<table>
<thead>
<tr>
<th>Title</th>
<th>A New Variational Method for Bias Correction and Its Applications to Rodent Brain Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chang, Huibin; Huang, Weimin; Wu, Chunlin; Huang, Su; Guan, Cuntai; Sekar, Sakthivel; Bhakoo, Kishore Kumar; Duan, Yuping</td>
</tr>
<tr>
<td>Date</td>
<td>2017</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/42961</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [http://dx.doi.org/10.1109/TMI.2016.2636026].</td>
</tr>
</tbody>
</table>
A New Variational Method for Bias Correction and its Applications to Rodent Brain Extraction

Huibin Chang, Weimin Huang, Chunlin Wu, Su Huang, Cuntai Guan, Saktivel Sekar, Kishore Kumar Bhakoo and Yuping Duan

Abstract—Brain extraction is an important preprocessing step for further analysis of brain MR images. Significant intensity inhomogeneity can be observed in rodent brain images due to the high-field MRI technique. Unlike most existing brain extraction methods that require bias corrected MRI, we present a high-order and L_0 regularized variational model for bias correction and brain extraction. The model is composed of a data fitting term, a piecewise constant regularization and a smooth regularization, which is constructed on a 3-D formulation for medical images with anisotropic voxel sizes. We propose an efficient multi-resolution algorithm for fast computation. At each resolution layer, we solve an alternating direction scheme, all subproblems of which have the closed-form solutions. The method is tested on three T2 weighted acquisition configurations comprising a total of 50 rodent brain volumes, which are with the acquisition field strengths of 4.7 Tesla, 9.4 Tesla and 17.6 Tesla, respectively. On one hand, we compare the results of bias correction with N3 and N4 in terms of the coefficient of variations on 20 different tissues of rodent brain. On the other hand, the results of brain extraction are compared against manually segmented gold standards, BET, BSE and 3-D PCNN based on a number of metrics. With the high accuracy and efficiency, our proposed method can facilitate automatic processing of large-scale brain studies.

Index Terms—Intensity inhomogeneity, brain extraction, high-field MRI, rodent brain, human brain, segmentation, multi-resolution

I. INTRODUCTION

RODENT brains have been used as preclinical models to investigate brain development, disease progression and new drug discovery [1], [2], [3]. A common processing step of rodent MR images is to segment the brain tissue from nonbrain tissues such as cranium, eyes, muscles and skin etc., which is usually called brain extraction/cropping or skull stripping.

Automated brain extraction methods are widely used for human brain extraction, such as region growing method[4], edge-based method [5], hybrid method [6] and expectation-maximization based method [7] etc.. However, the human brain extraction methods often perform poorly on rodent brains due to the diversities in shapes and the differences in image contrasts between human and rodent brains. In the last two decades, several methods have been proposed for rodent brain extraction either by modifying human brain methods or developing new approaches. The atlas-based expectation maximization techniques were studied and applied for murine full brain segmentation in [8], [9]. Uberti et al. [10] presented a semi-automatic method, called Contrast Level Set (CLS), which used a level set algorithm to evolve a user-defined initial surface toward to brain boundary. Murugavel and Sullivan [11] proposed a neural network based method, called Pulse-Coupled Neural Network (PCNN) to automatically crop rodent brain tissue. The PCNN algorithm was further extended in the 3-D formulation in [12] to overcome the limitation of 2-D PCNN in segmenting the anterior and posterior region of rodent volumes. Li et al. [13] proposed an automatic rat brain extraction method based on the deformable surface model used in Brain Extraction Tool (BET) [4]. Recently, Oguz et al. [14] introduced a rodent brain cropping method based on grayscale mathematical morphology and LOGISOMS-based graph segmentation.

High-field MRI is a popular technique for the study of rodent brains, in which obvious intensity inhomogeneity (bias) widely exists [15] and usually is a smooth intensity variation across the image. It arises from the imperfections of the image acquisition process and is induced by the choice of the radio-frequency coil, the acquisition pulse sequence and by the nature and geometry of the sample itself. Amongst the various bias correction methods, the most popular one is the nonparametric nonuniform normalization (N3) approach [16], which has established itself as a standard in the field. A modified method, N4, was proposed to improve the original N3 algorithm [17]. A good review of methods for correction of intensity inhomogeneity in MRI can be found in [18].

