<table>
<thead>
<tr>
<th>Title</th>
<th>On self-dual cyclic codes of length (p^a) over (GR(p^2, s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Jitman, Somphong; Ling, San; Sangwisut, Ekkasit</td>
</tr>
<tr>
<td>Citation</td>
<td>Jitman, S., Ling, S., & Sangwisut, E. (2016). On self-dual cyclic codes of length (p^a) over (GR(p^2, s)). Advances in Mathematics of Communications, 10(2), 255-273.</td>
</tr>
<tr>
<td>Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/42798</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2016 American Institute of Mathematical Sciences (AIMS) and Shandong University (SDU). This is the author created version of a work that has been peer reviewed and accepted for publication by Advances in Mathematics of Communications, American Institute of Mathematical Sciences (AIMS) and Shandong University (SDU). It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.3934/amc.2016004].</td>
</tr>
</tbody>
</table>
ON SELF-DUAL CYCLIC CODES OF LENGTH p^a OVER $\text{GR}(p^2, s)$

SOMPONG JITMAN
Department of Mathematics, Faculty of Science, Silpakorn University,
Nakhon Pathom 73000, Thailand

SAN LING
Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University,
21 Nanyang Link, Singapore 637371, Republic of Singapore

EKKASIT SANGWISUT
Department of Mathematics and Statistics, Faculty of Science, Thaksin University,
Phatthalung Campus, Phatthalung 93110, Thailand

(Communicated by the associate editor name)

ABSTRACT. In this paper, cyclic codes over the Galois ring $\text{GR}(p^2, s)$ are studied. The main result is the characterization and enumeration of Hermitian self-dual cyclic codes of length p^a over $\text{GR}(p^2, s)$. Combining with some known results and the standard Discrete Fourier Transform decomposition, we arrive at the characterization and enumeration of Euclidean self-dual cyclic codes of any length over $\text{GR}(p^2, s)$.

1. INTRODUCTION

Cyclic and self-dual codes over finite fields have been extensively studied for both theoretical and practical reasons (see [6], [11], and references therein). In [8], it has been proven that some binary non-linear codes such as the Kerdock, Preparata, and Goethals codes are the Gray image of linear cyclic codes over \mathbb{Z}_4. After that the concepts of cyclic and self-dual codes have been extended and studied over the ring \mathbb{Z}_4 (see [1], [2], and [4]). Later on, the study of cyclic and self-dual codes has been generalized to codes over \mathbb{Z}_{p^r} and Galois rings (see [5], [9], [10], [12], and [13]).

In [2], the structure of cyclic codes of oddly even length ($2m$, where m is odd) over \mathbb{Z}_4 has been studied via the Discrete Fourier Transform decomposition. This idea has been extended to the case of all even lengths in [4]. A remarkable structural decomposition of cyclic codes over \mathbb{Z}_4 are given in [2] and [4]. However, due to a misinterpretation of the orthogonality in [2, Lemma 6] and [4, Equation (21)], some results in [2] and [4] concerning Euclidean self-dual cyclic codes over \mathbb{Z}_4 are erroneous. Precisely, [2, Lemma 7, Lemma 9, and Corollary 2] and [4, Lemma 5.2, Corollary 5.4, Proposition 5.8, Corollary 5.9, and Section 6] are not correct.

2010 Mathematics Subject Classification: Primary: 94B15, 94B60; Secondary: 13B25.

Key words and phrases: Self-dual codes, cyclic codes, codes over rings, Galois rings, Hermitian inner product.

S. Jitman is supported by the DPST Research Grant 005/2557. S. Ling is supported by the National Research Foundation of Singapore under Research Grant NRF-CRP2-2007-03 and the grant NTU Research Grant M4080456. E. Sangwisut is supported by the Institute for the Promotion of Teaching Science and Technology of Thailand.
For better understanding of the readers, clarification and correction are provided in Subsection 4.3.

Using a spectral approach and a generalization of the results in [2] and [4], the structure of cyclic codes over \mathbb{Z}_{p^e}, for any prime p, has been studied in [5]. A nice classification of cyclic and Euclidean self-dual cyclic codes of length p^a over GR(p^2, s) has been given using a different approach in [9], [10], and [12].

In this paper, we focus on the characterization and enumeration of Hermitian self-dual cyclic codes of length p^a over GR(p^2, s) and their application to the enumeration of Euclidean self-dual cyclic codes of any length over GR(p^2, s). Using the standard Discrete Fourier Transform decomposition viewed as an extension of [5], a cyclic code C of any length $n = mp^a$ over GR(p^2, s) can be viewed as a product of cyclic codes of length p^a over some Galois extensions of GR(p^2, s). Euclidean self-dual cyclic codes can be characterized based on this decomposition. Applying some known results concerning cyclic and Euclidean self-dual cyclic codes of length p^a in [9] and [10] and our result on Hermitian self-dual cyclic codes of length p^a, the number of Euclidean self-dual cyclic codes of arbitrary length over GR(p^2, s) can be determined.

The paper is organized as follows. Some preliminary concepts and results are recalled in Section 2. In Section 3, we prove the main result concerning the number of Hermitian self-dual cyclic codes of length p^a over GR(p^2, s). An application to the enumeration of Euclidean self-dual cyclic codes of any length over GR(p^2, s) is discussed in Section 4 together with corrections of [2] and [4]. A conclusion is provided in Section 5.

2. Preliminaries

In this section, we recall some definitions and basic properties of cyclic codes over the Galois ring GR(p^2, s).

2.1. Cyclic Codes over GR(p^2, s). For a prime p and a positive integer s, the Galois ring GR(p^2, s) is the Galois extension of the integer residue ring \mathbb{Z}_{p^2} of degree s. Let ξ be an element in GR(p^2, s) that generates the Teichmüller set \mathcal{T}_s of GR(p^2, s). In other words, $\mathcal{T}_s = \{0, 1, \xi, \xi^2, \ldots, \xi^{p^2-2}\}$. Then every element in GR(p^2, s) has a unique p-adic expansion of the form

$$\alpha = a + bp,$$

where $a, b \in \mathcal{T}_s$. If s is even, let $\overline{\cdot}$ denote the automorphism on GR(p^2, s) defined by

$$\overline{\alpha} = a^{p^{s/2}} + b^{p^{s/2}} p.$$

For more details concerning Galois rings, we refer the readers to [14].

A cyclic code of length n over GR(p^2, s) is a GR(p^2, s)-submodule of the GR(p^2, s)-module $(\text{GR}(p^2, s))^n$ which is invariant under the cyclic shift. It is well known that every cyclic code C of length n over GR(p^2, s) can be regarded as an ideal in the quotient polynomial ring GR(p^2, s)[X]/(X^n - 1). Precisely, its is represented by the polynomial representation

$$\left\{ \sum_{i=0}^{n-1} c_i X^i \mid (c_0, c_1, \ldots, c_{n-1}) \in C \right\}.$$
For a given cyclic code C of length n over $\text{GR}(p^2, s)$, denote by $C^{\perp_{E}}$ the Euclidean dual of C defined with respect to the form

$$\langle u, v \rangle_{E} := \sum_{i=0}^{n-1} u_i v_i,$$

where $u = \sum_{i=0}^{n-1} u_i X^i$ and $v = \sum_{i=0}^{n-1} v_i X^i$. The code C is said to be Euclidean self-dual if $C = C^{\perp_{E}}$.

In addition, if s is even, we can also consider the Hermitian dual $C^{\perp_{H}}$ of C defined with respect to the form

$$\langle u, v \rangle_{H} := \sum_{i=0}^{n-1} u_i \overline{v_i}.$$

The code C is said to be Hermitian self-dual if $C = C^{\perp_{H}}$.

The goal of this paper is to characterize and enumerate self-dual codes over $\text{GR}(p^2, s)$. For convenience, let $N(\text{GR}(p^2, s), n)$, $N_E(\text{GR}(p^2, s), n)$, and $N_H(\text{GR}(p^2, s), n)$ denote the numbers of cyclic codes, Euclidean self-dual cyclic codes, and Hermitian self-dual cyclic codes of length n over $\text{GR}(p^2, s)$, respectively.

2.2. Some Results on Cyclic Codes of Length p^n over $\text{GR}(p^2, s)$

In this subsection, we recall some results concerning cyclic and Euclidean self-dual cyclic codes of length p^n over $\text{GR}(p^2, s)$ in terms of ideals in $\text{GR}(p^2, s)[X]/(X^{p^n} - 1)$.

