<table>
<thead>
<tr>
<th>Title</th>
<th>Self-powered sensitive and stable UV-visible photodetector based on GdNiO3/Nb-doped SrTiO3 heterojunctions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Wang, Le; Chang, Lei; Yin, Xinmao; You, Lu; Zhao, Jiali; Guo, Haizhong; Jin, Kuijuan; Ibrahim, Kurash; Wang, Jiaou; Rusydi, Andirvo; Wang, Junling</td>
</tr>
<tr>
<td>Date</td>
<td>2017</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/42560</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2017 American Institute of Physics (AIP). This paper was published in Applied Physics Letters and is made available as an electronic reprint (preprint) with permission of American Institute of Physics (AIP). The published version is available at: [http://dx.doi.org/10.1063/1.4974144]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Self-powered sensitive and stable UV-visible photodetector based on GdNiO$_3$/Nb-doped SrTiO$_3$ heterojunctions

Le Wang,$^{1,a)}$ Lei Chang,$^{1,a)}$ Xinmao Yin,2,3 Lu You,1 Jia-Li Zhao,4 Haizhong Guo,5 Kuijuan Jin,5 Kurash Ibrahim,4 Jiaou Wang,4 Androvo Rusydi,2 and Junling Wang$^{1,b)}$

1School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
2Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
3SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
4Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
5Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 2 November 2016; accepted 3 January 2017; published online 24 January 2017)

The properties of perovskite nickelates are very sensitive to their oxygen content, which allows us to tune their electronic structures by varying the oxygen partial pressure during film deposition. Under the optimized condition, we have obtained GdNiO$_3$ films that are sensitive to a wide spectrum of light. By combining the GdNiO$_3$ film with Nb-doped SrTiO$_3$ to form a heterojunction, we design a self-powered photodetector with high sensitivity toward light with a wavelength between 650 nm and 365 nm. Under 365 nm illumination (50 μW/cm2), the device shows a responsivity of 0.23 A/W at 0 V bias, comparable to or even better than the ultraviolet photodetectors made of semiconductor materials such as GaN or ZnO. The photo-dark ratio can be close to 10^3 when the power light density reaches 0.6 mW/cm2. Moreover, the device performance is very stable without any decay after 6 months. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4974144]

Photodetectors (PDs) are essential components for communication, environmental monitoring, optoelectronic circuits, and intelligent buildings.$^{1-4}$ Commercial products based on GaN, Si, and InGaAs work well in ultraviolet (UV), visible, and near-infrared (Near-IR) subbands, respectively. For many practical applications, wide spectrum photo-detection is necessary. Therefore, it is desirable to develop a PD with high performance over a broad range of wavelengths. Many materials have been investigated for this purpose,$^{5-10}$ such as CH$_3$NH$_2$PbI$_3$. However, the hybrid perovskites are not stable under ambient conditions and easily desolve in water, leading to serious environmental concerns. Recently, nickelates (RNiO$_3$, where R represents a rare earth lanthanide element) have attracted considerable interest due to the emergence of many exotic phenomena.$^{11-15}$ For Sm and smaller rare earths, this system undergoes two transitions: from a paramagnetic metallic phase to a paramagnetic insulating phase, followed by an antiferromagnetic insulating phase at low temperatures. For bulk GdNiO$_3$ (GNO), the metal-insulator transition temperature T_{MI} is about 510 K and the Neel temperature T_N is about 180 K. Furthermore, one of the remarkable features of RNiO$_3$ is the dependence of their physical properties on the chosen rare earth element, which makes RNiO$_3$ a canonical example for bandwidth controlled metal-insulator transitions.16 These perovskite oxides are lead-free, are very stable, and have tunable band gaps, ideal as light absorbing materials in optoelectronic devices.$^{17-19}$ Moreover, RNiO$_3$ have shown p-type conduction at room temperature, making them good candidates for designing devices based on p-n junctions.

One of the key points in designing a PD is to establish an electric field to separate the photo-generated electron–hole pairs. This is usually achieved by applying an external bias to the light-absorbing material, and the photo-response can be adjusted by changing the bias. On the other hand, a passive operation can be achieved if the built-in electric field of a p-n junction is used for carrier separation. Here, we propose a self-powered PD based on a GdNiO$_3$/Nb-doped SrTiO$_3$ (GNO/NSTO) p-n heterojunction. A high responsivity of 0.23 A/W is demonstrated. It also shows a broadband response from 365 to 650 nm. A photo-dark ratio of $>$100 can be achieved under light (365 nm) of only 50 μW/cm2. Moreover, the device shows no change in performance after 6 months.