The intensity inhomogeneity is usually modeled as a smooth multiplicative field arising from variations in the sensitivity of the reception coil and to a lesser extent with the non-uniformity due to induced currents and nonuniform excitation [19]. Therefore, an observed image v can be modeled as

$$v(x) = 1 + n(x) \circ u(x) \circ f(x),$$

where u is the uncorrupted image, f is the bias field and n is
the measurement error. Based on the logarithmic transformation, the image model (1) becomes
\[\tilde{y}(x) = \log v(x) + \tilde{f}(x) + h(x), \]
where \(\tilde{y} = \log v, \tilde{u} = \log u, \tilde{f} = \log f \) and \(h = \log (1 + n(x)) \).
Here, we make the following assumptions with respect to \(\tilde{u} \) and \(\tilde{f} \), respectively:

(A1) The true image \(\tilde{u} \) characterizes a physical property of the tissues being imaged, which ideally has the same value for the voxels on the same type of tissue.

(A2) The bias field \(\tilde{f} \) is a spatially smooth function and usually follows certain paths, which can be modeled by a piecewise linear approximation.

A. Variational Methods for Bias Correction

The Mumford-Shah model is a well-known variational segmentation model by pursuing a piecewise smooth approximation of the given image and the boundaries are referred to as the transition between adjacent paths of the approximation [20]. One of the most successful relaxation models of the Mumford-Shah model was proposed by Chan and Vese [21], which seeks for an approximation of a given image with a binary piecewise constant representation through a level set formulation. Many models and algorithms have been proposed for segmentation of images with intensity inhomogeneity based on the Mumford-Shah model and the Chan-Vese model. For example, Li et al. [22] defined the local binary fitting (LBF) model by introducing a kernel function into the data term of the Chan-Vese model to cope with intensity inhomogeneity. Li et al. [23] proposed a weighted k-means clustering with the cluster centers to estimate the bias function within the neighborhood. Later in [24], a local intensity clustering (LIC) property of the image intensities was derived and used for the segmentation of MR images in the presence of intensity inhomogeneity. Li et al. [25] developed a variational fuzzy Mumford-Shah model for image segmentation with the application to images with intensity inhomogeneity.

Another kind of variational models to correct intensity inhomogeneity are Retinex [26], which deals with inhomogeneity caused by different illumination conditions. Retinex theory and intensity inhomogeneity originate from the same assumptions based on the image decomposition model (1). Based on the well-known Total Variation (TV) [27], different TV models have been proposed for Retinex. Kimmel et al. [28] proposed a variational framework for Retinex based on the TV and \(H^1 \) regularization. Later, a variant of this model was proposed by Ng and Wang [29]. Ma et al. proposed a variational model to recover the piecewise constant function \(u \) with a data term in gradient field [30], [31]. Zosso et al. extended the TV models to a unified non-local formulation [32].

Although TV based models have been studied intensively, this kind of approaches suffers the so-called staircase effect. In order to suppress such effect, a number of high-order models have been established. Chambolle and Lions [33] proposed the infimal convolution by combining the first-order total variation and second-total variation, which was further studied in [34], [35]. The total generalized variation (TGV) was proposed and studied in [36], which also involved higher order derivatives. Recently, Liang and Zhang [37] used the high-order total variation \(L_1 \), decomposition to solve the Retinex problems, which decomposed the gradient field of images into salient edges and relatively smoother illumination field.

B. Our Contributions

In our previous work [38], we proposed a novel variational model for simultaneously bias correction and segmentation, called the \(L_0 \) regularized Mumford-Shah model (L0MS), which is closely related to the Mumford-Shah model as well. Let \(\mathcal{S} \) be an index set, the L0MS model is defined based on the additive image model (2) as follows
\[
\min_{\tilde{u}, \tilde{f} \in \mathbb{S}^{2N^2}} \left\{ \frac{1}{2} k \| \tilde{u}(\mathcal{S}) \| + \frac{1}{2} \| \tilde{f}(\mathcal{S}) \| \right\}
\]
\[
+ \frac{\mu}{2} \| \tilde{u} \|_2^2 + \frac{\nu}{2} \| \tilde{f} \|_2^2 + \frac{k}{2} \| \tilde{u} \|_0, \]
where \(\mu, \nu \) are positive parameters, \(K \) is a nonnegative weighting function, \(N_f \) is a neighborhood of the index \(I \), \(k \cdot k \) denotes the \(L_2 \) norm and \(k \cdot k_0 \) denotes the \(L_0 \) norm.