In [9], it has been shown that all the ideals in $\text{GR}(p^2, s)[X]/(X^{p^n} - 1)$ have a unique representation.

Proposition 2.1 ([9, Theorem 3.8]). Every ideal in $\text{GR}(p^2, s)[X]/(X^{p^n} - 1)$ can be uniquely represented in the form of

$$C = \langle (X - 1)^{i_0} + p \sum_{j=0}^{i_1-1} h_j(X - 1)^j, p(X - 1)^{i_1} \rangle,$$

where i_0, i_1 are integers such that $0 \leq i_0 < p^n$, $0 \leq i_1 \leq \min\{i_0, p^{n-1}\}$, $i_0 + i_1 \leq p^n$, and h_j is an element in the Teichmüller set T_s for all j.

The integer i_1 in Proposition 2.1 is called the first torsion index of C.

Corollary 2.2 ([9, Corollary 3.9]). In $\text{GR}(p^2, s)[X]/(X^{p^n} - 1)$, the number of distinct ideals with $i_0 + i_1 = d$, where $0 \leq d \leq p^n$, is

$$\frac{p^{s(\ell+1)} - 1}{p^{s} - 1},$$

where $\ell = \min\{\lfloor \frac{d}{2} \rfloor, p^{n-1}\}$.

The next corollary follows immediately from Corollary 2.2 and [9, Theorem 3.6].

Corollary 2.3. The number of all cyclic codes of length p^n over $\text{GR}(p^2, s)$ is

$$N(\text{GR}(p^2, s), p^n) = \sum_{d=0}^{p^n-1} \left(\frac{p^{s(\min\{\lfloor \frac{d}{2} \rfloor, p^{n-1}\}+1)} - 1}{p^s - 1} \right) + \frac{p^{s(p^{n-1}+1)} - 1}{p^s - 1}.$$

Combining the results in [9], [10], and [12], the complete enumeration of Euclidean self-dual cyclic codes of length p^n over $\text{GR}(p^2, s)$ can be summarized as follows.
Proposition 2.4 ([10, Corollary 3.5]). The number of Euclidean self-dual cyclic codes of length 2^a over $\text{GR}(2^2, s)$ is

$$N_E(\text{GR}(2^2, s), 2^a) = \begin{cases}
1 & \text{if } a = 1, \\
1 + 2^s & \text{if } a = 2, \\
1 + 2^s + 2^{2s+1} \left(\frac{((2^s)^{(2^s-2)^{-1}})-1}{2^s-1} \right) & \text{if } a \geq 3.
\end{cases}$$

If p is an odd prime, then the number of Euclidean self-dual cyclic codes of length p^a over $\text{GR}(p^2, s)$ is

$$N_E(\text{GR}(p^2, s), p^a) = 2 \left(\frac{(p^s)^{p^a-1}+1}{p^s-1} \right).$$

3. HERMITIAN SELF-DUAL CYCLIC CODES OF LENGTH p^a OVER $\text{GR}(p^2, s)$

In this section, we assume that s is even and focus on characterizing and enumerating Hermitian self-dual cyclic codes of length p^a over $\text{GR}(p^2, s)$.

It has been proven in [12, Theorem 2] that the Euclidean dual of the cyclic code C in (2.2) is of the form

$$C^{\perp_E} = \left\langle p(X - 1)^{p^a - i_0}, (X - 1)^{p^a - i_1} \right\rangle - p(X - 1)^{p^a - i_0} \sum_{t=0}^{i_1-1} \left(\sum_{j=0}^{t} (-1)^{i_0+j} \left(\begin{array}{c} i_0-j \\ t-j \end{array} \right) h_j \right) (X - 1)^t$$

$$+ \sum_{t=1}^{\mathcal{K}} \left(\sum_{j=1}^{\left\lfloor \frac{p^a-i_0+i_1}{p^a-1} \right\rfloor} (-1)^{j+1} \left(\begin{array}{c} p-j \\ t-j \end{array} \right) \left(\begin{array}{c} p \\ j \end{array} \right) \right) (X - 1)^{tp^{a-1-i_1}},$$

where $\mathcal{K} = \left\lfloor \frac{p^a-i_0+i_1}{p^a-1} \right\rfloor$ and the empty sum is regarded as zero.

For each subset A of $\text{GR}(p^2, s)[X]/(X^{p^a} - 1)$, let \overline{A} denote the set

$$\left\{ \sum_{i=0}^{p^a-1} a_i X^i \Bigg| \sum_{i=0}^{p^a-1} a_i X^i \in A \right\},$$

where $^-$ is the automorphism defined in (2.1). Since it is well know that $C^{\perp_H} = \overline{C^{\perp_E}}$, we have

$$C^{\perp_H} = \left\langle p(X - 1)^{p^a - i_0}, (X - 1)^{p^a - i_1} \right\rangle$$

$$- p(X - 1)^{p^a - i_0} \sum_{t=0}^{i_1-1} \left(\sum_{j=0}^{t} (-1)^{i_0+j} \left(\begin{array}{c} i_0-j \\ t-j \end{array} \right) h_j \right) (X - 1)^t$$

$$+ \sum_{t=1}^{\mathcal{K}} \left(\sum_{j=1}^{\min\{t,p-1\}} (-1)^{j+1} \left(\begin{array}{c} p-j \\ t-j \end{array} \right) \left(\begin{array}{c} p \\ j \end{array} \right) \right) (X - 1)^{tp^{a-1-i_1}}.$$
If $C = C^\perp_H$, then $|C| = (p^a)^p$ which implies that $i_0 + i_1 = p^a$. Then we can write

$$
C^\perp_H = \begin{cases}
p(X - 1)^i, (X - 1)^{i_0} - p \sum_{t=0}^{i_1-1} \left(\sum_{j=0}^{t} (-1)^{i_0+j+1} \binom{i_0 - j}{t - j} h_{j^p^{r/2}} \right) (X - 1)^t \\
p(X - 1)^i, (X - 1)^{i_0} - p \sum_{t=0}^{i_1-1} \left(\sum_{j=0}^{t} (-1)^{i_0+j} \binom{i_0 - j}{t - j} h_{j^p^{r/2}} \right) (X - 1)^t + p(X - 1)^{2^{n-1-i_1}}
\end{cases}
$$

for all $i_1 < \left\lfloor \frac{p^{n-1}+1}{2} \right\rfloor$,

$$
C^\perp_H = \begin{cases}
p(X - 1)^i, (X - 1)^{i_0} - p \sum_{t=0}^{i_1-1} \left(\sum_{j=0}^{t} (-1)^{i_0+j+1} \binom{i_0 - j}{t - j} h_{j^p^{r/2}} \right) (X - 1)^t \\
p(X - 1)^i, (X - 1)^{i_0} - p \sum_{t=0}^{i_1-1} \left(\sum_{j=0}^{t} (-1)^{i_0+j} \binom{i_0 - j}{t - j} h_{j^p^{r/2}} \right) (X - 1)^t + p(X - 1)^{2^{n-1-i_1}}
\end{cases}
$$

for all $i_1 = 0$, then $p^{GR(p^2, s)}[X]/(X^{p^n} - 1)$ is the only Hermitian self-dual cyclic code of length p^n over $GR(p^2, s)$. Next, we assume that $i_1 \geq 1$.

By the unique representation of $C = C^\perp_H$, (2.2), and (3.1), we have

$$
ph_t^{r/2} = p \left(b_t + \sum_{j=0}^{t} (-1)^{i_0+j-1} \binom{i_0 - j}{t - j} h_{j^p^{r/2}} \right)
$$

for all $t = 0, 1, \ldots, i_1 - 1$, where $b_t = 1$ if $t = p^{a-1} - i_1$ and $b_t = 0$ otherwise.

