
</tr>
<tr>
<td>Without ring</td>
<td>2</td>
<td>53.29</td>
<td>875.96</td>
<td>0</td>
<td>79.40</td>
<td>100</td>
<td>68.83</td>
<td>54.65</td>
</tr>
<tr>
<td>Without front ring</td>
<td>3</td>
<td>50.21</td>
<td>919.39</td>
<td>0</td>
<td>75.48</td>
<td>100</td>
<td>64.90</td>
<td>49.06</td>
</tr>
<tr>
<td>With 0.25 mm front ring</td>
<td>4</td>
<td>45.46</td>
<td>921.57</td>
<td>0.455</td>
<td>78.34</td>
<td>87.89</td>
<td>64.36</td>
<td>44.32</td>
</tr>
<tr>
<td>With 0.5 mm front ring</td>
<td>5</td>
<td>43.63</td>
<td>915.91</td>
<td>0.534</td>
<td>79.05</td>
<td>86.07</td>
<td>62.90</td>
<td>42.79</td>
</tr>
<tr>
<td>With 1 mm front ring</td>
<td>6</td>
<td>41.62</td>
<td>909.12</td>
<td>0.687</td>
<td>79.15</td>
<td>82.78</td>
<td>62.77</td>
<td>41.13</td>
</tr>
</tbody>
</table>

### Tab. 7 Components of the shaft power for different calculation models under rated flow condition

<table>
<thead>
<tr>
<th>( M )</th>
<th>( P_{in} ) (W)</th>
<th>( P_r ) (W)</th>
<th>( P_{u} ) (W)</th>
<th>( \Delta P_{m} ) (W)</th>
<th>( \Delta P_{ip} ) (W)</th>
<th>( \Delta P_{ed} ) (W)</th>
<th>( \Delta P_{ca} ) (W)</th>
<th>( \Delta P_{out} ) (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>457.85</td>
<td>0.023</td>
<td>63.12</td>
<td>184.68</td>
<td>0</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>180.45</td>
<td>0</td>
<td>478.74</td>
<td>0.022</td>
<td>54.65</td>
<td>149.12</td>
<td>11.67</td>
<td>1.30</td>
</tr>
<tr>
<td>3</td>
<td>225.45</td>
<td>0</td>
<td>451.05</td>
<td>0.024</td>
<td>50.34</td>
<td>164.94</td>
<td>25.87</td>
<td>1.71</td>
</tr>
<tr>
<td>4</td>
<td>199.59</td>
<td>87.41</td>
<td>408.41</td>
<td>0.25</td>
<td>52.02</td>
<td>158.70</td>
<td>13.39</td>
<td>1.79</td>
</tr>
<tr>
<td>5</td>
<td>191.88</td>
<td>114.54</td>
<td>383.37</td>
<td>0.14</td>
<td>57.73</td>
<td>156.22</td>
<td>10.24</td>
<td>1.79</td>
</tr>
<tr>
<td>6</td>
<td>189.55</td>
<td>123.93</td>
<td>373.89</td>
<td>0.058</td>
<td>59.86</td>
<td>154.99</td>
<td>5.07</td>
<td>1.76</td>
</tr>
</tbody>
</table>

Figure 8 shows the head and efficiency values for different calculation models under rated flow condition. With increasing integrity of the calculation model, the efficiency constantly decreases, and the largest deviation is greater than 23%, whereas the head initially increases and subsequently decreases. The pump head is increased by the rotating disk of \( M_2 \) in the pump and is significantly decreased by the interstage and ring leakages of \( M_3, M_4, M_5, \) and \( M_6 \). The largest head difference is approximately 12 m (or about 30%), indicating that the integrity of the calculation model is the key contributor to the accuracy of the results.
Figure 9 presents the mechanical efficiency $\eta_m$, hydraulic efficiency $\eta_h$, and volumetric efficiency $\eta_v$ for different calculation models under rated flow condition. As shown in Figure 9 and Table 6, $\eta_v$ is equal to 100% in the first three models ($M = 1, 2, 3$), in which the front ring leakage is disregarded. As the clearance of the front ring increases, $\eta_v$ reduces constantly, but the reduction rate decelerates gradually. This result is attributed to the significant reduction in the pump head rapidly reducing the pressure difference between the two sides of the front ring, leading to the growth rate deceleration of the front ring leakage. For $M2$, $\eta_m$ decreases by 20% by considering the disk friction loss, whereas it continues to decrease by 4% for $M3$ by considering the interstage leakage loss. This result indicates that a certain portion of the interstage leakage loss is reversed by the disk friction loss. For $M4$, in which the front ring leakage is considered, $\eta_m$ increases by 3% instead, suggesting that the volumetric leakage can actually decrease disk friction loss. As the clearance of the front ring increases (from $M5$ to $M6$), $\eta_m$ continues to increase, but the increase rate reduces significantly. Moreover, $\eta_h$ increases by 4% for $M2$ by considering the disk friction loss, which is ascribed to the increasing head by the rotational disk. By contrast, $\eta_h$ decreases by 4% again for $M3$ by considering the interstage leakage loss, indicating that the remaining interstage leakage loss is also converted by the disk friction loss. After the front ring leakage is considered, $\eta_h$ decreases, and the reduction rate
decelerates gradually because the actual flow through the impeller is enhanced, and
the operation point shifts to the large flow direction.