In the functional (3), the first term measures the fidelity to the observed data. Unlike the Mumford-Shah model, we defined the data fidelity using the local intensity properties to allow the bias field to be influenced by its neighborhood. If we pursue the Euler-Lagrange equation of this term with respect to \(\tilde{f} \), we come up with \(\tilde{f} = K * (\tilde{y} - \tilde{u}) \), where \(* \) denotes the convolution operation. The difference between \(\tilde{y} \) and \(\tilde{u} \) is exactly \(\tilde{f} \), which means we used a window function \(K \) to smooth the solution of \(\tilde{f} \). The second term imposes spatial smoothness on the bias field, which was derived from the Mumford-Shah model. Actually, minimizing \(k \| \tilde{r} \|_2^2 \) translates into the Euler-Lagrange equation \(\tilde{f} = 0 \), the steepest descent solution of which is a Gaussian smoothing operation. It is obviously that these two terms share the same functions for the bias field \(\tilde{f} \). Moreover, when we consider 3-D problems such as rodent MRI segmentation, the computational costs of the convolution increase evidently due to the 3-D window function involved in the computation.

In this paper, we plan to improve our previous model (3) by modeling the bias field \(\tilde{f} \) based on a high-order regularization and design a new variational model for bias correction of MR images with significant intensity inhomogeneity. We call it as high-order and \(L_0 \) regularized Mumford-Shah model (HoL0MS), which is given as follows
\[
\min_{\tilde{u}, \tilde{f} \in \mathbb{S}^{2N^2}} \left\{ \frac{1}{2} k \| \tilde{u} \| + \frac{1}{2} \| \tilde{f} \| \right\}
\]
\[
+ \frac{\mu}{2} \| \tilde{u} \|_2^2 + \frac{\nu}{2} \| \tilde{f} \|_2^2 + \frac{k}{2} \| \tilde{u} \|_0, \]
where \(H \) denotes the Hessian operator, a square matrix of second-order partial derivatives of \(\tilde{f} \), to be defined in Section II. Closely connected to our previous work, we use an \(L_0 \) gradient minimization to establish the discontinuity set with the minimal length and introduce a smooth regularizer by extracting high order singularities as the bias field. In the meantime, the data fitting term is simplified by removing the local kernel function. Both true intensity and bias field are estimated based on the HoL0MS model (4). Targeted for the applications in brain extraction, we model the true intensity
as a piecewise constant function, where a simple thresholding can isolate the brain region from non-brain regions. Certain morphological operations are required to accurately estimate the boundaries of the brain mask. Since the voxel size may not be isotropic in medical data sets, it is important to allow for non-uniform grid sizes. We construct the minimization problem in a fully 3-D formulation to be with global perspective. For fast computation, we design a multi-resolution algorithm with few relaxation iterations on each resolution layer. The processing flow is outlined in Fig. 1, while the high-order and L_0 regularized Mumford-Shah model is described in the following sections.

![Processing flow of the HoL0MS model for rodent brain extraction.](image)

II. NOTATIONS

Without loss of generality, we represent a grayscale 3-D image as an $M \times N \times L$ tensor, that is $\mathbb{D} = \{1, 2, \ldots, M\} \times \{1, 2, \ldots, N\} \rightarrow \{1, 2, \ldots, L\}$. The Euclidean space $\mathbb{R}^{M \times N \times L}$ is denoted as V. The discrete grid points are given by $(x_i, y_j, z_k) = (i \times x, j \times y, k \times z)$, where x, y, z denote the spatial discretization steps. Here, x, y, z can be distinct with each other for anisotropic voxel sizes of the rodent MR images.

