<table>
<thead>
<tr>
<th>Title</th>
<th>Candida albicans in cystic fibrosis: “Opening statements presented, let the trial begin”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chotirmall, Sanjay Haresh</td>
</tr>
<tr>
<td>Citation</td>
<td>Chotirmall, S. H. (2016). Candida albicans in cystic fibrosis: “Opening statements presented, let the trial begin”. Pediatric Pulmonology, 51(5), 445-446.</td>
</tr>
<tr>
<td>Date</td>
<td>2015</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/42259</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2015 Wiley Periodicals, Inc. This is the author created version of a work that has been peer reviewed and accepted for publication by Pediatric Pulmonology, Wiley Periodicals, Inc. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1002/ppul.23315].</td>
</tr>
</tbody>
</table>
CANDIDA ALBICANS IN CYSTIC FIBROSIS: “OPENING STATEMENTS PRESENTED, LET THE TRIAL BEGIN”

Sanjay H. Chotirmall MD PhD
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore

Telephone +65 90614430
Fax +65 63392889
E-mail schotirmall@ntu.edu.sg

Keywords: Candida, Cystic Fibrosis, Colonization, Airway, Trials
Running Head: Candida in Cystic Fibrosis

Financial Disclosures: None
Word Count: 943 words
Cystic fibrosis (CF) is a chronic destructive genetic disease resulting from dysfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein that encodes an apically located chloride ion channel on the cellular epithelial surface. Within the lung, this causes mucociliary impairment and consequently an inability to mobilize secretions. The result is mucus trapping, bacterial colonization, recurrent exacerbations, persistent inflammation, structural bronchiectasis and death predominantly attributed to respiratory failure1,2. Important advances in understanding disease pathogenesis, particularly on a molecular level, coupled with newer therapeutic approaches have increased the life expectancy for patients with CF (PWCF). Such positive change also brings new and previously unrecognized challenges in disease management. One such challenge remains understanding the role of fungal colonization and infection in PWCF.

Traditionally, CF is associated with bacterial pathogens such as \textit{Staphylococcus aureus} and \textit{Pseudomonas aeruginosa} however an increasing recognition of fungi in the CF airway is described1,2. While the clinical role for \textit{Aspergillus} species in PWCF has received most attention to date, \textit{Candida} species particularly \textit{C. albicans} are frequently detected in CF sputum. These yeasts are capable of causing localized infection such as oral or genital thrush but also chronic and systemic infection in the post-transplant setting or by infecting implanted vascular access devices2. While this fungal yeast is commonly seen as a commensal in the oropharynx and upper respiratory tract, its role in the lower airway of PWCF remains uncertain.
In this issue of *Pediatric Pulmonology*, Gileles-Hillel and colleagues report findings of an observational longitudinal study from Israel assessing 4,244 sputum samples in n=91 PWCF. By stratifying patients according to their *Candida* colonization status, they report that patients chronically colonized have worse pulmonary function at study commencement, study completion and also the greatest rates of decline over the study period compared to intermittently and non-colonized cohorts. Likelihood of colonization was also higher in the presence of pancreatic insufficiency, cystic fibrosis related diabetes (CFRD), corticosteroid use and Methicillin-resistant *Staphylococcus aureus* (MRSA). The strongest independent predictors of colonization were FEV1<60% predicted, BMI<20 and interestingly, co-colonization with *Aspergillus* species. This is the second compelling ‘opening statement’ in the case of *Candida* colonization in cystic fibrosis and its potential for direct pathogenesis. The first was a prospective observational study performed with colleagues in Ireland in which we followed n=89 PWCF over an eleven-year period. We discovered that colonization with *C. albicans* was associated with greater longitudinal declines in FEV1, BMI and was also linked to increased hospitalized exacerbation rates. The greatest predictors of colonization in this work were pancreatic insufficiency, co-colonization with *Pseudomonas* species and osteopenia. While the two studies share similarities, there are also inherent important differences to highlight.

First, it should be recognized that these works were carried out in different CF cohorts with the earlier Irish study prospectively conducted and the recent Israeli dataset retrospectively analysed. Contrasting ‘predictors’ for *Candida* colonization were observed between the two studies, however, all cited factors (irrespective of study)
commonly reflect a clinically advanced CF phenotype. Gileles-Hillel et al further did not assess lung function preceding Candida colonization. Coupled with their study design, lack of data on antibiotic use and high occurrence of corticosteroid administration and MRSA frequency, it remains difficult to distinguish associative relationships from potentially causative ones in the setting of C. albicans colonization in the CF airway, a similar challenge experienced in our Irish study.

Despite these obvious differences, key similarities subsist between these two works. Both groups detected reduced lung function and associations of C. albicans colonization in differing extents to co-colonization with Pseudomonas and Aspergillus species. This is pivotal in providing a potential biological basis for the investigation of C. albicans as an independent pathogen in the CF airway. Certain Candida cell wall components induce pro-inflammatory responses and coupled with the known inhibitory effects of Candida on host phagocytosis, ability to form drug-resistant biofilms and immunoevasive capability, it is possible that the presence of Candida in the CF airway may independently contribute to the deleterious pro-inflammatory state in-vivo. Furthermore, the complex interspecies interactions within the CF airway could also have a role. The presence of Pseudomonas causes morphological adaptation to Candida in-vitro inhibiting its production of virulence factors and biofilm formation. This may be a possible reason that Gileles-Hillel et al only discovered statistically significant FEV1 declines in the non-Pseudomonas colonized PWCF. Interestingly and in converse fashion, the presence of Candida enhances Pseudomonas pathogenicity by upregulating its virulence. Candida’s
relationship to *Aspergillus* co-colonization is less well understood and studies assessing combined colonization states are essential to better understand these relationships.

Overall, when taken together, the two studies are complementary. Whilst neither can discriminate between *Candida* colonization in the CF airway representing a marker of disease severity versus independent pathogen, they together both provide a strong platform to warrant future prospective multicentre randomized controlled therapeutic clinical trials aimed at eliminating *Candida* from the CF airway to test this hypothesis. It is necessary however that such work is carefully designed, for example considering the exclusion of *Pseudomonas* colonized PWCF from such trials to prevent diluting any possible clinical effect of *Candida* elimination from the CF airway. Data should also be serially collected in a longitudinal fashion from the airway and systemically and assessed from a microbiological, inflammatory and immune perspective.

The emergence of the respiratory ‘microbiome’ and more recently the fungal ‘mycobioime’ also needs future consideration. Both the Irish and Israeli studies discussed, together represent compelling ‘opening statements’ and provide a platform for studying the case of direct *Candida* pathogenesis in PWCF. While the jury listens and the future verdict uncertain at this juncture, the time has certainly come for the ‘trial to begin’.
REFERENCES

