<table>
<thead>
<tr>
<th>Title</th>
<th>Attractive Coulomb interaction of two-dimensional Rydberg excitons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shahnazaryan, V.; Shelykh, I. A.; Kyriienko, O.</td>
</tr>
<tr>
<td>Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/42868</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2016 American Physical Society. This paper was published in Physical Review B and is made available as an electronic reprint (preprint) with permission of 2016 American Physical Society. The published version is available at: [http://dx.doi.org/10.1103/PhysRevB.93.245302]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Attractive Coulomb interaction of two-dimensional Rydberg excitons

V. Shahnazaryan, I. A. Shelykh, and O. Kyriienko

1. Introduction

The possibility to attain strong and tunable interparticle interactions in a many-body system is indispensable for both fundamental studies of strong correlations and practical exploitation of nonlinear effects. The vast variety of collective effects in cold-atom systems [1] has profited from the usage of Feshbach resonances [2]. They allow for tunability of the s-wave scattering length for atomic collisions, changing the interaction character from a short-range repulsive one to an attractive one. A major step forward in boosting the atomic interaction strength can be performed when atoms are excited to a large principal quantum number Rydberg state [3]. In this case the absolute value of the interaction strength grows dramatically, and the interaction potential becomes of long range type, leading to the phenomenon of the Rydberg blockade [4–6]. This facilitates numerous applications in the quantum optics domain [7], where large effective nonlinearity for photons enables efficient photon crystallization [8], creation of photonic molecules [9], ordered pattern formation [10], etc.

In the solid-state physics, studies of many-body effects and nonlinear quantum optics became possible for systems of interacting quasiparticles typically probed by light. Here, the prominent examples are indirect excitons [11,12] and exciton polaritons [13]. The latter quasiparticles formed by the microcavity photons and excitons in a two-dimensional (2D) semiconductor quantum well (QW) are especially valuable for observing nonequilibrium condensation [14,15], vortices [16], solitons [17,18], and other effects characteristic of a weakly nonlinear Bose gas. At the same time, the highly anticipated transition of polaritonics to the quantum nonlinear regime is deferred by small and short-range exciton-exciton interaction in QWs, which are dominated by repulsive Coulomb exchange, while the direct-interaction contribution is negligible [19,20], except for the narrow energy range where the formation of the bipolariton is possible. Therefore, it opens the challenge for system modification to attain strong interaction, or, alternatively, the search for optimal strategies which require only weak nonlinearity [21–23].

Up-to-date proposals for the enhancement of nonlinearity include hybridization of polaritons with dipolar excitons (dipolaritons) [24–26] and exploitation of the biexcitonic Feshbach resonance [27,28], although with limited capabilities. A drastic improvement was made in the system of highly excited three-dimensional (3D) excitons, which is the excitonic counterpart of Rydberg atoms physics [29]. In [29] the authors reported an observation of the dipolar blockade appearing in bulk Cu$_2$O for giant excitons with a principal quantum number up to $n = 25$ and a micron diameter. The important consequence of using this rather peculiar copper oxide semiconductor is selection rules which allow to optically pump excitons in the p state, where excitons exhibit the long-range interaction of dipolar and van der Waals types, similar to Rydberg atoms. At the same time, while results show the potential for strongly nonlinear optics, the requirement of 3D geometry and the infeasibility of Cu$_2$O-based microcavities hinder its application in the conventional form.

In this paper we pose the question of the possible achievement of the strong exciton-exciton interaction exploiting highly excited states of excitons in 2D semiconductor quantum wells. We show that for small transferred momenta the interaction of 2D excitons is dominated by a short-range exchange Coulomb interaction for both s and p exciton types, and we find that for excitons with a higher than ground principal quantum number ($n > 1$) the interaction constant changes sign, leading to an attractive exciton-exciton potential. The absolute value of the interaction strength scales linearly with n and increases for narrow-band-gap semiconductors. At the same time, similar to the 3D geometry, the direct interaction of 2D excitons possesses a long-range nature governed by van der Waals’ law and grows drastically with n. This suggests that a 2D Rydberg exciton gas represents the nontrivial system and can lead to the emergence of hybrid repulsive-attractive bosonic mixtures.