Let $M(p^a, i_1)$ be an $i_1 \times i_1$ matrix defined by

$$
M(p^a, i_1) = \begin{pmatrix}
(-1)^{i_0} + 1 & 0 & 0 & \ldots & 0 \\
(-1)^{i_0} \binom{i_0}{1} & (-1)^{i_0+1} + 1 & 0 & \ldots & 0 \\
(-1)^{i_0} \binom{i_0}{2} & (-1)^{i_0+1} \binom{i_0-1}{1} & (-1)^{i_0+2} + 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(-1)^{i_0} \binom{i_0}{i_1-1} & (-1)^{i_0+1} \binom{i_0-1}{i_1-2} & (-1)^{i_0+2} \binom{i_0-2}{i_1-3} & \ldots & (-1)^{i_0+i_1-1} + 1
\end{pmatrix}.
$$

For a matrix V, denote by V^T the transpose of V. Then (3.2) forms a matrix equation

$$
M(p^a, i_1)x + (x^{p^{r/2}} - x) = b,
$$

where

$$
x := (x_1, x_2, \ldots, x_{i_1})^T, \quad x^{p^{r/2}} := (x_1^{p^{r/2}}, x_2^{p^{r/2}}, \ldots, x_{i_1}^{p^{r/2}})^T,
$$

and $b := (b_1, b_2, \ldots, b_{i_1})^T$ is a zero vector except for the case $i_1 \geq \left\lfloor \frac{p^{a-1}}{2} \right\rfloor$ where, for each $1 \leq i \leq i_1$, b_i is defined by

$$
b_i = \begin{cases}
1 & \text{if } i = p^{a-1} - i_1 + 1, \\
0 & \text{otherwise}.
\end{cases}
$$

Therefore, the cyclic code C in (2.2) is Hermitian self-dual if and only if the matrix equation (3.4) has a solution in $F_{p^a}^{i_1}$. Moreover, the number of Hermitian self-dual cyclic codes of length p^n over $GR(p^2, s)$ with first torsion degree i_1 equals the number of solutions of (3.4) in $F_{p^a}^{i_1}$.

From (3.3), we observe that $M(p^a, i_1)$ has the following properties. For $1 \leq j, i \leq i_1$, let m_{ij} denote the entry in the ith row and jth column of $M(p^a, i_1)$. Then, for
integers $1 \leq k \leq j \leq i \leq i_1$, we have
\[m_{ij} = (-1)^{i_0 + j - 1} \binom{i_0 - j + 1}{i - j}, \]
and hence,
\[(3.6) \quad m_{ij}m_{jk} = (-1)^{i_0 + j - 1}\binom{i - k}{j - k}m_{ik}. \]

Lemma 3.1. Let i be an integer such that $1 \leq i < i_1$. For each $0 \leq j \leq i$, let b_j be defined as in (3.5) and let $m_{i+1,j}$ denote the $(i+1,j)$-entry of $M(p^s,i_1)$. Then
\[\sum_{j=1}^{i} m_{i+1,j}b_j = 0 \text{ in } \mathbb{F}_{p^s}. \]

Proof. If $i_1 < \frac{p^s-1}{2}$, then $b_i = 0$ for all $1 \leq i \leq i_1$, and hence, the result follows.

Assume that $i_1 \geq \frac{p^s-1}{2}$. If $i < \frac{p^s-1}{2}$, then $b_j = 0$ for all $1 \leq j \leq i$, and hence,
\[\sum_{j=1}^{i} m_{i+1,j}b_j = 0 \text{ in } \mathbb{F}_{p^s}. \]
Assume that $i \geq \frac{p^s-1+1}{2}$. Then, by (3.5), we have
\[\sum_{j=1}^{i} m_{i+1,j}b_j = m_{i+1,p^{s-1-i_1+1}} = (-1)^{i_0+p^{s-1-i_1}} \binom{p^s-p^{s-1}}{i_0+1-i} = 0 \text{ in } \mathbb{F}_{p^s}. \]
by Lucas’s Theorem (see [3, Theorem 26]) and the fact that $1 \leq i_0 - i < p^{s-1}$. □

In order to determine the number of solutions of (3.4) in \mathbb{F}_{p^s}, we recall two maps which are important tools.

1. The trace map $\text{Tr} : \mathbb{F}_{p^s} \rightarrow \mathbb{F}_{p^s/2}$ defined by $\alpha \rightarrow \alpha + \alpha^{p^{s/2}}$ for all $\alpha \in \mathbb{F}_{p^s}$.
2. The map $\Psi : \mathbb{F}_{p^s} \rightarrow \mathbb{F}_{p^s}$ defined by $\Psi(\alpha) = \alpha^{p^{s/2}} - \alpha$ for all $\alpha \in \mathbb{F}_{p^s}$.

It is well known that Tr is $\mathbb{F}_{p^s/2}$-linear and it is not difficult to see that Ψ is also $\mathbb{F}_{p^s/2}$-linear. If $p = 2$, then $\text{Tr} = \Psi$. In general, we have the following properties.

Lemma 3.2. Let Tr and Ψ be defined as above. Then the following statements hold.

i) For each $\alpha \in \mathbb{F}_{p^s}$, $\Psi(\alpha) = 0$ if and only if $\alpha \in \mathbb{F}_{p^s/2}$.

ii) $\Psi \circ \text{Tr} \equiv 0 \equiv \text{Tr} \circ \Psi$.

iii) For each $a \in \Psi(\mathbb{F}_{p^s})$, $|\Psi^{-1}(a)| = p^{s/2}$.

iv) For each $a \in \text{Tr}(\mathbb{F}_{p^s})$, $|\text{Tr}^{-1}(a)| = p^{s/2}$.

Proof. Statements i and ii follow immediately from the definitions.

We note that, for each $a \in \Psi(\mathbb{F}_{p^s})$ and $b \in \mathbb{F}_{p^s}$, $b \in \Psi^{-1}(a)$ if and only if $b + \ker(\Psi) = \Psi^{-1}(a)$. Since $\ker(\Psi) = \mathbb{F}_{p^s/2}$, statement iii follows.

Similarly, for each $a \in \text{Tr}(\mathbb{F}_{p^s})$ and $b \in \mathbb{F}_{p^s}$, $b \in \text{Tr}^{-1}(a)$ if and only if $b + \ker(\text{Tr}) = \text{Tr}^{-1}(a)$. Since Tr is a surjective $\mathbb{F}_{p^s/2}$-linear map from \mathbb{F}_{p^s} to $\mathbb{F}_{p^s/2}$, we have
\[|\ker(\text{Tr})| = \frac{|\mathbb{F}_{p^s}|}{|\mathbb{F}_{p^s/2}|} = p^{s/2}, \]
and hence, statement iv follows. □
Proposition 3.3. Let s be an even positive integer and let i_1 be a positive integer such that $i_1 \leq p^{s-1}$. Then the number of solutions of (3.4) in $\mathbb{F}_p^{i_1}$ is $p^{s i_1 / 2}$.

Proof. From [10], $M(p^a, i_1)$ has 4 presentations depending on the parity of p and i_1. We therefore separate the proof into 4 cases.

Case 1. p is odd and $i_1 = 2^j + 1$ is odd.

From [10], the matrix $M(p^a, i_1)$ can be written as

$$
M(p^a, i_1) = \begin{pmatrix}
2 & 0 & 0 & 0 & \cdots & 0 \\
* & 0 & 0 & 0 & \cdots & 0 \\
* & * & 0 & 0 & \cdots & 0 \\
* & * & 2 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
* & * & * & * & \cdots & 2
\end{pmatrix},
$$

where $*$ denotes an entry of $M(p^a, i_1)$ defined in (3.3).

From (3.4) and (3.7), we have

$$
\text{Tr}(x_1) = b_1,
$$

$$
\Psi(x_{2i}) = b_{2i} - \sum_{j=1}^{2i-1} m_{2i,j}x_j,
$$

and

$$
\text{Tr}(x_{2i+1}) = b_{2i+1} - \sum_{j=1}^{2i} m_{2i+1,j}x_j
$$

for all integers $1 \leq i \leq \mu_1$.

This implies that (3.4) has a solution if and only if the right hand sides of (3.8) and (3.10) are in $\mathbb{F}_{p^{s/2}}$ and the right hand side of (3.9) is in $\Psi(\mathbb{F}_{p^r})$. In this case, we have

$$
x_1 \in \text{Tr}^{-1}(b_1),
$$

$$
x_{2i} \in \Psi^{-1} \left(b_{2i} - \sum_{j=1}^{2i-1} m_{2i,j}x_j \right),
$$

and

$$
x_{2i+1} \in \text{Tr}^{-1} \left(b_{2i+1} - \sum_{j=1}^{2i} m_{2i+1,j}x_j \right)
$$

for all $1 \leq i \leq \mu_1$. Hence, by Lemma 3.2, the number of solutions of (3.4) is $p^{s i_1 / 2}$.