GNO thin films were grown on (001)-oriented 0.7 wt. % NSTO substrates by pulsed laser deposition. The laser pulse (248 nm) energy density was \sim2 J/cm2, and the repetition rate was 5 Hz. The substrates were heated to 725°C during deposition. The film thickness was about 10 nm. After deposition, the samples were annealed in situ for 10 min and cooled down to room temperature. X-ray diffraction (XRD) measurement was conducted to identify the crystal structure using a Rigaku SmartLab instrument with Cu-radiation (λ=1.5405 Å). Ultraviolet photoelectron spectroscopy (UPS) measurements were performed in a home-built ultrahigh

*a)L. Wang and L. Chang contributed equally to this work.
*b)Author to whom correspondence should be addressed. Electronic mail: ji wang@ntu.edu.sg.
A vacuum multi-chamber system with base pressure better than \(1 \times 10^{-9}\) Torr. The UPS source was a helium discharge lamp \((h\nu = 21.2\) eV\). The photoelectrons were measured using an electron analyzer (Omicron EA125). X-ray absorption spectroscopy (XAS) measurements were performed at the photoemission station at the Beijing Synchrotron Radiation Facility of Institute of High Energy Physics, Chinese Academy of Sciences. The ultrahigh vacuum chamber background pressure is about \(2 \times 10^{-10}\) Torr. Spectroscopic ellipsometry measurements have been performed using a commercially available rotating analyzer instrument with a compensator (V-VASE; J.A. Woollam Co., Inc.) within the spectral range from 0.6 to 6 eV at the Singapore Synchrotron Light Source. Data have been collected at two incidence angles (50° and 70°). The optical bandgap \(E_g\) can be determined from the absorption coefficient \(\alpha\), calculated using the Tauc plot following \(\alpha E = A (E - E_g)^n\), where \(\alpha\) is the absorption coefficient, \(E\) is the photon energy, \(A\) is a constant, and \(n\) is equal to 1/2 or 2 for direct- or indirect-gap materials, respectively. To collect light-generated carriers, square Au top electrodes with a diameter of 400 \(\mu m\) and a thickness of 6 nm were deposited on the GNO films through a metal shadow mask. All photo-response characteristics of the Au/GNO/NSTO photodetectors were measured using a pA meter/direct current (DC) voltage source (Hewlett Package 4140B) on a low noise probe station under dark and illuminated conditions. A UV (365 nm) light-emitting diode (LED) with adjustable light power density from 0.05 to 0.6 mW/cm\(^2\) was utilized as the light source. Monochromatic laser diodes with four different wavelengths between 460 nm and 980 nm and an optical power density of 10 mW/cm\(^2\) were also used as light sources. All these measurements were performed at room temperature.

The samples prepared under various oxygen pressures \(P(O_2)\) of 300, 100, 20, 2, and 0.2 mTorr are named D1–D5, respectively. In bulk, GNO is orthorhombic with a room temperature pseudocubic lattice constant of \(\sim 3.756\) \(\AA\), which is smaller than that of STO \((a_{STO} \sim 3.905\) \(\AA\)). Therefore, GNO will experience an in-plane tensile strain of 3.9% on STO. X-ray \(\theta - 2\theta\) scans show only diffraction peaks from the substrates and GNO films (Fig. 1(a)), indicating the high quality films. The \((002)_{pc}\) diffraction peaks of the GNO films shift towards smaller diffraction angles with decreasing \(P(O_2)\). The optical bandgap \(E_g\) can be determined from the absorption coefficient \(\alpha\), calculated using the Tauc plot following \(\alpha E = A (E - E_g)^n\), where \(\alpha\) is the absorption coefficient, \(E\) is the photon energy, \(A\) is a constant, and \(n\) is equal to 1/2 or 2 for direct- or indirect-gap materials, respectively. To collect light-generated carriers, square Au top electrodes with a diameter of 400 \(\mu m\) and a thickness of 6 nm were deposited on the GNO films through a metal shadow mask. All photo-response characteristics of the Au/GNO/NSTO photodetectors were measured using a pA meter/direct current (DC) voltage source (Hewlett Package 4140B) on a low noise probe station under dark and illuminated conditions. A UV (365 nm) light-emitting diode (LED) with adjustable light power density from 0.05 to 0.6 mW/cm\(^2\) was utilized as the light source. Monochromatic laser diodes with four different wavelengths between 460 nm and 980 nm and an optical power density of 10 mW/cm\(^2\) were also used as light sources. All these measurements were performed at room temperature.