Fig. 9 Mechanical, hydraulic, and volumetric efficiencies of the different calculation models

Figure 10 shows the components of the shaft power of the pump for different
calculation models under rated flow condition. The hydraulic loss powers of the inlet
and outlet sections are negligible; thus, they are not included in Figure 10. The shaft
power is minimal for $M_1$ because only the hydraulic losses power of the impeller and
diffuser are considered. The losses of disk friction and working powers increase
significantly for $M_2$ by considering the flow in the pump cavity. The losses of disk
friction and hydraulic powers increase for $M_3$ by considering the interstage leakage.
The loss of volumetric power increases significantly, and that of the disk friction
power decreases obviously for $M_4$ by considering the front ring leakage. With an
increase in the clearance of the front ring, the loss of volumetric power continues to
increase, and that of the disk friction power continues to decrease for $M_5$ and $M_6$;
however, their change rate gradually decelerates. Using the components of the shaft
power of the pump for $M_6$ as an example, the losses of disk friction, hydraulic, and
volumetric powers of the diffuser account for 21%, 17%, and 13%, respectively,
whereas the working power of the pump only accounts for 40%. These results support
the premise that reducing the proportion of these three types of energy losses
increases pump efficiency. The loss of disk friction power has a significant negative
correlation with that of the volumetric power; thus, reducing the hydraulic loss power of the diffuser is an effective method to increase the efficiency of the centrifugal pump with low specific speed. Previous scholars, however, paid more attention to the hydraulic improvement of the impeller.

Loss of disk friction power
Loss of volumetric leakage power
Hydraulic loss power of the impeller
Hydraulic loss power of the diffuser
Hydraulic loss power of the pump cavity
Working power of the pump

3.3 Performance comparison of three typical calculation models under different flow conditions

$M_2$, $M_3$, and $M_6$ were selected for case studies to further investigate the interaction relationships among the three sub-efficiencies. These three calculation models successively considered the losses of disk friction, interstage leakage at the rear ring, and volumetric leakage at the front ring, whereas the clearances of the front and rear rings were set to 1 mm. The performances of the three calculation models under different flow conditions are shown in Tables 8 and 9.

<table>
<thead>
<tr>
<th>$Q$ (m$^3$/h)</th>
<th>$M$</th>
<th>$H$ (m)</th>
<th>$P$ (W)</th>
<th>$q$ (m$^3$/h)</th>
<th>$q_b$ (m$^3$/h)$^*$</th>
<th>$\eta_m$ (%)</th>
<th>$\eta_v$ (%)</th>
<th>$\eta_h$ (%)</th>
<th>$\eta$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>2</td>
<td>69.22</td>
<td>744.20</td>
<td>0</td>
<td>0</td>
<td>73.66</td>
<td>100</td>
<td>56.72</td>
<td>41.78</td>
</tr>
<tr>
<td>2.64</td>
<td>2</td>
<td>60.03</td>
<td>817.67</td>
<td>0</td>
<td>0</td>
<td>77.24</td>
<td>100</td>
<td>68.31</td>
<td>52.76</td>
</tr>
<tr>
<td>3.3</td>
<td>2</td>
<td>53.29</td>
<td>875.96</td>
<td>0</td>
<td>0</td>
<td>79.40</td>
<td>100</td>
<td>68.83</td>
<td>54.65</td>
</tr>
<tr>
<td>3.96</td>
<td>2</td>
<td>45.63</td>
<td>934.27</td>
<td>0</td>
<td>0</td>
<td>80.79</td>
<td>100</td>
<td>65.17</td>
<td>52.65</td>
</tr>
<tr>
<td>5.4</td>
<td>2</td>
<td>21.91</td>
<td>969.65</td>
<td>0</td>
<td>0</td>
<td>81.40</td>
<td>100</td>
<td>40.27</td>
<td>32.78</td>
</tr>
<tr>
<td>1.65</td>
<td>3</td>
<td>67.09</td>
<td>776.03</td>
<td>0</td>
<td>0.247</td>
<td>68.09</td>
<td>100</td>
<td>57.03</td>
<td>38.83</td>
</tr>
<tr>
<td>2.64</td>
<td>3</td>
<td>56.87</td>
<td>859.27</td>
<td>0</td>
<td>0.210</td>
<td>72.70</td>
<td>100</td>
<td>65.43</td>
<td>47.56</td>
</tr>
<tr>
<td>3.3</td>
<td>3</td>
<td>50.21</td>
<td>919.39</td>
<td>0</td>
<td>0.178</td>
<td>75.48</td>
<td>100</td>
<td>65.00</td>
<td>49.06</td>
</tr>
<tr>
<td>3.96</td>
<td>3</td>
<td>42.91</td>
<td>967.50</td>
<td>0</td>
<td>0.134</td>
<td>77.78</td>
<td>100</td>
<td>61.48</td>
<td>47.81</td>
</tr>
</tbody>
</table>
Table 9 Components of the shaft power in the three models under different flow conditions