II. The Model

The calculation of the interaction potential for 2D excitons in the ground state can be done within the Coulomb scattering...
formalism [19]. The theory can be extended to describe the interaction of excitons in the excited states. The two-dimensional exciton wave function with in-plane wave vector \mathbf{Q} in the general form reads

$$\psi_{n,m}(r_e - r_h) = \frac{1}{\sqrt{A}} \exp[i\mathbf{Q}(\beta_e r_e + \beta_h r_h)]\psi_{n,m}(r_e - r_h),$$

(1)

where r_e, r_h are in-plane radius vectors of electron and hole, respectively, and A denotes the normalization area. The coefficients β_e, β_h are defined as $\beta_{e(h)} = m_{e(h)}/(m_e + m_h)$, where $m_{e(h)}$ is the mass of an electron (hole). The internal relative motion is described by [30]

$$\psi_{n,m}(r_e - r_h) = \frac{1}{\sqrt{2\lambda_{2D}}} \left(\frac{(n - |m| - 1)!}{(n - 1/2)^3(n + |m| - 1)!} \right)^{|m|} (r_e - r_h)^{|m|} \exp \left[-\frac{|r_e - r_h|}{(2n - 1)^{\lambda_{2D}}} \right] \times \frac{1}{\sqrt{2\pi}} e^{\beta_e r_e + \beta_h r_h},$$

(2)

where $n = 1, 2, 3, \ldots$ is the principal quantum number, $m = 0, \pm 1, \ldots, \pm n \mp 1$ is the magnetic quantum number, and λ_{2D} is a variational parameter related to the two-dimensional radius of the ground-state exciton. Here, $L^2_0[x]$ denotes the associated Laguerre polynomial. In the following we consider the narrow quantum well limit and thus disregard exciton motion in the confinement direction.

Considering excitons with only the parallel spin, the process of Coulomb scattering in reciprocal space associated with the transfer of wave vector \mathbf{q} can be described by the form

$$(n,m,\mathbf{Q}) + (n',m,\mathbf{Q}') \rightarrow (n,m,\mathbf{Q} + \mathbf{q}) + (n',m,\mathbf{Q}' - \mathbf{q}).$$

(3)

The scattering matrix element consists of four terms:

$$H(n,n',m,\Delta \mathbf{Q},\mathbf{q},\beta_e) = \frac{e^2}{4\pi \epsilon \epsilon_0} \frac{\lambda_{2D}}{A} I_{0v}(n,n',m,\Delta \mathbf{Q},\mathbf{q},\beta_e),$$

(4)

where

$$I_{0v}(n,n',m,\Delta \mathbf{Q},\mathbf{q},\beta_e) = I_{0v}(n,n',m,\mathbf{q},\beta_e) + I_{\mathrm{exch}}^\Delta(n,n',m,\Delta \mathbf{Q},\mathbf{q},\beta_e) + I_{\mathrm{exch}}^0(n,n',m,\mathbf{q},\beta_e) + I_{\mathrm{exch}}^h(n,n',m,\mathbf{q},\beta_e).$$

(5)

Here, the first term denotes the direct-interaction integral, the second corresponds to the exciton exchange interaction, and the last two terms describe electron and hole exchange integrals (see Appendix A for definitions and details).

Note that in the particular case where the wave vectors and principal quantum numbers of excitons coincide, $\Delta \mathbf{Q} = |\mathbf{Q} - \mathbf{Q}'| = 0$ and $n = n'$, we have

$$I_{\mathrm{exch}}^\Delta(n,n,m,0,\mathbf{q},\beta_e) = I_{0v}(n,n,m,\mathbf{q},\beta_e),$$

(6)

$$I_{\mathrm{exch}}^e(n,n,m,0,\mathbf{q},\beta_e) = I_{\mathrm{exch}}^h(n,n,m,0,\mathbf{q},\beta_e).$$

(7)

FIG. 1. Real-space distribution of exciton envelope wave functions with center-to-center separation distance of 30\(\lambda_{2D}\), shown for excitons in (a) the 1s state and (b) the 6s state.

and consequently,

$$I_{\mathrm{exch}}(n,m,\mathbf{q},\beta_e) = 2I_{0v}(n,m,\mathbf{q},\beta_e) + I_{\mathrm{exch}}^e(n,m,\mathbf{q},\beta_e).$$

(8)

In the following we are interested in the dependence of the interaction on the scattered momentum \mathbf{q}, while considering equal exciton center-of-mass momenta, $\Delta \mathbf{Q} = 0$.