By Lemma 3.2, it suffices to show that the images under Ψ of the right hand sides of (3.8) and (3.10) are 0 and the image under the trace map of the right hand side of (3.9) is 0.
From (3.8), we have $\Psi(b_1) = 0$ since $b_1 \in \{0, 1\} \subseteq \mathbb{F}_{p^r/2}$. Let $1 \leq i \leq \mu_1$ be an integer. From (3.9), we have

\[
\text{Tr} \left(b_{2i} - \sum_{j=1}^{2i-1} m_{2i,j}x_j \right) = \text{Tr}(b_{2i}) - \sum_{j=1}^{2i-1} m_{2i,j}\text{Tr}(x_j)
\]

\[
= 0 - \left(\sum_{j=1}^{i} m_{2i,2j-1}\text{Tr}(x_{2j-1}) + \sum_{j=1}^{i-1} m_{2i,2j}\text{Tr}(x_{2j}) \right),
\]

since $p^{a-1} - i_1 + 1$ is odd and $b_{2i} = 0$ for all $i = 1, 2, \ldots, \mu_1$,

\[
= - \left(\sum_{j=1}^{i} m_{2i,2j-1}\text{Tr}(x_{2j-1}) + \sum_{j=1}^{i-1} m_{2i,2j} (\Phi(x_{2j}) + 2x_{2j}) \right),
\]

since $\text{Tr}(\alpha) = \Phi(\alpha) + 2\alpha$ for all $\alpha \in \mathbb{F}_{p^r}$,

\[
= \sum_{j=1}^{2i-1} m_{2i,j}b_j + \sum_{j=1}^{2i-1} \sum_{k=1}^{j} m_{2i,j}m_{j,k}x_k - \sum_{j=1}^{i-1} 2m_{2i,2j}x_{2j}
\]

\[
= 0 + \sum_{k=1}^{2i-2} \sum_{j=k+1}^{2i-1} m_{2i,j}m_{j,k}x_k - \sum_{j=1}^{i-1} 2m_{2i,2j}x_{2j},
\]

by Lemma 3.1,

\[
= \sum_{k=1}^{2i-2} \left(\sum_{j=k+1}^{2i-1} (-1)^{i_0+j-1} \binom{2i-k}{j-k} m_{2i,k} \right) x_k
\]

\[- \sum_{j=1}^{i-1} 2m_{2i,2j}x_{2j}, \text{ by (3.6)},
\]

\[
= \sum_{k=1}^{2i-2} \left(m_{2i,k} \sum_{j=1}^{2i-k-1} (-1)^{j+k-1} \binom{2i-k}{j} \right) x_k - \sum_{j=1}^{i-1} 2m_{2i,2j}x_{2j}
\]

\[
= \sum_{k=1}^{2i-2} \left(m_{2i,2k-1} \sum_{j=1}^{2i-2k} (-1)^{j} \binom{2i-2k+1}{j} \right) x_{2k-1}
\]

\[+ \sum_{k=1}^{i-1} \left(m_{2i,2k} \sum_{j=1}^{2i-2k-1} (-1)^k \binom{2i-2k}{j} \right) x_{2k}
\]

\[- \sum_{j=1}^{i-1} 2m_{2i,2j}x_{2j}
\]

\[
= \sum_{k=1}^{i} \left(m_{2i,2k-1} (-1 - (-1)^{2i-2k+1}) \right) x_{2k-1}
\]

\[+ \sum_{k=1}^{i-1} (-(-1)^{2i-2k}) m_{2i,2k} x_{2k} - \sum_{j=1}^{i-1} 2m_{2i,2j}x_{2j}
\]

(3.11) \quad = 0 \text{ in } \mathbb{F}_{p^r/2}.
From (3.10), we have

$$
\Psi(b_{2i+1} - \sum_{j=1}^{2i} m_{2i+1,j}x_j) = \Psi(b_{2i+1}) - \sum_{j=1}^{2i} m_{2i+1,j} \Psi(x_j)
$$

$$
= 0 - \left(\sum_{j=1}^{i} m_{2i+1,2j-1} \Psi(x_{2j-1}) + \sum_{j=1}^{i} m_{2i+1,2j} \Psi(x_{2j}) \right),
$$

since $b_{2i+1} \in \mathbb{F}_{p^r}$ for all $i = 1, 2, \ldots, \mu_1$,

$$
= - \left(\sum_{j=1}^{i} m_{2i+1,2j-1} (\text{Tr}(x_{2j-1}) - 2x_{2j-1}) + \sum_{j=1}^{i} m_{2i+1,2j} \Psi(x_{2j}) \right),
$$

since $\Psi(\alpha) = \text{Tr}(\alpha) - 2\alpha$ for all $\alpha \in \mathbb{F}_{p^r}$,

$$
= -2i \sum_{j=1}^{i} m_{2i+1,j} b_j + 2i \sum_{j=1}^{i-1} m_{2i+1,j} m_{j,k} x_k + \sum_{j=1}^{i} 2m_{2i+1,2j-1} x_{2j-1}
$$

$$
= 0 + 2i \sum_{k=1}^{2i-1} \left(\sum_{j=1}^{i} (2i-k+1) m_{2i+1,k,j} \right) x_k + \sum_{j=1}^{i} 2m_{2i+1,2j-1} x_{2j-1},
$$

by Lemma 3.1,

$$
= 2i \sum_{k=1}^{2i-1} \left(\sum_{j=1}^{i} (2i-k+1) m_{2i+1,k,j} \right) x_k
$$

$$
+ \sum_{j=1}^{i} 2m_{2i+1,2j-1} x_{2j-1}, \quad \text{by (3.6),}
$$

$$
= i \sum_{k=1}^{i} \left(m_{2i+1,2k-1} 2^{i-k+1} \sum_{j=1}^{2i-k} (-1)^{j} \binom{2i-k+2}{j} \right) x_{2k-1}
$$

$$
+ \sum_{k=1}^{i} \left(m_{2i,2k} 2^{i-k} \sum_{j=1}^{2i-k-1} (-1)^{j} \binom{2i-k+1}{j} \right) x_{2k}
$$

$$
+ \sum_{j=1}^{i} 2m_{2i+1,2j-1} x_{2j-1}
$$

$$
= i \sum_{k=1}^{i} \left((-1) (2^{i-k+2} m_{2i+1,2k-1}) \right) x_{2k-1}
$$

$$
+ \sum_{k=1}^{i} \left((-1) (2^{i-k+1} m_{2i,2k}) \right) x_{2k} + \sum_{j=1}^{i} 2m_{2i+1,2j-1} x_{2j-1}
$$

(3.12) $\quad = 0$ in $\mathbb{F}_{p^{r/2}}$.

This case is completed.
Case 2. p is odd and $i_1 = 2\mu_1$ is even.

From \cite{10}, we have

\begin{equation}
M(p^a, i_1) = \begin{pmatrix}
0 & 0 & 0 & \cdots & 0 \\
* & 2 & 0 & \cdots & 0 \\
* & * & 0 & \cdots & 0 \\
* & * & * & 2 & \cdots & 0 \\
* & * & * & * & \cdots & 2
\end{pmatrix},
\end{equation}

(3.13)

where *’s denote entries of $M(p^a, i_1)$ defined in (3.3).

From (3.4) and (3.13), we have

$$\Psi(x_{2i-1}) = b_{2i-1} - \sum_{j=1}^{2i-2} m_{2i-1,j}x_j$$

(3.14)

and

$$\text{Tr}(x_{2i}) = b_{2i} - \sum_{j=1}^{2i-1} m_{2i,j}x_j$$

(3.15)

for all integers $1 \leq i \leq \mu_1$.

This implies that (3.4) has a solution if and only if the right hand side of (3.14) is in $\Psi(F_{p^r})$ and the right hand side of (3.15) is in $F_{p^r/2}$. In this case, by Lemma 3.2, the number of solutions of (3.4) is $p^{\mu_1/2}$.

By Lemma 3.2, it is sufficient to show that the image under the trace map of the right hand side of (3.14) and the image under Ψ of the right hand side of (3.15) are 0. Using computations similar to those in (3.11) and (3.12), the desired properties can be concluded.

Case 3. $p = 2$ and $i_1 = 2\mu_1 + 1$ is odd.