<table>
<thead>
<tr>
<th>Q (m³/h)</th>
<th>M</th>
<th>P_m (W)</th>
<th>P_v (W)</th>
<th>P_u (W)</th>
<th>ΔP_in (W)</th>
<th>ΔP_ip (W)</th>
<th>ΔP_df (W)</th>
<th>ΔP_ca (W)</th>
<th>ΔP_out (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>2</td>
<td>196.00</td>
<td>0</td>
<td>310.91</td>
<td>0.0093</td>
<td>93.77</td>
<td>117.80</td>
<td>25.30</td>
<td>0.39</td>
</tr>
<tr>
<td>2.64</td>
<td>2</td>
<td>186.07</td>
<td>0</td>
<td>431.46</td>
<td>0.0097</td>
<td>55.48</td>
<td>127.11</td>
<td>16.73</td>
<td>0.83</td>
</tr>
<tr>
<td>3.3</td>
<td>2</td>
<td>180.45</td>
<td>0</td>
<td>478.74</td>
<td>0.022</td>
<td>54.65</td>
<td>149.12</td>
<td>11.67</td>
<td>1.30</td>
</tr>
<tr>
<td>3.96</td>
<td>2</td>
<td>179.50</td>
<td>0</td>
<td>491.86</td>
<td>0.038</td>
<td>64.37</td>
<td>189.44</td>
<td>6.90</td>
<td>2.16</td>
</tr>
<tr>
<td>5.4</td>
<td>2</td>
<td>180.32</td>
<td>0</td>
<td>317.87</td>
<td>0.078</td>
<td>110.35</td>
<td>356.29</td>
<td>0.033</td>
<td>4.71</td>
</tr>
<tr>
<td>1.65</td>
<td>3</td>
<td>247.61</td>
<td>0</td>
<td>301.36</td>
<td>0.0022</td>
<td>74.21</td>
<td>86.83</td>
<td>65.54</td>
<td>0.47</td>
</tr>
<tr>
<td>2.64</td>
<td>3</td>
<td>234.62</td>
<td>0</td>
<td>408.68</td>
<td>0.012</td>
<td>47.43</td>
<td>129.16</td>
<td>38.26</td>
<td>1.12</td>
</tr>
<tr>
<td>3.3</td>
<td>3</td>
<td>225.45</td>
<td>0</td>
<td>451.05</td>
<td>0.024</td>
<td>50.34</td>
<td>164.94</td>
<td>25.87</td>
<td>1.71</td>
</tr>
<tr>
<td>3.96</td>
<td>3</td>
<td>215.02</td>
<td>0</td>
<td>462.59</td>
<td>0.039</td>
<td>62.29</td>
<td>210.17</td>
<td>14.64</td>
<td>2.75</td>
</tr>
<tr>
<td>5.4</td>
<td>3</td>
<td>181.94</td>
<td>0</td>
<td>315.30</td>
<td>0.078</td>
<td>110.49</td>
<td>358.72</td>
<td>0.052</td>
<td>4.76</td>
</tr>
<tr>
<td>1.65</td>
<td>6</td>
<td>208.48</td>
<td>204.17</td>
<td>251.12</td>
<td>−0.53</td>
<td>36.18</td>
<td>83.50</td>
<td>13.26</td>
<td>0.49</td>
</tr>
<tr>
<td>2.64</td>
<td>6</td>
<td>196.45</td>
<td>148.19</td>
<td>343.56</td>
<td>−0.60</td>
<td>41.17</td>
<td>122.19</td>
<td>13.13</td>
<td>1.04</td>
</tr>
<tr>
<td>3.3</td>
<td>6</td>
<td>189.55</td>
<td>123.93</td>
<td>373.89</td>
<td>0.058</td>
<td>59.86</td>
<td>154.99</td>
<td>5.07</td>
<td>1.76</td>
</tr>
<tr>
<td>3.96</td>
<td>6</td>
<td>181.76</td>
<td>103.98</td>
<td>379.98</td>
<td>0.10</td>
<td>67.43</td>
<td>197.04</td>
<td>2.20</td>
<td>2.71</td>
</tr>
<tr>
<td>5.4</td>
<td>6</td>
<td>159.90</td>
<td>61.65</td>
<td>217.32</td>
<td>0.090</td>
<td>119.13</td>
<td>353.97</td>
<td>0.43</td>
<td>4.61</td>
</tr>
</tbody>
</table>

* q_i is interstage leakage.

Figure 11 presents the head $H$ and efficiency $\eta$ for $M_2$, $M_3$, and $M_6$ under the five flow conditions ($Q = 1.65, 2.94, 3.3, 3.96, 5.4$ m³/h). As shown in Figure 11 and Table 8, the head and efficiency under the five flow conditions all decrease after the volumetric and interstage leakages are considered, and the decrease rate caused by the volumetric leakage is noticeably faster than that caused by the interstage leakage. These results indicate that the loss of volumetric leakage loss is greater than that of the interstage leakage. With an increase in flow rate, the decrease rates of the head and efficiency caused by the interstage leakage initially increase, subsequently decrease, and finally approach zero. By contrast, the decrease rates caused by volumetric leakage constantly decrease.
Fig. 11 Head and efficiency of three calculation models under different flow conditions

The mechanical efficiency $\eta_m$, hydraulic efficiency $\eta_h$, and volumetric efficiency $\eta_v$ for $M_2$, $M_3$, and $M_6$ under the five flow conditions are shown in Figure 12. As shown in Figure 12 and Table 9, the volumetric efficiencies for $M_2$ and $M_3$ are both 100% without volumetric leakage. With the increase of the flow rate and the decrease in the pressure difference between the two sides of the front ring, the volumetric efficiency for $M_6$ increases from 65.29% to 91.86%, indicating that the influence of the flow rate on volumetric efficiency is extremely significant. Moreover, the mechanical efficiencies for $M_2$ and $M_6$ are nearly the same, but that for $M_3$ is relatively low. This outcome indicates that the volumetric and interstage leakages respectively have nearly the same positive and negative correlations with mechanical efficiency. With the increase of the flow rate, the mechanical efficiencies of three models all increase, and the increase rate for $M_3$ is the fastest. Under large flow conditions, the mechanical efficiencies of the three models are basically the same, indicating that the interstage and volumetric leakages have minimal impact on mechanical efficiency. In addition, both the interstage and volumetric leakages lead to the decrease of hydraulic efficiency and a shift in the highest hydraulic efficiency points of the three models to the small flow direction. With the increase of flow rate, the decrease rate of the hydraulic efficiency caused by the interstage leakage initially increases and subsequently decreases, whereas that caused by the volumetric leakage constantly increases.
Fig. 12 Three component efficiencies for $M_2$, $M_3$, and $M_6$ under different flow conditions