To gain a qualitative understanding of interaction processes for highly excited excitons we shall look at the large-n exciton wave function. In particular, Eq. (2) implies that the spatial distribution of the exciton drastically increases with the principal quantum number. Namely, the higher the principal number of excitation is, the larger the spread of the wave function is, providing increased overlap between excitons and, consequently, leading to the enhanced exciton-exciton interaction. In Fig. 1(a) the real-space distribution of two excitons in the ground state is presented, where the interexciton distance is fixed to 30\(\lambda_{2D}\). The peak-shaped distribution of the wave functions determines the interaction behavior, which rapidly decreases as distance grows. Figure 1(b) shows the probability distribution for excitons in the 6s state, with the same interexciton distance as before (i.e., the same density of particles), revealing a large overlap of wave functions.

III. RESULTS

A. Interaction between s-type excitons

We examined numerically the Coulomb interaction integrals between excitons in the s and p states as a function of the scattered momentum \mathbf{q}. The calculation was done by multidimensional Monte Carlo integration while implementing the importance sampling algorithm, provided by the numerical integration CUBA library [31]. To be specific, we fixed the electron-to-exciton mass ratio to the value $\beta_e = 0.4$, which is close to the GaAs quantum well effective-mass ratio [32]. We note that the change of this parameter does not lead to significant quantitative and any qualitative changes of the results (see Appendix C for the details), and we comment on the possible choices for materials subsequently at the end of Sec. IV.

We consider the interaction between two s-type excitons with the same $(|n,n'| = 11, 22, 33)$ and different $(|n,n'| = 12, 23)$ principal quantum numbers. The results of the calculation are plotted in Fig. 2. Figure 2(a) shows the direct-interaction term as a function of dimensionless transferred momentum for various scattering processes. We find that the direct interaction for ground-state excitons and excited excitons has the same qualitative behavior, dropping to zero...
The direct-interaction integral.

Correspond to interaction of excitons with the same dimensionless value of the integral is presented. The solid lines correspond to interaction of excitons with the same [n, n] principal quantum number, while dashed lines correspond to the different [n, n′] principal quantum numbers. (b) Real-space dependence of the direct-interaction integral.

For small q and exhibiting a maximum for intermediate momenta. The position of the direct-interaction peak shifts to smaller transferred wave vectors for increasing n, and its magnitude increases radically. We check that the latter holds even for very large quantum numbers (up to n = 10; not shown). In Fig. 2(b) we plot a 2D Fourier transform of the \(I_{\text{dir}}[q] \) interaction integral, which represents its real-space dependence. The curves depict maximal finite interaction strength for \(n = n' = 1 \) excitons at a small separation, which rapidly decreases with r. For excited states the \(r \to 0 \) peak flattens out, while the total interaction range increases.

To understand the origin of the interaction we examined the large-r behavior of the potential for excitons with quantum number in the range \(n = 3, \ldots, 10 \) (see Appendix B for details). The analysis of the interaction tail unveiled the rapid increase of the interaction strength with the growth of the principal quantum number, which is another fingerprint of the long-range nature of the interaction [3,7,29]. The corresponding numerical fit of the real-space interaction dependence revealed the van der Waals nature of the potential (\(I_{\text{dir}} \propto r^{-5} \)), which was previously reported by Schindler and Zimmermann also for QW excitons in the ground state [33].

Next, we calculate the Coulomb exchange contribution to the s-type exciton-exciton interaction. Figure 3(a) illustrates the dependence of the exchange integral \(I_{\text{exch}} \) as a function of q for different states. For the ground-state scattering (inset, curve 11) the interaction is maximal in the q \(\to 0 \) region, decreasing for large transferred wave vectors and has a positive sign (repulsive potential). However, already for \(n = n' = 2 \) the sign of the exciton interaction changes to the attractive one, with a maximal absolute value at zero q. The same change applies to higher-excited-state interaction and also to cross scattering between ground- and excited-state excitons. Moreover, we note that the maximal absolute value of the potential grows with the principal quantum number \(n \), representing an enhancement of the exchange contribution by an increase of the effective interaction area due to the spread of wave functions. Consequently, the real-space dependence of the exchange interaction has the form of an exponential decay, defined by the decrease of the wave-function overlap area.

Finally, we study the dependence of the maximal absolute value of the exchange integral as a function of the principal quantum number \(n = n' \), measured at the q \(\to 0 \) point. The behavior is shown in Fig. 3(b) for both s and p excitons, corresponding to a linear increase of the magnitude for large principal quantum numbers, \(n > 3 \), where s and p interaction strengths coincide. At the same time, the clear difference in \(\max|\langle I_{\text{exch}}^s \rangle|\) for s and p states is visible in the \(n \leq 3 \) range. This result can be explained by the fact that the radial parts of the wave functions of excited states have the same shape at larger radii, despite being different at small r, relevant for small-n excitons.