From \cite{10}, we have

\begin{equation}
M(p^a, i_1) = \begin{pmatrix}
0 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
* & 0 & 0 & \cdots & 0 \\
* & * & 1 & 0 & \cdots & 0 \\
* & * & * & * & \cdots & 0
\end{pmatrix},
\end{equation}

(3.16)

where * denotes an entry of $M(p^a, i_1)$ defined in (3.3).

From (3.4) and (3.16), we conclude that

\begin{equation}
\text{Tr}(x_1) = b_1,
\end{equation}

(3.17)

\begin{equation}
\text{Tr}(x_{2i}) = b_{2i} + \sum_{j=1}^{2i-1} m_{2i,j}x_j,
\end{equation}

(3.18)

and

\begin{equation}
\text{Tr}(x_{2i+1}) = b_{2i+1} + \sum_{j=1}^{2i-1} m_{2i+1,j}x_j,
\end{equation}

(3.19)

for all integers $1 \leq i \leq \mu_1$.

\begin{thebibliography}{10}
\bibitem{10} Somphong Jitman, San Ling and Ekkasit Sangwisut
\end{thebibliography}
Similar to Cases 1 and 2, we need to show that the right hand sides of (3.17), (3.18), and (3.19) are in \(\mathbb{F}_{2^{s/2}} \), or equivalently, the images under the trace map of the right hand sides of (3.17), (3.18), and (3.19) are 0. Clearly, the right hand side of (3.17) is \(b_1 \in \{0, 1\} \subseteq \mathbb{F}_{2^{s/2}} \) and \(\text{Tr}(b_1) = 0 \). Let \(1 \leq i \leq \mu_1 \) be an integer.

From (3.18), we have

\[
\text{Tr} \left(b_{2i} + \sum_{j=1}^{2i-1} m_{2i,j} x_j \right) = \sum_{j=1}^{2i-1} m_{2i,j} \text{Tr}(x_j)
\]

\[
= \sum_{j=1}^{2i-1} m_{2i,j} \left(b_j + \sum_{k=1}^{j-1} m_{j,k} x_k \right)
\]

\[
= \sum_{j=1}^{2i-1} m_{2i,j} b_j + \sum_{j=1}^{2i-1} \sum_{k=1}^{j-1} m_{2i,j} m_{j,k} x_k
\]

\[
= 0 + \sum_{k=1}^{2i-2} \left(\sum_{j=k+1}^{2i-1} m_{2i,j} m_{j,k} \right) x_k, \text{ by Lemma 3.1},
\]

\[
= 2i-2 \sum_{k=1}^{2i-2} \left(\sum_{j=k+1}^{2i-1} \left(2i - k \right) \left(2i - j \right) m_{2i,k} \right) x_k, \text{ by (3.6)},
\]

\[
= 2i-2 \sum_{k=1}^{2i-2} \left(m_{2i,k} \sum_{j=1}^{2i-k-1} \left(2i - k \right) \left(2i - j \right) \right) x_k
\]

\[
= \sum_{k=1}^{2i-2} \left(m_{2i,k} \left(2^{2i-k} - 2 \right) \right) x_k
\]

(3.20)

0 in \(\mathbb{F}_{2^{s/2}} \).

Applying a similar computation to (3.19) yields

\[
\text{Tr} \left(b_{2i+1} + \sum_{j=1}^{2i} m_{2i+1,j} x_j \right) = 0 \text{ in } \mathbb{F}_{2^{s/2}}.
\]

Case 4. \(p = 2 \) and \(i_1 = 2\mu_1 + 2 \) is even.

From [10], we have

\[
M(p^a, i_1) = \begin{pmatrix}
0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 \\
\ast & 1 & 0 & 0 & \cdots & 0 \\
\ast & \ast & 0 & 0 & \cdots & 0 \\
\ast & \ast & \ast & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\ast & \ast & \ast & \ast & \cdots & 0
\end{pmatrix},
\]

(3.21)

where *’s denote entries of \(M(p^a, i_1) \) defined in (3.3).

From (3.4) and (3.21), it follows that

\[
\text{Tr}(x_1) = b_1,
\]

(3.22)

\[
\text{Tr}(x_2) = b_2,
\]

(3.23)
(3.24) \[\text{Tr}(x_{2i+1}) = b_{2i+1} + \sum_{j=1}^{2i} m_{2i+1,j} x_j, \]

and

(3.25) \[\text{Tr}(x_{2i+2}) = b_{2i+2} + \sum_{j=1}^{2i} m_{2i+2,j} x_j \]

for all integers \(1 \leq i \leq \mu_1\).

Similar to the previous cases, we need to show that the right hand sides of (3.22), (3.23), (3.24), and (3.25) are in \(F_{2^r/2}\). Equivalently, the images under the trace map of the right hand sides of (3.22), (3.23), (3.24), and (3.25) are 0. Clearly, the traces of the right hand sides of (3.22) and (3.23) are 0 since \(b_1, b_2 \in \{0, 1\} \subseteq F_{2^r/2}\).

For each integer \(1 \leq i \leq \mu_1\), using computations similar to those in (3.20), the trace of the right hand sides of (3.24) and (3.25) become 0 in \(F_{2^r/2}\).

The proof is now completed. \(\square\)

The next theorem follows immediately from Propositions 2.1 and 3.3.

Theorem 3.4. Let \(p\) be a prime and let \(s, a\) be positive integers such that \(s\) is even. Then

\[N_H(\text{GR}(p^2, s), p^a) = \sum_{i=0}^{p^a-1} p^{si/2} = \frac{p^{s(p^a-1)/2} - 1}{p^{s/2} - 1}. \]

4. **Euclidean Self-Dual Cyclic Codes of Arbitrary Length over \(\text{GR}(p^2, s)\)**

In this section, we focus on cyclic codes of any length \(n\) over \(\text{GR}(p^2, s)\). We generalize the decomposition in [4] (see also [2] and [5]) to this case. Combining with the results in [9], [10], and in the previous section, we characterize and enumerate Euclidean self-dual cyclic codes of any length \(n\) over \(\text{GR}(p^2, s)\).

Write \(n = mp^a\), where \(p \nmid m\) and \(a \geq 0\). Let \(R_{p^2}(u, s) := \text{GR}(p^2, s)[u]/(u^{mp^a} - 1)\). Let \(\bar{\varphi}\) be an involution on \(R_{p^2}(u, s)\) that fixes \(\text{GR}(p^2, s)\) and that maps \(u^i\) to \(u^{i \text{ (mod } p^a)}\) for all \(0 \leq i < p^a\), and extend \(\bar{\varphi}\) naturally to \(\text{GR}(p^2, s)[u]/(u^{mp^a} - 1)\) for all positive integers \(\nu\). It is not difficult to verify that the map \(\Phi : (R_{p^2}(u, s))^m \to \text{GR}(p^2, s)[X]/(X^{mp^a} - 1)\) defined by

\[\left(\sum_{j=0}^{p^a-1} c_{0,j} u^j, \sum_{j=0}^{p^a-1} c_{1,j} u^j, \ldots, \sum_{j=0}^{p^a-1} c_{m-1,j} u^j \right) \mapsto \sum_{i=0}^{m-1} \sum_{j=0}^{p^a-1} c_{i,j} X^{i+jm} \]

is a \(\text{GR}(p^2, s)\)-module isomorphism.

The following lemma is an obvious generalization of [4, Lemma 5.1].

Lemma 4.1. Let \(d = (d_0, d_1, \ldots, d_{m-1})\) and \(d' = (d'_0, d'_1, \ldots, d'_{m-1})\) be elements in \((R_{p^2}(u, s))^m\). Then \([d, d'] := \sum_{i=0}^{m-1} d_i d'_i = 0\) if and only if \(\langle X^{mp^a} \Phi(d), \Phi(d') \rangle_E\) for all \(0 \leq i \leq p^a - 1\).

The lemma implies that, for cyclic codes \(C_1\) and \(C_2\) of length \(n\) over \(\text{GR}(p^2, s)\), \(C_2 = C_1^{\perp_E}\) if and only if \(\Phi^{-1}(C_2)\) is the dual of \(\Phi^{-1}(C_1)\) under the form \([\cdot, \cdot]\). In particular, \(C_1\) is Euclidean self-dual if and only if \(\Phi^{-1}(C_1)\) self-dual under the form \([\cdot, \cdot]\).
4.1. Decomposition. We generalize the Discrete Fourier Transform decomposition for cyclic codes over \mathbb{Z}_4 in [4] to cyclic codes over $\mathbb{G}(p^2, s)$ as follows.