Figure 13 shows the components of the shaft power for $M_2$, $M_3$, and $M_6$ under the five flow conditions. A comparison of Figure 13(a) and 13(b) shows that the loss of disk friction power increases after the interstage leakage is considered. The interstage leakage gradually decreases to zero with the increase of flow rate, resulting in the decline of the increase rate of the loss of disk friction power to zero; this outcome shows that a portion of the energy loss from the interstage leakage is converted by the loss of disk friction power. In addition, the hydraulic loss power of the impeller and that of the diffuser decrease, whereas that of the pump cavity increases after considering the interstage leakage. However, with the increase of flow rate, the sum of the three types of hydraulic losses decreases, and the decrease rate reduces gradually to zero. This result indicates that the remaining energy loss from the interstage leakage is also converted by the hydraulic power loss. Moreover, the working power decreases after considering the interstage leakage, and the decrease rate initially increases and subsequently reduces to approximately zero with an increase of flow rate.

A comparison of Figures 13(b) and 13(c) reveals that the loss of disk friction power decreases after the volumetric leakage is considered, and the decrease rate reduces gradually because of the decreasing volumetric leakage with the increase of flow rate. This outcome indicates that the increasing volumetric leakage decreases the loss of disk friction power. Moreover, the actual flow through the impeller increases
after the volumetric leakage is considered; as a result, the hydraulic power loss of the
impeller and that of the diffuser initially decrease and subsequently increase, and the
hydraulic power loss of the pump cavity decreases gradually. Additionally, the
working power also decreases after the volumetric leakage is considered, and the
decrease rate increases gradually with the increase of flow rate. These results show
that with the increase of flow rate, the influences of the interstage and volumetric
leakages on the components of the shaft power gradually weaken and approach zero
under a large flow condition.
3.4 Pareto charts of shaft power’s components for three typical calculation models

The Pareto charts are very useful and beautiful, using which readers can understand rapidly the interactional relationships of each factor. As this manuscript focuses on the interactional relationships among the different kinds of energy loss in the pump, Pareto charts of shaft power’s components for different calculation models (M2, M3 and M6) under rated flow condition of $Q = 3.3$ m$^3$/h are shown in Figure 14, and those for the calculation model M6 under different flow conditions ($Q = 1.65, 3.3$ and $5.4$ m$^3$/h) are shown Figure 15.

As can be seen in Figure 14, three typical calculation models, which respectively consider the disk friction loss, interstage leakage loss of rear ring and volumetric leakage loss of front ring, are selected as the research object for the energy loss model. For M2, after considering the disk friction loss, the shaft power’s components are in the following descending order of magnitude: the working power ($P_u$), the loss of disk friction power ($P_m$), the hydraulic loss power of the diffuser ($P_{df}$), the hydraulic loss power of the impeller ($P_{ip}$) and the hydraulic loss power of the pump cavity ($P_{ca}$). Additionally, $P_m$ accounts for 20.6% of the total shaft power, indicating that it is necessary to include the disk friction loss for the calculation model. Moreover, $P_{ip}$ and $P_{df}$ respectively account for 17% and 6.2% of the total shaft power, which indicates...
the hydraulic performance of the diffuser is rather bad compared with the impeller.

For $M_3$ when the interstage leakage is considered, the order of magnitude does not change, but $P_m$ increases sharply, while $P_{df}$ and $P_{ca}$ increase slightly due to the interstage backflow from the diffuser to the pump cavity. For $M_6$, after considering the front ring leakage, the loss of volumetric leakage power ($P_v$) increases from 0 to 13.7% of the total shaft power rapidly, indicating that the leakage from the front ring is really volumetric leakage. However, the proportions of main energy losses such as the loss of friction disk power and the hydraulic loss power are almost the same as that for $M_2$, implying that the influences of the front ring leakage and rear ring leakage on the main energy losses are just the reverse. Finally, with increasing integrity of calculation model, the working power continues to decrease, while the loss of friction disk power and the hydraulic loss power swings back and forth.
As can be seen in Figure 15, the working power accounts for a small proportion of the shaft power, indicating the large total energy loss in the pump. With the increase of flow rate, the loss of disk friction power decreases; the hydraulic loss power of the impeller initially decreases and subsequently increases; the hydraulic power loss of the diffuser increases gradually; the hydraulic loss power of the pump cavity gradually decreases to zero; and the working power initially increases and subsequently decreases until it finally reaches a maximum value near the rated flow condition \( Q = 3.3 \text{ m}^3/\text{h} \). In a word, with the change of flow rate, each individual shaft power’s component is always varying, which indicates that energy loss proportion is rather sensitive to Reynolds number.
3.6 Relationships between the leakage amount and energy loss power

Figure 16 shows the relationships between the leakage amount and the loss of disk friction power under the conditions where the interstage or volumetric leakage is considered or not. With the increase of flow rate, the amounts of interstage and volumetric leakages reduce continuously, and the interstage leakage is approximately zero under a large flow condition. The loss of disk friction power decreases with an increasing flow rate, but the decrease rate is considerably slow and essentially remains stable under the large flow condition for $M_2$ without the interstage and volumetric leakages. The loss of disk friction power for $M_3$ interstage leakage increases significantly compared with that of $M_2$, and the increase rate reduces constantly with
the increase of flow rate. The loss of disk friction power decreases sharply for \( M_6 \)
with volumetric leakage compared with that of \( M_3 \).