The total interaction potential in the case of equal wave vectors and principal quantum numbers, represented by Eq. (8), is shown in Fig. 4 as a function of the transferred momentum q. It reveals that for very small values of q the total interaction for excited states is fully determined by the exchange interaction, which is attractive. However, for larger transferred momenta it is replaced by weak repulsion, showing the dominant contribution of the direct-interaction term in the large-q region. Notably, for a higher excitation number the region dominated by repulsion is shifted to smaller transferred momenta values. This alternating-sign behavior is intriguing as it can potentially lead to the formation of a supersolid state [34].
FIG. 4. Overall interaction of \(s \)-type excitons as a function of the scattered wave vector \(q \). For small values of \(q \) the interaction of the excited states is highly attractive due to the dominant exchange interaction, while for large values the direct term prevails, leading to the weak repulsive character of total interaction.

B. Interaction between \(p \)-type excitons

We proceed with the discussion of direct and exchange Coulomb integrals for two \(p \)-type excitons. While nonzero angular momentum states are not straightforwardly accessed by optical means in direct-gap semiconductors (GaAs, GaN, ZnO, etc.), one can envisage the situation when these become relevant in the low-dimensional structures. As an example they can be created by two-photon pumping [35]. The results of numerical integrations are presented in Fig. 5. Figures 5(a) and 5(b) show the direct-interaction integral as a function of transferred momentum and interexciton distance for various values of the principal quantum number. We note that, qualitatively, it has the same behavior as \(s \)-type excitons, with minor variations of positions and heights of absolute maxima. Notably, while for \(p \)-shells of 3D excitons the long-range interaction has a dipole-dipole contribution, it is absent for 2D excitons with nonzero angular momentum.

Finally, Fig. 5(c) illustrates the exchange-term dependence on the transferred wave vector \(\mathbf{q} \). We first note that the minimal energy state of \(p \) excitons corresponds to the value of principal quantum number \(n = 2 \). Hence, the exchange interaction of \(2p \) excitons is repulsive and similar to the interaction of \(1s \) excitons. As for excited states, it has a shape similar to that of \(s \)-type excitons with a higher value of absolute maxima.

IV. DISCUSSION AND OUTLOOK

Previously, we have shown that interactions between excited excitonic states in 2D structures have different contributions, which are largely dependent on the main quantum number \(n \) and interexciton separation. While very large \(n \) excitons physics is expected to be driven by long-range interactions, the relevant properties of ground-state excitons are defined by the short-range exchange potential. Thus, we expect the crossover between regimes to happen in the range of intermediate \(n > 1 \), where strong short-range attractive interaction dominates. To increase the overall interaction even further, we consider possible semiconductor materials where Rydberg excitons can be observed. The parameters of the 2D Bohr radius, binding energy \(\text{Ry}_{3D} \), the Coulomb interaction prefactor of Eq. (4) \(\alpha_C \equiv e^2/\lambda_{2D}/4\pi\varepsilon_0 \), and the band gap \(E_g \) are collected in Table I for various semiconductors (data are taken from Refs. [36–38]). One can see that with increasing band gap the exciton Bohr radius decreases, consequently decreasing the interaction constant. At the same time we note that successful generation of highly excited excitonic states requires a large binding energy of excitons, which allows one to address separately excitonic states with large \(n \). Therefore, an interplay between interaction strength and exciton energy separation determines the choice of materials relevant for the described physics. Depending on the goal, they may span from mid-band-gap semiconductors (e.g., GaAs)

<table>
<thead>
<tr>
<th>Material</th>
<th>(\lambda_{2D}) (Å)</th>
<th>(\text{Ry}_{3D}) (meV)</th>
<th>(\alpha_C) (μeVμm(^2))</th>
<th>(E_g) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>InAs</td>
<td>184.45</td>
<td>1.29</td>
<td>1.75</td>
<td>0.354</td>
</tr>
<tr>
<td>GaSb</td>
<td>111.95</td>
<td>2.05</td>
<td>1.03</td>
<td>0.726</td>
</tr>
<tr>
<td>InN</td>
<td>36.3</td>
<td>6.47</td>
<td>0.34</td>
<td>0.78</td>
</tr>
<tr>
<td>InP</td>
<td>46.95</td>
<td>6.13</td>
<td>0.54</td>
<td>1.344</td>
</tr>
<tr>
<td>GaAs</td>
<td>93.6</td>
<td>4.57</td>
<td>1.04</td>
<td>1.424</td>
</tr>
<tr>
<td>CdTe</td>
<td>30.1</td>
<td>11.70</td>
<td>0.42</td>
<td>1.5</td>
</tr>
<tr>
<td>GaN</td>
<td>21.75</td>
<td>17.04</td>
<td>0.32</td>
<td>3.2</td>
</tr>
<tr>
<td>ZnO</td>
<td>10.55</td>
<td>40.22</td>
<td>0.178</td>
<td>3.37</td>
</tr>
</tbody>
</table>