Let M be the multiplicative order of p^s modulo m and let ζ denote a primitive mth root of unity in $\mathbb{G}(p^2, s, M)$. The Discrete Fourier Transform of

$$c(X) = \sum_{i=0}^{m-1} \sum_{j=0}^{p^s-1} c_{i,j} X^{i+jm} \in \mathbb{G}(p^2, s)[X]/\langle X^{mp^s} - 1 \rangle$$

is the vector

$$(\widehat{c}_0, \widehat{c}_1, \ldots, \widehat{c}_{m-1}) \in \mathbb{G}(p^2, s, M)^m$$

with

$$\widehat{c}_h = \sum_{i=0}^{m-1} \sum_{j=0}^{p^s-1} c_{i,j} u^{mi+jh} \zeta^{hi}$$

for all $0 \leq h \leq m - 1$, where $mm' \equiv 1 \pmod{p^s}$.

Define the Mattson-Solomon polynomial of $c(X)$ to be

$$\widehat{c}(Z) = \sum_{h=0}^{m-1} \widehat{c}_{m-h \pmod{m}} Z^h.$$

Then the following lemma can be obtained as an extension of [4, Lemma 3.1].

Lemma 4.2 (Inversion formula). Let $c(X) \in \mathbb{G}(p^2, s)[X]/\langle X^{mp^s} - 1 \rangle$ with $\widehat{c}(Z)$ its Mattson-Solomon polynomial as defined above. Then

$$c(X) = \Phi \left(\left(1, u^{-m'}, u^{-2m'}, \ldots, u^{-(m-1)m'} \right) \ast \frac{1}{m} (\widehat{c}(1), \widehat{c}(\zeta), \ldots, \widehat{c}(\zeta^{m-1})) \right),$$

where \ast indicates the componentwise multiplication.

For $0 \leq h \leq m - 1$, denote by $S_{p'}(h)$ the p'-cyclotomic coset of h modulo m, i.e.,

$$S_{p'}(h) = \{ hp'^i \pmod{m} \mid i = 0, 1, \ldots \},$$

and denote by m_h the size of $S_{p'}(h)$. Then m_h is the multiplicative order of p' modulo $\text{ord}(h)$, where $\text{ord}(h)$ denotes the additive order of h modulo m. Since $\text{ord}(h) = \text{ord}(-h)$, we have $m_h = m_{-h}$ for all $0 \leq h \leq m - 1$.

The p'-cyclotomic coset $S_{p'}(h)$ is said to be self-inverse if $S_{p'}(-h) = S_{p'}(h)$, or equivalently, $-h \in S_{p'}(h)$. In this case, the size m_h of $S_{p'}(h)$ is 1 or even (see [7, Remark 2.6]). Moreover, we have $-h = h$ if $m_h = 1$, and $-h = p^{s m_h/2} h$ otherwise.

We note that $S_{p'}(0)$ and $S_{p'}(\frac{m}{2})$ (if m is even) are self-inverse.

Remark 1. We have the following observations for the coefficients of the Discrete Fourier Transform.

i) If $S_{p'}(h)$ is self-inverse of size 1, then

$$\widehat{c}_{m-h} = \widehat{c}_h.$$
ii) If \(S_{p^r}(h) \) is self-inverse of size \(2e \), then \(-h = p^{re}h\) and

\[
\hat{c}_{m-h} = \sum_{i=0}^{m-1} \sum_{j=0}^{p^n-1} c_{i,j} u^{m'i+j} \zeta^{-hi}
= \sum_{i=0}^{m-1} \sum_{j=0}^{p^n-1} c_{i,j} u^{m'i+j} \zeta^{p^{re}i}
= \hat{c}_h,
\]

where \(-\) is a natural extension of (2.1), i.e., \(-\) fixes \(u \) and maps \(a + pb \) to \(a^{p^e} + pb^{p^e} \).

Let \(I_0 = \{0\} \) if \(m \) is odd and \(I_0 = \{0, \frac{p}{2}\} \) if \(m \) is even. Let \(I_1 \) be the union of all self-inverse \(p^e \)-cyclotomic cosets modulo \(m \) excluding \(I_0 \) and set \(I_2 = \{0, 1, \ldots, m-1\} \setminus (I_0 \cup I_1) \). The set \(I_2 \) is the union of pairs of \(p^e \)-cyclotomic cosets of the form \(S_{p^r}(h) \cup S_{p^r}(-h) \), where \(h \notin I_0 \cup I_1 \). Let \(I_0, I_1, J_1, J_2 \) be complete sets of representatives of \(p^e \)-cyclotomic cosets in \(I_0, I_1, \) and \(I_2 \), respectively. Without loss of generality, we assume that \(h \in J_2 \) if and only if \(-h \in J_2 \).

The following lemma is a straightforward extension of [4, Theorem 3.2 and Corollary 3.3].

Lemma 4.3. The ring \(\text{GR}(p^2, s)[X]/(X^{mp^n} - 1) \) is isomorphic to

\[
\prod_{h \in I_0 \cup I_1 \cup J_2} R_{p^2}(u, sm_h)
\]

via the ring isomorphism

\[
c(X) \mapsto (\hat{c}_h)_{h \in I_0 \cup I_1 \cup J_2}.
\]

If \(C \) is a cyclic code of length \(n = mp^n \) over \(\text{GR}(p^2, s) \), then \(C \) is isomorphic to

\[
\prod_{h \in I_0 \cup I_1 \cup J_2} C_h,
\]

where \(C_h \) is an ideal in \(R_{p^2}(u, sm_h) \) for all \(h \in I_0 \cup I_1 \cup J_2 \).

4.2. Euclidean Self-Dual Cyclic Codes. In this subsection, we consider the Euclidean dual of cyclic codes of length \(n = mp^n \) over \(\text{GR}(p^2, s) \). The characterization and enumeration of Euclidean self-dual cyclic codes of length \(n \) are established, where \(p \) is a prime such that \(p \nmid m \) and \(a \geq 0 \).

Lemma 4.4. Let \(c(X) \) and \(\hat{c}(X) \) be polynomials in \(\text{GR}(p^2, s)[X]/(X^{mp^n} - 1) \) with Mattson-Solomon polynomials

\[
\hat{c}(Z) = \sum_{h=0}^{m-1} \hat{c}_{m-h \pmod{m}} Z^h \quad \text{and} \quad \hat{c}(Z) = \sum_{h=0}^{m-1} \hat{c}_{m-h \pmod{m}} Z^h,
\]

respectively. Let \((d_0, d_1, \ldots, d_{m-1}) = \Phi^{-1}(c(X)) \) and \((\hat{d}_0, \hat{d}_1, \ldots, \hat{d}_{m-1}) = \Phi^{-1}(\hat{c}(X)) \). Then

\[
\sum_{i=0}^{m-1} d_i \hat{d}_i = \frac{1}{m} \left(\sum_{j \in I_0} \hat{c}_j \hat{c}_j + \sum_{h \in I_1} \hat{c}_h \hat{c}_h + \sum_{k \in I_2} \hat{c}_k \hat{c}_{m-k \pmod{m}} \right)
\]

where \(-\) is defined as in (2.1) in the appropriate Galois extension.
Proof. Using computations similar to those in [4, Equation (21)], we have
\[
\sum_{i=0}^{m-1} d_i d_i' = \frac{1}{m} \left(\sum_{i=0}^{m-1} \bar{c}_i c_{m-i \pmod m} \right) + \sum_{h \in I_1} \bar{c}_h c_{m-h \pmod m} + \sum_{k \in I_2} \bar{c}_k c_{m-k \pmod m}.
\]
By (4.1) and (4.2), we conclude the lemma.

Based on the isomorphism defined in Lemma 4.3, we determine the Euclidean duals of cyclic codes over GR\((p^2, s)\) as follows.

Proposition 4.5. Let \(C\) be a cyclic code of length \(n = mp^a\) over GR\((p^2, s)\) decomposed as in (4.3), i.e.,
\[
C \cong \prod_{j \in J_0} C_j \times \prod_{h \in J_1} C_h \times \prod_{k \in J_2} C_k.
\]
Then
\[
C^\perp \cong \prod_{j \in J_0} C_j^\perp \times \prod_{h \in J_1} C_h^\perp \times \prod_{k \in J_2} C_k^\perp \pmod m.
\]
Moreover, \(C\) is Euclidean self-dual if and only if \(C_j\) is Euclidean self-dual for all \(j \in J_0\), \(C_h\) is Hermitian self-dual for all \(h \in J_1\), and \(C_k = C_k^\perp \pmod m\) for all \(k \in J_2\).