![Graph](image)

(a) With and without the interstage leakage

![Graph](image)

(b) With or without volumetric leakage

Fig. 16 Relationships between the leakage amount and loss of disk friction power

Assume \( \Delta \zeta_1 = \frac{P_{M3} - P_{M2}}{P_m}, \Delta \gamma_1 = \frac{q_b}{Q_t}, \Delta \zeta_2 = \frac{P_{M3} - P_{M6}}{P_m}, \) and \( \Delta \gamma_2 = \frac{q}{Q_t} \),

where \( \Delta \zeta_1 \) is the increasing coefficient of the loss of disk friction power with
interstage leakage, \( \Delta \zeta_2 \) is the decreasing coefficient of the loss of disk friction power
with volumetric leakage, \( \Delta \gamma_1 \) is the leakage coefficient with interstage leakage, \( \Delta \gamma_2 \) is
the leakage coefficient with volumetric leakage, \( P_{M2} \) is the loss of disk friction power
of \( M_2 \), \( P_{M3} \) is the loss of disk friction power of \( M_3 \), \( P_{M6} \) is the loss of disk friction
power of \( M_6 \), \( P_m (= 180.454 \, \text{W}) \) is the reference for the loss of disk friction power
(i.e., that for $M2$ under rated flow condition), and $Q_r (= 3.3 \text{ m}^3/\text{h})$ is the reference flow under a rated condition.

Figure 17 presents the variations of the loss of disk friction power $\Delta \zeta$ with leakage coefficient $\Delta \gamma$. The following relationships can be obtained using quadratic curve fitting:

$$\Delta \zeta_1 = -0.00316 + 6.398\Delta \gamma_1 - 33.549\Delta \gamma_1^2$$ (18)

$$\Delta \zeta_2 = -0.280 + 3.851\Delta \gamma_2 - 7.450\Delta \gamma_2^2$$ (19)

Both interstage and volumetric leakages exert vital influences on the loss of disk friction power. When $\Delta \gamma_1$ is approximately 0.08, $\Delta \zeta_1$ approaches 0.3. When $\Delta \gamma_2$ is approximately 0.2, $\Delta \zeta_2$ approaches 0.2. These results indicate that the interstage leakage has a more significant effect on the loss of disk friction power than the volumetric leakage has. Moreover, the changing coefficient of the loss of disk friction power increases with the leakage coefficient, but the increase rate gradually decelerates.

(a) Increasing coefficient of the loss of disk friction power with interstage leakage
(b) Decreasing coefficient of the loss of disk friction power with volumetric leakage

Fig. 17 Relationship between the coefficients of disk friction loss and leakage

Figure 18 presents the shear stresses $\tau$ at different radii ratio $r/R (R = 0.5D_2)$ of any locations on the front shroud for $M3$, $M4$, $M5$, and $M6$, which have different amounts of volumetric leakage, investigating further the relationship between the leakage amount and disk friction loss. As shown in Figure 18, the shear stress on the front shroud of the second-stage impeller is slightly larger than that of the first-stage impeller, but their overall trends are nearly the same. The shear stress on the front shroud increases linearly with the increase of radius for $M3$ with volumetric leakage. As the radii increase, the shear stresses on the front shrouds initially decrease, subsequently increase, and finally approach zero at $r/R \approx 0.5$ for $M4$, $M5$, and $M6$ with volumetric leakage. With the increase in the amount of volumetric leakage, the shear stress on the front shroud decreases gradually at $r/R > 0.5$, especially for $M3$ and $M4$.

Figure 19 shows the shear stresses at different radii ratio of any locations on the rear hub for $M2$ and $M3$, which have different amounts of interstage leakage. As shown in Figure 19, the shear stresses on the rear hub of the two impellers are almost the same. Once considered the interstage leakage, the shear stress on the rear hub increases rapidly. These results indicate that the increase of the shear stress on the front shroud is caused by the volumetric leakage, whereas the decrease of the shear stress on the rear hub is ascribed to the interstage leakage. Thus, these two types of leakages have opposite effects on the loss of disk friction power.
Fig. 18 Shear stresses on the front shroud with different amounts of volumetric leakage

(a) Front shroud of the first-stage impeller

(b) Front shroud of the second-stage impeller

(a) Rear hub of the first-stage impeller
The loss of disk friction power accounts for a small proportion of the shaft power, and the hydraulic power loss reaches the minimum value under a rated flow condition for general centrifugal pumps. With the increase of the volumetric leakage, the loss of disk friction power reduces slightly, whereas that of the hydraulic power increases sharply under a rated flow condition (actual flow shifted to a large flow condition); thus, the overall power loss remarkably increases. Therefore, the pump efficiency is reduced by increasing the gap at the front ring.

However, the loss of disk friction power for centrifugal pumps with significantly low specific speed accounts for a huge proportion of the shaft power, and these pumps are generally designed using the maximum flow design method. Consequently, the supposed rated flow condition is actually a small flow condition. With the increase of volumetric leakage, the loss of disk friction power is considerably reduced, and the hydraulic power loss also decreases rapidly under a rated flow condition (actual flow shifted to the rated flow condition). By contrast, the loss of volumetric leakage power increases significantly. However, the overall power loss may be reduced because of the interactions of the three types of energy losses, that is, the efficiency of a centrifugal pump with a significantly low specific speed under a rated flow condition may be enhanced by increasing the amount of volumetric leakage. Kurokawa conducted the following tests on a centrifugal pump with a significantly low specific speed. Cutting off a hole with a diameter of 5 mm on the front shroud was found to
increase the efficiency of the pump by 3.5%, whereas cutting another hole could
decrease the efficiency to the value of the original model without any hole. The model
in this study is only a centrifugal pump with a generally low specific speed, to which
this law is applicable; however, the interactive relationships among the three types of
energy losses cannot be ignored.