We will use the discrete backward and forward difference operators for $u \in V$ as follows

\[
D_x u(i, j, k) = \begin{cases}
\frac{u(i, j, k) - u(i-1, j, k)}{x} & 1 < i \leq M, \\
\frac{u(1, j, k) - u(0, j, k)}{x} & i = 1.
\end{cases}
\]

\[
D_y u(i, j, k) = \begin{cases}
\frac{u(i, j, k) - u(i, j-1, k)}{y} & 1 < j \leq N, \\
\frac{u(1, j, k) - u(0, j, k)}{y} & j = 1.
\end{cases}
\]

\[
D_z u(i, j, k) = \begin{cases}
\frac{u(i, j, k) - u(i, j, k-1)}{z} & 1 < k \leq L, \\
\frac{u(1, j, k) - u(0, j, k)}{z} & k = 1.
\end{cases}
\]

\[
D_x^* u(i, j, k) = \begin{cases}
\frac{u(i, j, k+1) - u(i, j, k)}{x} & 1 \leq i < M, \\
\frac{u(M, j, k) - u(M-1, j, k)}{x} & i = M.
\end{cases}
\]

\[
D_y^* u(i, j, k) = \begin{cases}
\frac{u(i, j, k+1) - u(i, j, k)}{y} & 1 \leq j < N, \\
\frac{u(i, N, k) - u(i, N-1, k)}{y} & j = N.
\end{cases}
\]

\[
D_z^* u(i, j, k) = \begin{cases}
\frac{u(i, j, k+1) - u(i, j, k)}{z} & 1 \leq k < L, \\
\frac{u(i, j, L) - u(i, j, L-1)}{z} & k = L.
\end{cases}
\]

Here, we use the periodic boundary condition to define the difference operators, where u is periodically extended. Accordingly, the Fast Fourier Transform can be used in the algorithm. Indeed, other boundary conditions can be used as well, which have been discussed in [39].

We define the gradient operator $\nabla : V \rightarrow P$, where $P = V \rightarrow V$ in the discrete context

\[
\nabla u(i, j, k) = D_x^* u(i, j, k), D_y^* u(i, j, k), D_z^* u(i, j, k).
\]

We define the discrete divergence operator $\text{div} : P \rightarrow V$ for $p = (p_1, p_2, p_3) \in P$ as

\[
\text{div} p(i, j, k) = D_x p_1(i, j, k) + D_y p_2(i, j, k) + D_z p_3(i, j, k).
\]

Next, we explicitly give the definition of H for $u \in V$ based on the second order difference operators as

\[
Hu(i, j, k) = \nabla u(i, j, k), D_x^* u(i, j, k), D_y^* u(i, j, k), D_z^* u(i, j, k).
\]

We also define the adjoint operator H^T for the above Hessian as

\[
H^T q = D_{xx}^* q_{11} + D_{xy}^* q_{12} + D_{xz}^* q_{13} + D_{yy}^* q_{21} + D_{yz}^* q_{23} + D_{zz}^* q_{33},
\]

where

\[
O = \begin{bmatrix} 1 & \cdots & 0 \\
q_{11} & q_{12} & q_{13} \\
q_{21} & q_{22} & q_{23} \\
q_{31} & q_{32} & q_{33}
\end{bmatrix}
\]

with $q_{ij} \in V, i, j = 1, 2, 3$.

When discussing discretized problems, we shall frequently use vector norms to avoid cumbersome summation. Thus, $8S \sqrt{\mathbb{D}}$, we define the following norm

\[
kuk = \sum_{r = 8} |u_f|^2_2.
\]

If $S = \mathbb{D}$, we simply denote the norm as kuk.

Fig. 1. Processing flow of the HoL0MS model for rodent brain extraction.
III. HIGH ORDER AND L₀ REGULARIZED MUMFORD-SHAH MODEL (HoL0MS)

We propose a novel variational model for bias correction and brain extraction as follows
\[
\min_{\hat{u}, \hat{\phi}} E(\hat{u}, \hat{\phi}) := \frac{1}{2} k\theta \hat{\phi}^2 + \frac{\mu}{2} kH \hat{\phi}^2 + \frac{n}{2} k\hat{\phi}^2 \quad + \omega kr\hat{u}_0,
\]
where ω is a positive parameter. We explicitly define the L_0 measure of gradient as follows
\[
kr\hat{u}_0 = \{ f \mid 2 \notin \{ \| \hat{\phi}(1) \| + \| \hat{\phi}(2) \| + \| \hat{\phi}(3) \| \} \}
\]
with $\{ f \}$ being the counting operator, which outputs the number of 1 that satisfies $\{ \| \hat{\phi}(1) \| + \| \hat{\phi}(2) \| + \| \hat{\phi}(3) \| \} = 0$. It means the L_0 regularization on \hat{u} counts the number of jumps of \hat{u}, which is able to promote a jump-sparse solution of \hat{u}. This property agrees with our assumption on \hat{u} as a piecewise constant function.