Note that successful generation of highly excited excitonic states requires a large binding energy of excitons, which allows one to address separately excitonic states with large \(n \). Therefore, an interplay between interaction strength and exciton energy separation determines the choice of materials relevant for the described physics. Depending on the goal, they may span from mid-band-gap semiconductors.
to wide-band-gap materials (e.g., GaN). Additionally, we underline the possible importance of materials with the non-Rydberg excitonic spectrum, represented by transition-metal dichalcogenides [39–42], where the described bound can be violated.

Finally, as optical selection rules do not forbid the creation of \(s \) excitonic states with different \(n \), the mixtures of excitons with \(n = 1, 2, 3, \ldots \) can be realized. Given its mutually attractive and repulsive interaction, we expect intriguing collective effects to appear in the system.

V. CONCLUSION

We studied the Coulomb interaction of excited states of excitons in direct-gap semiconductors. We showed that the total interaction of higher energy states has an attractive character due to the dominant contribution of exchange terms. A linear increase of interaction maxima with the increase of the principal quantum number of the excitonic state was observed. Contrary to 3D excitons, no dipolar interaction appears for large-quantum-number 2D excitons, and direct interaction has van der Waals behavior. The results point out the importance of Rydberg excitonic states and may open the way towards studies of repulsive-attractive bosonic mixtures.

ACKNOWLEDGMENTS

This work was supported by the FP7 ITN NOTEDEV network, RISE project 644076 CoExAN, the Russian Federal Target Program, project RFMEFI58715X0020, and the Singapore Ministry of Education under AcRF Tier 2 Grant No. MOE2015-T2-1-055. O.K. acknowledges the funding from the European Union Seventh Framework Programme through ERC Grant QIOS (Grant No. 306576). V.S. thanks the Niels Bohr Institute for hospitality.

APPENDIX A: DERIVATION OF MATRIX ELEMENTS FOR COULOMB SCATTERING OF RYDBERG EXCITONS

A two-dimensional exciton in the \(nl \) state with center-of-mass wave vector \(\mathbf{Q} \) is described by wave functions (1) and (2) of the main text, corresponding to center-of-mass and internal motions, respectively. The spin degree of freedom can be introduced in the following way. The total angular momentum projection of the conduction electron on the group axis is \(s_e = \pm 1/2 \). In the current work we restrict ourselves to the consideration of heavy-hole excitons. The angular momentum projection of heavy holes is \(j_h = \pm 3/2 \). Correspondingly, we have four independent heavy-hole exciton states: the dipole-active states \(|J_z = \pm 1 \rangle = |s_e = \mp 1/2, j_h = \pm 3/2 \rangle \) and the dark states \(|J_z = \pm 2 \rangle = |s_e = \pm 1/2, j_h = \pm 3/2 \rangle \). Further, in a general case an exciton state with total momentum \(|S \rangle \) can be defined as \(\chi_S(s_e, j_h) = \langle s_e, j_h | S \rangle \) (see, e.g., Ref. [19] for a detailed description).

We proceed by considering the Coulomb scattering of excitons. We are interested in the processes of elastic scattering which conserve total spin and principal quantum numbers of excitons. They correspond to the scattering process described as

\[
(nl, \mathbf{Q}, S) + (n' l', \mathbf{Q}', S) \rightarrow (nl, \mathbf{Q} + \mathbf{q}, S) + (n' l', \mathbf{Q}' - \mathbf{q}, S),
\]

(A1)

where we defined a distinct exciton spin state \(|S \rangle = |s, j \rangle \), yielding \(\chi_S(s_e, j_h) = \langle s_e, j_h | S \rangle = \delta_{s_e, s} \delta_{j_h, j} \).