4. Optimization methods for pump efficiency

The pump efficiency can be improved by reducing the energy losses in the pump, namely, disk friction, volumetric leakage, and hydraulic losses. The disk friction loss is affected by two factors. The first factor includes the geometric parameters, such as disk diameter, rotating speed, and surface roughness, whereas the second factor includes the interstage and volumetric leakages. The disk diameter, rotating speed, and surface roughness are positively correlated with disk friction loss. The disk diameter and rotating speed are not allowed to reduce because of the high-head requirement, and the surface roughness has basically reached the theoretical minimum value. Therefore, reducing the disk friction loss by decreasing the parameters is challenging. Meanwhile, the interstage and volumetric leakages respectively show positive and negative correlations with disk friction power loss; thus, the loss of disk friction power can be decreased by reducing the amount of interstage leakage and increasing that of the volumetric leakage. However, an increase in the amount of volumetric leakage also leads to a remarkable increase in volumetric leakage loss. The increment of the volumetric leakage loss is usually greater than the decrement of the disk friction loss for general centrifugal pumps. Therefore, the total energy loss can be decreased by reducing the volumetric leakage loss, resulting in an improved pump efficiency, as shown in this paper.

As shown in Figure 13, the hydraulic loss power of the diffuser increases significantly with the increase of flow rate, implying that the carrying capacity of the diffuser is insufficient, and the size of the diffuser should be increased. Moreover, the pump in this study has a cantilever structure, and only one rolling bearing exists in the connective part between the pump and motor; thus, a large runout of the shaft may
ensue. For this reason, the clearances of the ring have to be maintained between 0.5 mm and 1 mm, as shown in Figure 20(a). Therefore, the pump efficiency can be improved effectively by the following three methods:

(1) A plastic seal ring may be placed on the front ring of the impeller, as shown in Figure 20(b). The seal ring is close to the cavity wall during pump operation, and the volumetric leakage is prevented effectively because of the pressure difference. However, this method is inapplicable for the interstage leakage because the pressure difference reduces the gap between the seal ring and the rear hub of the impeller.

(2) A sliding bearing may be installed on the inlet of the pump, as shown in Figure 20(c). The runout of the shaft decreases rapidly because both its ends are fixed, and the clearances of the front and rear rings can be set within 0.2 mm to improve the pump efficiency remarkably. However, the pump will inevitably vibrate during the operation if this method is applied.

(3) The radial dimension of the positive diffuser may be increased, as shown in Figure 20(d). A high head ($H_{\text{max}} \geq 13$ m) and a small shaft power ($P_{\text{max}} \leq 200$ W) are both required by users; thus, a small angle of the impeller outlet and a large impeller diameter have to be selected. Moreover, the unilateral radial dimension of the positive diffuser is only 4.5 mm because of the limitation of the pump diameter ($D_{\text{max}} \leq 118$ mm), resulting in an insufficient carrying capacity of the diffuser. With the increase of flow rate, the hydraulic loss of the diffuser increases significantly. Therefore, two techniques are proposed to solve these problems: removing the restrictions on either the high head or the pump diameter. The first technique can increase the radial dimension of the positive diffuser by reducing the impeller diameter. This technique can decrease not only the friction disk loss at the impeller but also the hydraulic loss at the diffuser. The second technique can increase the radial dimension of the positive diffuser directly by increasing the pump diameter.
(a) Original pump model

(b) Pump model with front seal ring

(c) Pump model with sliding bearing
Due to that the plastic seal ring on the front ring of the impeller always moves slightly in the working operation of the pump, it’s very difficult to make accurate calculation. Therefore, the authors decided to conduct some experiments to verify the theoretical optimal pump models. Note that only the first and the second optimal methods are used, because the third optimal method by increasing the radial dimension of the positive diffuser has not been tried due to the great change of the pump’s structure and the limitation of the manuscript’s revision time.

The original pump model with the front ring of 1 mm unilateral clearance is selected as model 1 (referred to as $m_1$). Moreover, model 2 (referred to as $m_2$) is also selected through placing a plastic seal ring on the front ring of $m_1$, and the volumetric leakage is prevented effectively because of the pressure difference due to that the seal ring is close to the cavity wall during pump operation. The theoretical clearance of the front ring of $m_2$ is 0.5 mm, while the actual clearance of the front ring should be larger due to the slight movement of the seal ring in the working operation of the pump. Additionally, it’s not very necessary to place the sliding bearing on the inlet of the pump if only some performance experiments with short-time operation are done. Therefore, through adjusting the radial dimension of the front ring, the optimal pump model with the front ring of 0.5 mm unilateral clearances is also selected as model 3 (referred to as $m_3$). The efficiency and the head of the three pump models are also shown in Figure 21. As can be seen that, compared with $m_1$ and $m_3$, with decreasing
the clearance of the front ring, the head and the efficiency under different flow conditions all decrease, and the maximum efficiency point shifts to the small flow rate condition due to the decrease of the volumetric leakage. What’s more, compared with $m_1$ and $m_2$, the head and the efficiency of the pump are improved indeed through placing a plastic seal ring on the front ring, but the improvement of the pump performance is slightly smaller than that through decreasing directly the clearance of the front ring compared with $m_2$ and $m_3$. Therefore, the theoretical optimal pump models are verified through the experimental methods.