The existence of the minimizer for (5) is given as follows.

Theorem 3.1. There exist a pair $(\hat{u}, \hat{\phi})$, which minimizes the proposed model (5), i.e.
\[
(\hat{u}, \hat{\phi}) = \arg\min_{u, \phi} E(u, \phi)
\]
Proof: Due to the lower semi-continuous property of term $kr(\hat{u})$, one can readily prove this theorem.

IV. ENERGY MINIMIZATION AND ALGORITHM

In this section, we present the algorithm for solving the minimization problem (5). We first rewrite the minimization problem into the following constrained problem
\[
\min_{\hat{u}, \hat{\phi}, \phi} \frac{1}{2} k\theta \hat{\phi}^2 + \frac{\mu}{2} kH \hat{\phi}^2 + \frac{n}{2} k\hat{\phi}^2 + \omega kr\hat{u}_0
\]
s.t., \[p = r\hat{u}, \]
where $p = (p_1, p_2, p_3) \geq 2 P$.

To solve the constrained optimization problem (7), we rewrite it into the unconstrained minimization problem using the penalty method as follows
\[
\min_{\hat{u}, \hat{\phi}, \phi} \sum_{i=0}^{n} L (\hat{u}, \hat{\phi}, \phi) := \frac{1}{2} k\theta \hat{\phi}^2 + \frac{\mu}{2} kH \hat{\phi}^2 + \frac{n}{2} k\hat{\phi}^2 + \omega kr\hat{u}_0
\]
where ω is a sufficiently large penalty parameter. Since the three unknowns are coupled together in (8), an inner alternating scheme is used with respect to \hat{u}, $\hat{\phi}$ and ϕ, respectively. It seems one can prove the convergence in the sense that the limit of the subsequence of the iterative solutions is only the local minimizer to (5) following [40], [41]. More future work will be done to study how to describe the convergence behavior with respect to the global property [42].

A. Sub-Minimization with respect to $\hat{\phi}$

We obtain the sub-minimization problem w.r.t. the variable $\hat{\phi}$ as follows
\[
\min_{\hat{\phi}} \frac{1}{2} k\theta \hat{\phi}^2 + \frac{\mu}{2} kH \hat{\phi}^2 + \frac{n}{2} k\hat{\phi}^2.
\]
The Euler-Lagrange equation of the $\hat{\phi}$-sub minimization problem (9) is given as
\[
(I - \nabla \hat{\theta}) \hat{\phi} = \nabla \hat{\phi} \hat{\phi}^2 + \omega \nabla \hat{\phi} \hat{u}_0.
\]

B. Sub-Minimization with respect to ϕ

We obtain the sub-minimization problem w.r.t. the variable $\hat{\phi}$ as follows
\[
\min_{\phi} \frac{1}{2} k\theta \hat{\phi}^2 + \frac{\mu}{2} kH \hat{\phi}^2 + \frac{n}{2} k\hat{\phi}^2.
\]
By pursuing the Euler-Lagrange equation of the $\hat{\phi}$-sub minimization problem (13), we have the following linear equation
\[
(1 + \xi) F + \mu H^T H \hat{\phi} = \nabla \hat{\phi} \hat{u}_0.
\]

Let $J = (1 + \xi) F + \mu H^T H \hat{\phi}$. We have the following closed-form solution to $\hat{\phi}$
\[
\hat{\phi} = F(\var) \hat{\phi} \hat{u}_0.
\]
Similarly, since J and $F(\var)$ can be pre-computed, the main computational cost of $\hat{\phi}$ in (16) involves one Fourier transform and one inverse Fourier transform in one iteration.
C. Sub-Minimization with respect to \(p \)