Within the Hartree-Fock approximation, the two-exciton initial state with the same spin is described by the following wave function:

\[
\Phi_{Q\mathbf{Q}'\mathbf{r}_1\mathbf{r}_2}(r_x, s_e, r_y, s_h, \mathbf{r}_1, \mathbf{r}_2, s_e', s_h', \mathbf{r}_1', \mathbf{r}_2') = \frac{1}{\sqrt{2}} \left\{ \begin{array}{l}
\frac{1}{\sqrt{2}} \left[\psi_{Q\mathbf{r}_1\mathbf{r}_2}(r_x, s_e, r_y, s_h) \chi_{S}(s_e', s_h') \psi_{Q\mathbf{r}_1'\mathbf{r}_2'}(r_x, s_e', r_y, s_h') + \psi_{Q\mathbf{r}_1'\mathbf{r}_2'}(r_x, s_e', r_y, s_h') \chi_{S}(s_e', s_h') \psi_{Q\mathbf{r}_1\mathbf{r}_2}(r_x, s_e, r_y, s_h) \right] \\
- \frac{1}{\sqrt{2}} \left[\psi_{Q\mathbf{r}_1\mathbf{r}_2}(r_x, s_e, r_y, s_h) \chi_{S}(s_e', s_h') \psi_{Q\mathbf{r}_1'\mathbf{r}_2'}(r_x, s_e', r_y, s_h') + \psi_{Q\mathbf{r}_1'\mathbf{r}_2'}(r_x, s_e', r_y, s_h') \chi_{S}(s_e', s_h') \psi_{Q\mathbf{r}_1\mathbf{r}_2}(r_x, s_e, r_y, s_h) \right]
\end{array} \right\}
\]

(A2)

The Hamiltonian can be written in the form

\[
\hat{H} = \hat{H}_1(r_x, r_y) + \hat{H}_2(r_x', r_y') + V_{\text{int}}(r_x, r_y, r_x', r_y'),
\]

(A3)

where \(\hat{H}_j \) corresponds to the energy of the \(j \)th exciton and \(V_{\text{int}} \) denotes the Coulomb interaction potential between particles. The intraexciton terms read

\[
\hat{H}_1(r_x, r_y) = -\frac{\hbar^2}{2m_e} \Delta_e - \frac{\hbar^2}{2m_h} \Delta_h - V(|r_x - r_y|),
\]

(A4)

\[
\hat{H}_2(r_x', r_y') = -\frac{\hbar^2}{2m_e} \Delta_e - \frac{\hbar^2}{2m_h} \Delta_h - V(|r_x' - r_y'|),
\]

(A5)
and each consists of kinetic- and potential-energy contributions. \(V(r) = \frac{e^2}{4\pi \varepsilon_0 r} \) corresponds to the Coulomb interaction energy, screened by the static dielectric constant \(\varepsilon \); \(\varepsilon_0 \) is the vacuum permittivity.

The interexciton interaction part can be written as

\[
V_{\text{int}}(\mathbf{r}_e, \mathbf{r}_p, \mathbf{r}_e', \mathbf{r}_p') = -V(|\mathbf{r}_e - \mathbf{r}_p|) - V(|\mathbf{r}_e' - \mathbf{r}_p'|) + V(|\mathbf{r}_e - \mathbf{r}_p'|) + V(|\mathbf{r}_e' - \mathbf{r}_p|),
\]

where four possible interactions are accounted for. The scattering amplitude of the process described by Eq. (3) of the main text is given by the matrix element:

\[
H_{\text{int}}^{m_1, S}(\mathbf{Q}, \mathbf{Q}', \mathbf{q}) = \int d^3 \mathbf{r}_e \sum_{j\varepsilon} \int d^3 \mathbf{r}_p \sum_{j'\varepsilon'} \int d^3 \mathbf{r}_e' \sum_{j\varepsilon} \Psi_{\varepsilon, \mathbf{Q}}^* \Psi_{\varepsilon', \mathbf{Q}'-\mathbf{q}}^\dagger (\mathbf{r}_e, \varepsilon, \mathbf{r}_p, j, \mathbf{r}_e', \varepsilon', \mathbf{r}_p', j') \times V_{\text{int}}(\mathbf{r}_e, \mathbf{r}_p, \mathbf{r}_e', \mathbf{r}_p') \Psi_{\varepsilon, \mathbf{Q}}^\dagger (\mathbf{r}_e, \varepsilon, \mathbf{r}_p, j, \mathbf{r}_e', \varepsilon', \mathbf{r}_p', j')
\]