![Fig. 21 Experimental results of three kinds of pump models](image)

5. Conclusions

In this study, a combined energy loss model and Computational Fluid Dynamics (ELM/CFD) optimization method was proposed, and has been applied successfully to the design of a multistage centrifugal pump. Four different calculation models were established to systematically study the various kinds of energy losses in the pump. A series of numerical calculations were performed with different grid numbers, turbulence models, convergence precisions and surface roughness, to find the appropriate numerical settings and ensure the reliability of the results. Then, all the kinds of energy losses in a typical multistage centrifugal pump are calculated to assess their individual or combined effects on the pump performance. Finally, the optimal design were obtained by the combined method of ELS/CFD and verified by prototype...
test. The analysis of the results enables the following observations to be drawn:

(1) Suitable setting methods of numerical calculation for multistage centrifugal pump could render the numerical results more credible, and the integrity of the calculation domain is the key contributor to the accuracy of CFD results. When the integrity of the calculation domain increases, the efficiency constantly decreases, and the largest deviation exceeds 50%; the head initially increases and subsequently decreases, with the largest deviation being approximately 30%. According to the detailed comparisons, the numerical and experimental results are almost coincident under rated flow condition, but there are some minor discrepancies (within 3%) under non-rated flow conditions because of flow separation or recirculation in the pump. Therefore, it is rather creditable to predict the performances of multistage centrifugal pump using CFD based on the whole calculation model and appropriate numerical setting methods.

(2) An ELM/CFD method was established for the optimal design, which includes the various kinds of energy loss in the pump, such as disk friction loss, volumetric leakage loss, interstage leakage loss as well as the hydraulic loss, which occurred at inlet section, outlet section, impeller, diffuser and pump cavity, respectively. The energy distribution in any pump models could be displayed clearly, and the abnormal energy loss could be obtained for further improvement of pump performance. For example, the hydraulic loss power of the diffuser accounts for 17% of the total shaft power, which indicates that the hydraulic performance of the diffuser is rather poor. Through the analysis found that the radial dimension of the positive diffuser is too small and large impact energy loss exists on the inlet of the positive diffuser. Therefore, the problem of low efficiency can be solved by increasing the radial dimension of the positive diffuser.

(3) The interstage leakage loss is converted by the disk friction loss, while the volumetric leakage loss is negatively correlated with the disk friction loss. The increment of the volumetric leakage loss is greater than the decrement of the disk friction loss for general centrifugal pumps. Therefore, reducing the volumetric leakage and interstage leakage losses is the most effective technique to increase the
efficiency of general centrifugal pumps. Under the premise of ensuring the working 
reliability of the pump, the clearance of front and rear rings should be as small as 
possible. Additionally, due to that the loss of disk friction power accounts for large 
proportion of the total shaft power of the centrifugal pump, especially the low specific 
centrifugal pump, so polishing the impeller shroud and pump cavity is beneficial in 
improving pump efficiency and reducing pump shaft power under the premise that the 
surface roughness has a significant influence on the pump performance.

**Acknowledgments**

Funding support from the Priority Academic Program Development of Jiangsu Higher 
Education Institutions (PAPD) and the China Scholar Council (2014083201656) are 
gratefully acknowledged.

**References**

[1] Shankar VK, Umashankar S, Paramasivam S, Hanigovszki N. A comprehensive review 
on energy efficiency enhancement initiatives in centrifugal pumping system. Applied 


[3] Zhang J, Zhang HH, He YL, Tao WQ. A comprehensive review on advances and 

[4] Olszewski P. Genetic optimization and experimental verification of complex parallel 

successful applications, Hydraulic Institute, New York, NY.

experiments in a compact return diffuser under different rotating speed. Experimental 

multistage centrifugal pump. Journal of Drainage and Irrigation Machinery Engineering, 

[8] Kang C, Yang X, Yu X J. Inter-stage interaction and unsteady flow characteristics in 
multistage centrifugal pump. Journal of Drainage and Irrigation Machinery Engineering, 
2015, 33(7): 566-571.

hydraulic performance in a deep-well centrifugal pump with different impeller rear


[26] Zhou L, Shi W, Cao W, Yang H. CFD investigation and PIV validation of flow field in a