Proof. Let \(D\) be a cyclic code of length \(n = mp^a\) over GR\((p^2, s)\) such that
\[
D \cong \prod_{j \in J_0} C_j^\perp \times \prod_{h \in J_1} C_h^\perp \times \prod_{k \in J_2} C_k^\perp \pmod m.
\]
Consider \(m = 1\) in Lemma 4.1, we have the following facts. For each positive integer \(\nu\) and \(a, b \in R_{p^2}(u, sv)\), we have \(\langle a, b \rangle_E = 0\) if \(ab = 0\), and \(\langle a, b \rangle_H = 0\) if \(a \bar{b} = 0\). Therefore, by Lemmas 4.1 and 4.4, we have \(D \subseteq C^\perp\). The equality follows from their cardinalities.

The second part is clear.

Since \(J_2\) has been chosen such that \(h \in J_2\) if and only if \(-h \in J_2\), we can write \(J_2\) as a disjoint union \(J_2 = J_2' \cap J_2''\), where \(J_2' \subseteq J_2\) and \(J_2'' = \{-h \mid h \in J_2\}\).

Corollary 4.6. The number of Euclidean self-dual codes of length \(n = mp^a\) over GR\((p^2, s)\) is
\[
(N_E(GR(p^2, s), p^a))^\delta(m) \times \prod_{h \in J_1} N_H(GR(p^2, sm_h), p^a) \times \prod_{k \in J_2'} N(GR(p^2, sm_k), p^a),
\]
where
\[
\delta(m) = \begin{cases} 1 & \text{if } m \text{ is odd}, \\ 2 & \text{if } m \text{ is even}, \end{cases}
\]
and the empty product is regarded as 1.
Proof. From Proposition 4.5, a code C decomposed as in (4.5) is Euclidean self-dual if and only if C_j is Euclidean self-dual for all $j \in J_0$, C_h is Hermitian self-dual for all $h \in J_1$, and $C_k = C_{(m-k) \text{(mod } m)}$ for all $k \in J_2$.

The number of Euclidean (resp., Hermitian) self-dual cyclic codes of length p^a corresponding to J_0 (resp., J_1) is

$$\prod_{j \in J_0} N_E(\text{GR}(p^2, s), p^a) \quad \text{(resp., } \prod_{h \in J_1} N_H(\text{GR}(p^2, sm_h), p^a).)$$

The number of choices of cyclic codes of length p^a corresponding to J_2' is

$$\prod_{k \in J_2'} N(\text{GR}(p^2, sm_k), p^a).$$

Since $C_k = C_{\frac{1}{m-k} \text{(mod } m)}$ for all $k \in J_2$, there is only one possibility for codes corresponding to J_2''.

Therefore, the number of Euclidean self-dual codes of length $n = mp^a$ over \text{GR}(p^2, s)$ is

$$\prod_{j \in J_0} N_E(\text{GR}(p^2, s), p^a) \times \prod_{h \in J_1} N_H(\text{GR}(p^2, sm_h), p^a) \times \prod_{k \in J_2'} N(\text{GR}(p^2, sm_k), p^a).$$

Since $|J_0| = 1$ if m is odd and $|J_0| = 2$ if m is even, the result follows.

We note that, for each positive integer t, $\{0\}$, $p\text{GR}(p^2, st)$, and $p\text{GR}(p^2, st)$ are all cyclic codes of length 1 over $\text{GR}(p^2, s)$ and $p\text{GR}(p^2, st)$ is the only Euclidean self-dual cyclic code. Hence, $N_E(\text{GR}(p^2, st), 1) = 1$, and $N(\text{GR}(p^2, st), 1) = 3$ for all positive integers t. If st is even, then $p\text{GR}(p^2, st)$ is the only Hermitian self-dual cyclic code, and hence, $N_H(\text{GR}(p^2, st), 1) = 1$.

For $a \geq 1$, the numbers N_E, N_H, and N have been determined in Corollary 2.3, Proposition 2.4, and Theorem 3.4, respectively.

Therefore, the number in Corollary 4.6 is completely determined.

Corollary 4.7. Let p be a prime and let m be a positive integer such that $p
 m$. Then $N_E(\text{GR}(p^2, s), mp) = 1$ if and only if $m = 1$ and $p = 2$.

Proof. Assume that $m > 1$ or p is odd.

Case 1. $m > 1$.

If J_2 is not empty, then, by Corollaries 2.3 and 4.6,

$$N_E(\text{GR}(p^2, s), mp) \geq N(\text{GR}(p^2, sm_h), p) > 1$$

for all $h \in J_2$. Assume that J_2 is empty. Since $m > 1$, J_1 is not empty. Then, by Theorem 3.4 and Corollary 4.6,

$$N_E(\text{GR}(p^2, s), mp) \geq N_H(\text{GR}(p^2, sm_h), p) > 1$$

for all $h \in J_1$.

Case 2. p is odd.

By Proposition 2.4 and Corollary 4.6,

$$N_E(\text{GR}(p^2, s), mp) \geq N_E(\text{GR}(p^2, s), p) = 2 > 1.$$

Conversely, we assume that $m = 1$ and $p = 2$. Then, by Proposition 2.4, we have

$$N_E(\text{GR}(p^2, s), mp) = N_E(\text{GR}(4, s), 2) = 1.$$

\qed
Some examples of the numbers of Euclidean self-dual cyclic codes of small lengths over \mathbb{Z}_4, \mathbb{Z}_9, and GR(4, 2) are given in Table 1.

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_E(\mathbb{Z}_4, n)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>$N_E(\mathbb{Z}_9, n)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$N_E(\text{GR}(4, 2), n)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_E(\mathbb{Z}_4, n)$</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>21</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>59</td>
</tr>
<tr>
<td>$N_E(\mathbb{Z}_9, n)$</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>$N_E(\text{GR}(4, 2), n)$</td>
<td>1</td>
<td>25</td>
<td>1</td>
<td>225</td>
<td>1</td>
<td>60</td>
<td>1</td>
<td>677</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_E(\mathbb{Z}_4, n)$</td>
<td>1</td>
<td>27</td>
<td>1</td>
<td>63</td>
<td>1</td>
<td>33</td>
<td>1</td>
<td>341</td>
</tr>
<tr>
<td>$N_E(\mathbb{Z}_9, n)$</td>
<td>1</td>
<td>64</td>
<td>1</td>
<td>56</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>544</td>
</tr>
<tr>
<td>$N_E(\text{GR}(4, 2), n)$</td>
<td>1</td>
<td>621</td>
<td>1</td>
<td>2205</td>
<td>1</td>
<td>1029</td>
<td>1</td>
<td>29193</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_E(\mathbb{Z}_4, n)$</td>
<td>1</td>
<td>65</td>
<td>1</td>
<td>339</td>
<td>1</td>
<td>315</td>
<td>1</td>
<td>1019</td>
</tr>
<tr>
<td>$N_E(\mathbb{Z}_9, n)$</td>
<td>1</td>
<td>242</td>
<td>1</td>
<td>400</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$N_E(\text{GR}(4, 2), n)$</td>
<td>1</td>
<td>4225</td>
<td>1</td>
<td>10325</td>
<td>1</td>
<td>69225</td>
<td>1</td>
<td>174757</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_E(\mathbb{Z}_4, n)$</td>
<td>1</td>
<td>289</td>
<td>1</td>
<td>1533</td>
<td>1</td>
<td>513</td>
<td>1</td>
<td>3751</td>
</tr>
<tr>
<td>$N_E(\mathbb{Z}_9, n)$</td>
<td>1472</td>
<td>1</td>
<td>2560</td>
<td>1</td>
<td>15488</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$N_E(\text{GR}(4, 2), n)$</td>
<td>1</td>
<td>83521</td>
<td>1</td>
<td>995625</td>
<td>1</td>
<td>262149</td>
<td>1</td>
<td>4302397</td>
</tr>
</tbody>
</table>

In general, the numbers of Euclidean self-dual cyclic codes of any length over GR(p^s, s), where p is a prime and s is a positive integer, can be computed using the formula in Corollary 2.3, Proposition 2.4, Theorem 3.4, and Corollary 4.6.