The samples prepared under various oxygen pressures \(P(O_2)\) of 300, 100, 20, 2, and 0.2 mTorr are named D1–D5, respectively. In bulk, GNO is orthorhombic with a room temperature pseudocubic lattice constant of \(\sim 3.756\) \(\AA\), which is smaller than that of STO \((a_{STO} \sim 3.905\) \(\AA\)). Therefore, GNO will experience an in-plane tensile strain of 3.9% on STO. X-ray \(\theta - 2\theta\) scans show only diffraction peaks from the substrates and GNO films (Fig. 1(a)), indicating the high quality films. The \((002)_{pc}\) diffraction peaks of the GNO films shift towards smaller diffraction angles with decreasing \(P(O_2)\), and the calculated \(c\)-axis lattice constants are 3.84, 3.87, 3.92, 3.97, and 4.01 Å for samples D1, D2, D3, D4, and D5, respectively. We attribute the change in the lattice constant to the oxygen vacancies. In order to maintain the charge neutrality, Ni ions change from Ni\(^{3+}\) to Ni\(^{2+}\) upon the introduction of oxygen vacancies, leading to a larger Ni ionic radius and larger lattice constant. Similar effects have also been reported in other perovskite oxides.

To further understand the influence of oxygen vacancies on the Ni 3d–O 2p hybridization and Ni valance state, we turn to X-ray absorption spectroscopy (XAS) measurements. Figure 1(b) shows the Ni L\(_{32}\) edge spectra. The intensity ratio between the \(L_3\) (around 853 eV) and \(L_2\) (around 870 eV) peaks increases with decreasing \(P(O_2)\), suggesting lower Ni valence in GNO films deposited under lower \(P(O_2)\), consistent with the electron-doping effect of oxygen vacancies. The \(L_3\) portion of the spectra reveals a sharp peak near 853 eV and a broad satellite peak near 854 eV, labeled as A and B, respectively. The clear split indicates that the samples are insulating. By comparing with the Cu L-edge spectra of cuprates, we suggest that the satellite peak B may be related to ligand holes formed due to the hybridization between Ni 3d and O 2p orbitals. Further evidence can be
found in the O K-edge absorption spectra (Fig. 1(c)). The intensity of the pre-peak near 529 eV (labeled by a red arrow) is a measure of the covalency in nickelates, which decreases for samples deposited under low P(O2), indicating that the Ni 3d–O 2p hybridization strength decreases with decreasing P(O2).

In Fig. 1(d), we present the absorption coefficient α of the five samples, which are obtained from spectroscopic ellipsometry measurements. The corresponding optical bandgaps can be obtained from Tauc plots (the inset of Fig. 1(d)). Clearly, the GNO film deposited under lower P(O2) possesses larger optical bandgaps. This is consistent with the XAS results. As the Ni$^{2+}$/Ni$^{3+}$ ratio increases with decreasing P(O2), both valence and conduction bandwidths will be reduced due to the larger Ni$^{2+}$ ionic radius/Ni-O bond length ($d_{\text{Ni-O}}$) and smaller Ni-O-Ni bond angle. The smaller bandwidths further lead to stronger Coulomb repulsion among the electrons and induce a larger Mott–Hubbard splitting.

Figure 2(a) shows schematically the self-powered PD based on the GNO/NSTO heterojunction. Semitransparent Au is used as the top electrode, which forms Ohmic contact with GNO. The built-in electric field at the GNO/NSTO interface provides the driving force for efficient separation of photo-generated carriers. Therefore, this device can operate without an external power source. Figure 2(b) shows the energy diagrams across the heterojunctions. For NSTO, the Fermi level (E_F) is close to the conduction band minimum (CBM; $E_C \sim 4.0$ eV) due to the high doping concentration of 0.7 wt. %. The optical bandgap values of GNO films are extracted from the Tauc plots. The values of the valence band maximum (VBM) and work function of GNO films are obtained from ultraviolet photoelectron spectroscopy (UPS) measurements. The work function of the GNO film and the built-in electric field at the GNO/NSTO interface decrease with decreasing P(O2).