\[
= \frac{1}{4} \delta_{\varepsilon, \varepsilon'} \delta_{j, j'} \delta_{j', j} \left[H_{\text{dir}}(n, n', \mathbf{Q}, \mathbf{Q}', \mathbf{q}) + H_{\text{exch}}^x(n, n', \mathbf{Q}, \mathbf{Q}', \mathbf{q}) + H_{\text{exch}}^y(n, n', \mathbf{Q}, \mathbf{Q}', \mathbf{q}) + H_{\text{exch}}^z(n, n', \mathbf{Q}, \mathbf{Q}', \mathbf{q}) \right],
\]

(A7)

where four terms correspond to direct interaction, exciton exchange, electron exchange, and hole exchange. They can be written explicitly as

\[
H_{\text{dir}}(n, n', m, \mathbf{q}) = \frac{\alpha C}{A} \int d^3 \mathbf{r}_e \int d^3 \mathbf{r}_p \int d^3 \mathbf{r}_e' \int d^3 \mathbf{r}_p'
\]

\[
\times \left[-J_0(\beta h \lambda_{2D} q x) J_0(\beta h \lambda_{2D} q x') - J_0(\beta e \lambda_{2D} q y) J_0(\beta e \lambda_{2D} q y') + J_0(\beta h \lambda_{2D} q x) J_0(\beta e \lambda_{2D} q y') + J_0(\beta e \lambda_{2D} q y) J_0(\beta h \lambda_{2D} q x') \right]
\]

\[
\left[\frac{x}{n - 1/2} \right]^2 e^{-\frac{x}{\lambda_{2D}}}
\]

\[
\times \left[\sum_{n=-[n-1]}^{\infty} \left(\frac{x}{n - 1/2} \right)^2 \right] d x d x' \left[\sum_{n'-[n'-1]}^{\infty} \left(\frac{x'}{n' - 1/2} \right)^2 \right] e^{-\frac{x'}{\lambda_{2D}}}
\]

(A8)

\[
H_{\text{exch}}^x(n, n', m, \Delta \mathbf{Q}, \mathbf{q}) = \frac{\alpha C}{A} I_{\text{exch}}^x(n, n', m, \Delta \mathbf{Q}, \mathbf{q})
\]

\[
= \frac{\alpha C}{A} \int d^3 \mathbf{r}_e \int d^3 \mathbf{r}_p \int d^3 \mathbf{r}_e' \int d^3 \mathbf{r}_p'
\]

\[
\times \left[J_0(\beta h \lambda_{2D} q y) J_0(\beta e \lambda_{2D} q x) - J_0(\beta e \lambda_{2D} q y) J_0(\beta h \lambda_{2D} q x) \right]
\]

\[
\left[\frac{x}{n - 1/2} \right] \left[\frac{1}{y_1} + \frac{1}{y_2} \right] e^{-\frac{x}{\lambda_{2D}}} e^{-\frac{y}{\lambda_{2D}}}
\]

(A9)
FIG. 6. Dependence of the long-range direct exciton-exciton interaction on the separation distance \(r \). (a)–(f) correspond to the interaction of states with principal quantum number \(n = 4, 6, 7, 8, 9, 10 \), respectively. For each value of \(n \) the numerical fit shows \(\propto r^{-n} \) dependence, characteristic of van der Waals interaction.

\[
\begin{align*}
\times e^{-\frac{\beta_h \rho}{\lambda_{2D}}} e^{-\frac{\beta_e \rho}{\lambda_{2D}}} e^{-\frac{\beta_e \rho}{\lambda_{2D}}} L_{n-|m|-1}^2 \left(\frac{x}{n-\frac{1}{2}} \right) L_{n-|m|-1}^2 \left(\frac{y}{n-\frac{1}{2}} \right) \\
\times L_{n-|m|-1}^2 \left(\frac{y}{n'-\frac{1}{2}} \right) \left[-\frac{1}{y_2} - \frac{1}{y_1} + \frac{1}{|y_1 + x|} + \frac{1}{|y_2 - x|} \right].
\end{align*}
\]