4.3. A Note on Euclidean Self-Dual Cyclic Codes of Even Length over \mathbb{Z}_4. In this subsection, we reconsider cyclic codes of even length over \mathbb{Z}_4 which have been studied in [2] and [4]. This case can be viewed as a special case of the previous two subsections where $p = 2$ and $s = 1$. We discovered that [2, Lemma 7, Lemma 9, and Corollary 2] and [4, Lemma 5.2, Corollary 5.4, Proposition 5.8, Corollary 5.9, and Section 6] contain some errors. The detailed discussion and corrections of such errors are as follows.

Let n be an even positive integer written as $n = m2^a$, where m is odd and $a \geq 1$. Then, in the decomposition (4.3), we have $J_0 = \{0\}$ and every cyclic code C of length n over \mathbb{Z}_4 can be viewed as

$$C \cong C_0 \times \prod_{h \in J_1} C_h \times \prod_{k \in J_2} C_k,$$

where C_0, C_h, and C_k are cyclic codes of length 2^a over appropriate Galois extensions of \mathbb{Z}_4.

We note that all the errors in [2] and [4] are caused by misinterpretation of the orthogonality in [2, Lemma 6] and [4, Equation (21)] (see also (4.4)). This effects the components in the decomposition of the Euclidean dual of C in (4.7) that relates to the 2-cyclotomic cosets of elements in J_1. The errors are pointed out in terms...
of our notations. The readers may refer to the original statements via the number cited. The corrections to these are discussed as well.

The Euclidean dual of C in (4.7).

In [2, Lemma 7 and Lemma 9] and [4, Lemma 5.2 and Corollary 5.4], an incorrect interpretation has been made as follows.

\[
\text{The Euclidean dual of } C \text{ in (4.7) can be viewed as a special case of Proposition 4.5, where } p = 2 \text{ and } s = 1, \text{ i.e.,}
\]

\[
C_{\perp}^{\perp} \cong C_{0}^{\perp} \times \prod_{h \in J_1} C_{h}^{\perp} \times \prod_{k \in J_2} C_{m-k \mod m}^{\perp}.
\]

The Euclidean dual of C in (4.7) can be viewed as a special case of Proposition 4.5, where $p = 2$ and $s = 1$, i.e.,

\[
C_{\perp}^{\perp} \cong C_{0}^{\perp} \times \prod_{h \in J_1} C_{h}^{\perp} \times \prod_{k \in J_2} C_{m-k \mod m}^{\perp}.
\]

The number of Euclidean self-dual cyclic codes over \mathbb{Z}_4.

Since the determination of the Euclidean dual of a cyclic code in [2] and [4] is not correct, in [2, Lemma 9] and [4, Proposition 5.8], an incorrect statement about the number of Euclidean self-dual cyclic codes of length $n = m2^a$ over \mathbb{Z}_4 has been proposed as follows.

\[\text{The number of Euclidean self-dual cyclic codes of length } n = m2^a \text{ over } \mathbb{Z}_4 \text{ is}
\]

\[
\prod_{h \in \{0\} \cup J_1} N_e(\text{GR}(4, m_h), 2^a) \times \prod_{k \in J_2^a} N(\text{GR}(4, m_k), 2^a).
\]

The correct statement can be viewed as a special case of Corollary 4.6 where $p = 2$ and $s = 1$.

Corollary 4.8. The number of Euclidean self-dual codes of length $n = m2^a$ over \mathbb{Z}_4 is

\[
N_e(\mathbb{Z}_4, 2^a) \times \prod_{h \in J_1} N_h(\text{GR}(4, m_h), 2^a) \times \prod_{k \in J_2^a} N(\text{GR}(4, m_k), 2^a).
\]

where the empty product is regarded as 1.

A unique Euclidean self-dual code of length $n = 2m$ over \mathbb{Z}_4.

In [2, Corollary 2] and [4, Corollary 5.9], it has been claimed that

\[\text{If there exists an integer } e \text{ such that } -1 \equiv 2^e \mod n, \text{ then there is only one Euclidean self-dual cyclic code of length } 2n \text{ where } n \text{ is odd, namely } 2(\mathbb{Z}_4)^{2n}.
\]

This claim is not correct and the correct statement can be viewed as a special case of Corollary 4.7 with $p = 2$ and $s = 1$. It can be restated as follows.

Corollary 4.9. Let m be an odd positive integer. Then $N_e(\mathbb{Z}_4, 2m) = 1$ if and only if $m = 1$.

This error in [4] led to an incorrect claim that there is only one Euclidean self-dual cyclic codes of length n in the cases where $n = 6$ and $n = 10$ (see [4, Section 6]). Actually, in Table 1, the numbers of such codes are 3 and 5, respectively. Here, the codes are provided as well.
Example 1. Let \(n = 6 \). Then \(n = 2 \times 3 \) and the 2-cyclotomic cosets modulo 3 are \(\{0\} \) and \(\{1, 2\} \). Both the 2-cyclotomic cosets are self-inverse, which implies that \(I_0 = \{0\} \) and \(I_1 = \{1, 2\} \), and hence, \(J_0 = \{0\} \) and \(J_1 = \{1\} \). Therefore,

\[
Z_4[X]/\langle X^6 - 1 \rangle \cong R_4(u, 1) \times R_4(u, 2).
\]

By Proposition 2.4 and Theorem 3.4, \(N_E(Z_4, 2) = 1 \) and \(N_H(GR(4, 2), 2) = 3 \). Therefore, by Corollary 4.6, we have \(N_E(Z_4, 6) = 3 \). The Euclidean self-dual cyclic codes of length 6 over \(Z_4 \) are \(\langle 2 \rangle \times \langle 2 \rangle \), \(\langle 2 \rangle \times \langle 1 + u + 2\xi \rangle \), and \(\langle 2 \rangle \times \langle 1 + u + 2\xi^2 \rangle \), where \(\xi \) is the generator of a Teichmüller set \(T_2 \) of \(GR(4, 2) \).

Example 2. Let \(n = 10 \). Then \(n = \times 5 \) and the 2-cyclotomic cosets modulo 5 are \(\{0\} \) and \(\{1, 2, 3, 4\} \). Both the 2-cyclotomic cosets are self-inverse, which implies that \(I_0 = \{0\} \) and \(I_1 = \{1, 2, 3, 4\} \), and hence, \(J_0 = \{0\} \) and \(J_1 = \{1\} \). Therefore,

\[
Z_4[X]/\langle X^{10} - 1 \rangle \cong R_4(u, 1) \times R_4(u, 4).
\]

By Proposition 2.4 and Theorem 3.4, we have \(N_E(Z_4, 2) = 1 \) and \(N_H(GR(4, 4), 2) = 5 \). Therefore, by Corollary 4.6, we have \(N_E(Z_4, 10) = 5 \). The Euclidean self-dual cyclic codes of length 10 over \(Z_4 \) are \(\langle 2 \rangle \times \langle 2 \rangle \), \(\langle 2 \rangle \times \langle 1 + u + 2\xi \rangle \), \(\langle 2 \rangle \times \langle 1 + u + 2\xi^2 \rangle \), \(\langle 2 \rangle \times \langle 1 + u + 2\xi^4 \rangle \), and \(\langle 2 \rangle \times \langle 1 + u + 2\xi^8 \rangle \), where \(\xi \) is the generator of a Teichmüller set \(T_4 \) of \(GR(4, 4) \).

5. Conclusion

The complete characterization and enumeration of Hermitian self-dual cyclic codes of length \(p^n \) over \(GR(p^2, s) \) has been established. Using the Discrete Fourier Transform decomposition, we have characterized the structure of Euclidean self-dual cyclic codes of any length over \(GR(p^2, s) \). The enumeration of such codes has been given through this decomposition, our results on Hermitian self-dual codes, and some known results on cyclic codes of length \(p^n \) over \(GR(p^2, s) \). Based on the established characterization and enumeration, we have corrected mistakes in some earlier results on Euclidean self-dual cyclic codes of even length over \(Z_4 \) in [2] and [4].

Acknowledgments

The authors thank Patanee Udomkavanich for useful discussions.

References

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: sjitman@gmail.com
E-mail address: lingsan@ntu.edu.sg
E-mail address: e.sangwisut@gmail.com