## Nomenclature

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_2$</td>
<td>outlet width of the impeller blade</td>
<td>mm</td>
</tr>
<tr>
<td>$D_1$</td>
<td>inlet diameter of the impeller</td>
<td>mm</td>
</tr>
<tr>
<td>$D_2$</td>
<td>outlet diameter of the impeller</td>
<td>mm</td>
</tr>
<tr>
<td>$D_3$</td>
<td>inlet diameter of the positive diffuser</td>
<td>mm</td>
</tr>
<tr>
<td>$D_h$</td>
<td>hub diameter of the impeller</td>
<td>mm</td>
</tr>
<tr>
<td>$G$</td>
<td>grid size</td>
<td>mm</td>
</tr>
<tr>
<td>$H$</td>
<td>total head of the multistage pump</td>
<td>m</td>
</tr>
<tr>
<td>$H_1$</td>
<td>head of the first stage pump</td>
<td>m</td>
</tr>
<tr>
<td>$H_2$</td>
<td>head of the second stage pump</td>
<td>m</td>
</tr>
<tr>
<td>$H_t$</td>
<td>theoretical head of the multistage pump</td>
<td>m</td>
</tr>
<tr>
<td>$H_{in}$</td>
<td>loss head of the inlet section</td>
<td>m</td>
</tr>
<tr>
<td>$H_{out}$</td>
<td>loss head of the outlet section</td>
<td>m</td>
</tr>
<tr>
<td>$h$</td>
<td>hydraulic loss head of the unit fluid through the pump</td>
<td>m</td>
</tr>
<tr>
<td>$h_{ip}$</td>
<td>hydraulic loss head of the unit fluid through the impeller</td>
<td>m</td>
</tr>
<tr>
<td>$h_{df}$</td>
<td>hydraulic loss head of the unit fluid through the diffuser</td>
<td>m</td>
</tr>
<tr>
<td>$h_{ca}$</td>
<td>hydraulic loss head of the unit fluid through the pump cavity</td>
<td>m</td>
</tr>
<tr>
<td>$Z$</td>
<td>number of the impeller blades</td>
<td>–</td>
</tr>
<tr>
<td>$Z_p$</td>
<td>number of positive diffuser blades</td>
<td>–</td>
</tr>
<tr>
<td>$Z_n$</td>
<td>number of negative diffuser blades</td>
<td>–</td>
</tr>
<tr>
<td>$\beta_1$</td>
<td>inlet angle of the impeller blade</td>
<td>°</td>
</tr>
<tr>
<td>$\beta_2$</td>
<td>outlet angle of the impeller blade</td>
<td>°</td>
</tr>
<tr>
<td>$\alpha_3$</td>
<td>inlet angle of the positive diffuser blade</td>
<td>°</td>
</tr>
<tr>
<td>$\alpha_6$</td>
<td>outlet angle of the negative diffuser blade</td>
<td>°</td>
</tr>
<tr>
<td>$\eta$</td>
<td>efficiency of the multistage pump</td>
<td>–</td>
</tr>
<tr>
<td>$\eta_m$</td>
<td>mechanical efficiency of the multistage pump</td>
<td>–</td>
</tr>
<tr>
<td>$\eta_v$</td>
<td>volumetric efficiency of the multistage pump</td>
<td>–</td>
</tr>
<tr>
<td>$\theta_w$</td>
<td>wrap angle of the impeller blade</td>
<td>°</td>
</tr>
<tr>
<td>$\mu$</td>
<td>surface roughness</td>
<td>µm</td>
</tr>
<tr>
<td>$\tau$</td>
<td>shear stresses</td>
<td>Pa</td>
</tr>
<tr>
<td>$\Delta P_h$</td>
<td>hydraulic loss power of the multistage pump</td>
<td>W</td>
</tr>
<tr>
<td>$\Delta P_{in}$</td>
<td>hydraulic loss power of the inlet section</td>
<td>W</td>
</tr>
<tr>
<td>$\Delta P_{ip}$</td>
<td>hydraulic loss power of the impeller</td>
<td>W</td>
</tr>
<tr>
<td>$\Delta P_{df}$</td>
<td>hydraulic loss power of the diffuser</td>
<td>W</td>
</tr>
</tbody>
</table>
$m_1$ real pump model with 1 mm front ring, $\Delta P_{ca}$ hydraulic loss power of the pump cavity, W

$m_2$ real pump model through placing a plastic seal ring on the front ring of $m_1$, $\Delta P_{out}$ hydraulic loss power of the outlet section, W

$m_3$ real pump model with 0.5 mm front ring, $\Delta \gamma_1$ leakage coefficient with interstage leakage, –

$N$ Stage number of the multistage pump, $\Delta \gamma_2$ leakage coefficient with volumetric leakage, –

$P$ shaft power of the multistage pump, W $\Delta \zeta_1$ increasing coefficient of the loss of disk friction power with interstage leakage, –

$P_1$ shaft power of the first stage pump, W $\Delta \zeta_2$ decreasing coefficient of the loss of disk friction power with volumetric leakage, –

$P_2$ shaft power of the second stage pump, W

$P_{1h}$ hydraulic power of the first stage pump, W

$P_{2h}$ hydraulic power of the second stage pump $\Delta \zeta_{ca}$ pump cavity, W

$P_{1m}$ loss of disk friction power of the first stage pump, W

$P_{2m}$ loss of disk friction power of the second stage pump, W

$P_m$ loss of disk friction power of the multistage pump, W

$P_{M2}$ loss of disk friction power of $M_2$, W

$P_{M3}$ loss of disk friction power of $M_3$, W

$P_{M6}$ loss of disk friction power of $M_6$, W

$P_h$ hydraulic power of the multistage pump, W

$P_v$ loss of volumetric leakage power of the multistage pump, W

$P_u$ working power of the multistage pump, W

$Q$ flow rate, $m^3/h$

$Q_r$ rated flow, $m^3/h$

$q$ average ring leakage amount of the multistage pump, $m^3/h$

$q_1$ ring leakage amount of the first stage pump, $m^3/h$

Subscripts

$P_{2h}$ hydraulic power of the second stage pump, W

$P_{1m}$ loss of disk friction power of the first stage pump, W

$P_{2m}$ loss of disk friction power of the second stage pump, W

$P_m$ loss of disk friction power of the multistage pump, W

$P_{M2}$ loss of disk friction power of $M_2$, W

$P_{M3}$ loss of disk friction power of $M_3$, W

$P_{M6}$ loss of disk friction power of $M_6$, W

$P_h$ hydraulic power of the multistage pump, W

$P_v$ loss of volumetric leakage power of the multistage pump, W

$P_u$ working power of the multistage pump, W

$Q$ flow rate, $m^3/h$

$Q_r$ rated flow, $m^3/h$

$q$ average ring leakage amount of the multistage pump, $m^3/h$

$q_1$ ring leakage amount of the first stage pump, $m^3/h$