(A10)

\[
\begin{align*}
H_{\text{exch}}^h(n,n',m,\Delta Q,q) &= \frac{\alpha_C}{A} J_{\text{exch}}(n,n',m,\Delta Q,q) \\
&= \frac{\alpha_C}{A} \frac{(n-|m|-1)!(n'-|m|-1)!}{2 \pi^2 (n-1/2)^2 (n'-1/2)^2 (n+|m|-1)!(n'+|m|-1)!} \\
&\times \int d^2x d^2y_1 d^2y_2 e^{i \lambda_{2D} \Delta Q (y_1 - x)} e^{i \lambda_{2D} \Delta Q (y_1 + x)} \left[\frac{x}{n-1/2} \frac{y_1}{n'-1/2} \frac{y_2}{n'-1/2} \right]^{|m|} \\
&\times e^{-\frac{\beta_e \rho}{\lambda_{2D}}} e^{-\frac{\beta_h \rho}{\lambda_{2D}}} e^{-\frac{\beta_e \rho}{\lambda_{2D}}} L_{n-|m|-1}^2 \left(\frac{x}{n-\frac{1}{2}} \right) L_{n-|m|-1}^2 \left(\frac{y_1}{n-\frac{1}{2}} \right) \\
&\times L_{n-|m|-1}^2 \left(\frac{y_2}{n'-\frac{1}{2}} \right) \left[-\frac{1}{y_2} - \frac{1}{y_1} + \frac{1}{|y_1 + x|} + \frac{1}{|y_2 - x|} \right].
\end{align*}
\]

(A11)

where we defined \(\alpha_C \equiv e^{2 \lambda_{2D}}/\pi \varepsilon \varepsilon_0 \).

In the derivation the following radius vector transformations were used: \(\rho = r_e - r_h \), \(\mathbf{R} = \beta_e \mathbf{r}_e + \beta_h \mathbf{r}_h \), \(\rho' = r_e' - r_h' \), \(\mathbf{R}' = \beta_e \mathbf{r}_e' + \beta_h \mathbf{r}_h' \), \(\xi = \mathbf{R} - \mathbf{R}' \), \(\sigma = \frac{\mathbf{R} + \mathbf{R}'}{2} \), \(\Delta \mathbf{Q} = \mathbf{Q}' - \mathbf{Q} \), \(\mathbf{x} = \frac{\mathbf{x}}{\lambda_{2D}} \), \(\mathbf{x}' = \frac{\mathbf{x}'}{\lambda_{2D}} \), \(\mathbf{y}_1 = \frac{\mathbf{y}_1}{\lambda_{2D}} \), \(\mathbf{y}_2 = \frac{\mathbf{y}_2}{\lambda_{2D}} \).
The characteristic feature of the van der Waals interaction is the power dependence on the excitation number. To check this, we examined the dependence of the direct-interaction strength on the excitation number for different fixed values of various quantum numbers. This confirms the van der Waals long-range behavior of the interaction potential. As expected, the distance where the van der Waals behavior becomes relevant rapidly grows with the increase of the principal quantum number.

The characteristic feature of the van der Waals interaction is the power dependence on the excitation number. To check this, we examined the dependence of the direct-interaction strength on the excitation number for different fixed values of various quantum numbers. This confirms the van der Waals long-range behavior of the interaction potential. As expected, the distance where the van der Waals behavior becomes relevant rapidly grows with the increase of the principal quantum number.

APPENDIX B: LONG-RANGE INTERACTION

This appendix is devoted to a detailed study of the long-range behavior of exciton-exciton direct interaction. For different values of the principal quantum number n we examine the real-space dependence at very large separation distances. The results are presented in Fig. 6. The numerical fits show the $I_{2D} \propto r^{-6}$ dependence for interactions of excitons with various quantum numbers n. This confirms the van der Waals long-range behavior of the interaction potential. As expected, the distance where the van der Waals behavior becomes relevant rapidly grows with the increase of the principal quantum number.

The results are presented in Fig. 8. The numerical fits show the $I_{2D} \propto r^{-6}$ dependence for interactions of excitons with various quantum numbers n. This confirms the van der Waals long-range behavior of the interaction potential. As expected, the distance where the van der Waals behavior becomes relevant rapidly grows with the increase of the principal quantum number.

As mentioned above, the exchange interaction between excited 2D excitonic states is strongly attractive and does not drastically depend on the electron-to-exciton mass ratio β_e. To prove this, we calculate the momentum dependence of the exchange interaction of 2e excitons for various values of β_e. The results are presented in Fig. 8. As can be seen, for relatively small values of transferred momenta the scattering amplitude has weak mass dependence.
Hey, and P. V. Santos, Observation of bright polariton solitons in a semiconductor microcavity, Nat. Photonics 6, 50 (2012).