The current increases upon illumination, stays roughly constant during illumination, and returns to the dark value when the UV light is turned off. To quantify the photo-responses of the devices, we define the photo-dark ratio as $I_{\text{ph}}/I_{\text{dark}}$, where I_{ph} (I_{light}, I_{dark}), I_{light} are the photocurrent, the dark current, and the total current under illumination, respectively. The responsivity (R) is defined as $R = I_{\text{ph}}/(P_{\text{in}}S)$, where S is the effective contact area (1.6×10^{-3} cm2) and P_{in} is the power density of the light. Oxygen pressure dependences of the photo-dark ratio and R for the Au/GNO/NSTO PDs are shown in Fig. 2(d) and Table I. Sample D3 shows the best photo-response with a photo-dark ratio of 43.5×10^{-3}.

Table I. Performance of five different PD devices based on GNO/NSTO p-n heterojunctions. The light intensity of 365 nm UV light is 0.6 mW/cm2.

<table>
<thead>
<tr>
<th>Device</th>
<th>P(O2) (mTorr)</th>
<th>Optical bandgap (eV)</th>
<th>I_{dark} (nA)</th>
<th>I_{light} (nA)</th>
<th>Photo-dark ratio</th>
<th>R (mA/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>300</td>
<td>2.1</td>
<td>18.5</td>
<td>49.2</td>
<td>2.7</td>
<td>3.1</td>
</tr>
<tr>
<td>D2</td>
<td>100</td>
<td>2.3</td>
<td>3.14</td>
<td>28.8</td>
<td>9.2</td>
<td>2.7</td>
</tr>
<tr>
<td>D3</td>
<td>20</td>
<td>2.7</td>
<td>0.099</td>
<td>71.2</td>
<td>719.2</td>
<td>74.2</td>
</tr>
<tr>
<td>D4</td>
<td>2</td>
<td>2.97</td>
<td>0.051</td>
<td>9.37</td>
<td>183.7</td>
<td>9.7</td>
</tr>
<tr>
<td>D5</td>
<td>0.2</td>
<td>3.1</td>
<td>0.187</td>
<td>2.92</td>
<td>15.6</td>
<td>2.8</td>
</tr>
</tbody>
</table>
720 and R of $\sim 74 \text{mA/W}$, respectively. This is due to the combination of a large built-in electric field and low recombination of sample D3.

Our subsequent analysis focuses on sample D3. Figure 3(a) shows the photo-response measured using different wavelengths between 365 nm and 980 nm. The measurements were conducted under 0 V bias and a fixed light intensity of 10 mW/cm2 except for 365 nm UV light (light intensity of 0.6 mW/cm2). It is observed that I_{light} is almost negligible under 808 and 980 nm light. A significant photo-response starts to appear when the light wavelength (λ) decreases to 650 nm. One of the key parameter for a PD is spectrum R, which matches the absorption result well as shown in Fig. 3(b).

We have also investigated the light intensity dependence of the photo-response at $\lambda = 365$ nm, as shown in Fig. 4. I_{ph} increases linearly with the light intensity as more electron-hole pairs are created. However, R decreases with increasing light intensity because of carrier trapping saturation and a reduction in the recombination barrier. The responsivity of the Au/GNO(20 mTorr)/NSTO PD is approximately 0.23 A/W at a light power density of 50 μW/cm2, comparable to or even better than the UV PDs made of semiconductor materials such as GaN (~ 0.01 A/W) or ZnO (~ 0.3 A/W). We have monitored the photo-response of the PDs for 6 months. Both I_{ph} and R are very stable without any decay over the whole period (Fig. 3(c)). Moreover, we have measured 10 randomly selected devices, and I_{ph} falls in the range of 10–20 nA (Fig. 4(d)), suggesting good reproducibility of the device.

In summary, we report a self-powered sensitive and stable PD based on the GNO/NSTO heterojunction. The device exhibits high sensitivity towards light between 650 nm and 365 nm. Under 365 nm illumination (50 μW/cm2), the optimized device has a responsivity of 0.23 A/W at 0 V bias, and
the photo-dark ratio is close to 10^3 at a light intensity of 0.6 mW/cm². The high photo-response primarily arises from the built-in field formed at the interface of p-GNO and n-NSTO. Our work extends the potential applications of nickelates.

We acknowledge the financial support from the Ministry of Education, Singapore, under the Grant No. MOE2013-T2-1-052 and MOE2014-T2-1-099. H.G. and K.J. acknowledge the support from the National Basic Research Program of China (2014CB921001) and the National Natural Science Foundation of China (11134012 and 11574365).