We obtain the sub-minimization problem w.r.t. the variable \(p \) as follows

\[
\min_p \epsilon k p_0 + \frac{1}{2} k_p \Gamma \hat{u} k^2. \tag{17}
\]

According to the definition of \(L_0 \) norm (6), the minimization problem (17) can be spatially decomposed. For ease of illustration, we define the following binary function for \(p(f) \) as the following summation

\[
C(p(f)) = \begin{cases}
1, & |p_1(f)| + |p_2(f)| + |p_3(f)| \neq 0; \\
0, & \text{otherwise}.
\end{cases}
\]

Thus, the optimal \(p^* \) can be solved individually by

\[
p^*(f) = \arg \min_{p(f)} \epsilon C(p(f)) + \frac{1}{2} ||p(f)||_{\Gamma \hat{u}(f)}^2. \tag{18}
\]

The proof for the 3-D minimization is provided in Appendix.

D. Multi-resolution Algorithm

We apply a multi-resolution algorithm [28] that starts by estimating a coarse resolution image, expands it by interpolation and uses the result as an initialization for the next resolution layer. In this way, it requires few iterations at each resolution layer. The resolution layer is updated by \(k = k - 1 \), and the algorithm proceeds by going again to Step 3. If \(k = 1 \), the result \(\hat{u}_1 \) and \(\hat{f}_1 \) are the final outputs of the algorithm.

E. Comparison with Other Variational Methods

We discuss the connection of the proposed HoL0MS with the other two variational methods for intensity inhomogeneity correction, i.e., TVH1 model [29] and HoTVL1 [37], both of which were proposed for Retinex problem. Based on the same image decomposition model (2), the two models are given as

- **TVH1 model**: uses TV norm and \(H^1 \) norm to regularize on \(\hat{u} \) and \(\hat{f} \) as follows

\[
\min_{\hat{u}, \hat{f}} \frac{1}{2} \int_{\Omega} (|\nabla \hat{u}|^2 + \epsilon |\nabla \hat{f}|^2) dx + \frac{\mu}{2} \int_{\Omega} |r - \hat{f}|^2 dx,
\]

where the parameters are chosen as \(\epsilon = 1, \mu = 0.01 \) and \(\alpha = 10 \to 10^3 \) in the tests.

- **HoTVL1 model**: employs the first and second order TV regularization on \(\hat{u} \) and \(\hat{f} \) as follows

\[
\min_{u, f} \frac{1}{2} \int_{\Omega} (|\nabla \hat{u}|^2 + \epsilon |\nabla \hat{f}|^2) dx + \frac{\mu}{2} \int_{\Omega} |r - \hat{f}|^2 dx,
\]

where the parameters are set to \(\epsilon = 10, \mu = 50, \alpha = 1.0 \to 10^3 \) and box constraints are \(B_0 = 0, \max(u) = 10 \to 10^3 \) and \(B_f = \max(f), 0 \) in the tests.

We evaluate the performance of the three variational methods on a phantom data and a rodent data, both of which were acquired on a Bruker 9.4 Tesla MR instrument. The imaging protocol was a TurboRare_T2 sequence with the slice thickness of 1 mm, and the pixel spacing of 0.12 mm \(\to 12 \) mm \(\to 1 \) mm. We compare the bias corrected images of HoL0MS are \(\epsilon = 0.02, \mu = 0.01, \alpha = 10^{-3} \), and \(\alpha = 1 \to 10^3 \), and \(\max(u) = 1 \to 10^3 \), \(\alpha = 1.2 \). The stopping rule for TVH1 and HoTVL1 is either the relative error reaches \(10^{-4} \) or the iteration reaches 5 \(\to 10^2 \).

Fig. 2. Two test images. (a) Phantom data and (b) Rodent data.

Fig. 3 and Fig. 4 display the visual comparison results of the phantom and rodent images, respectively. We can observe that HoL0MS produces the best visual results, whereas the bias corrected images are more homogeneous than TVH1 and HoTVL1. Indeed, as shown by Fig. 3 (a) and Fig. 4 (a), the solution of \(u \) from HoL0MS is able to give a piecewise constant approximation of the original image.
Relying on the comparison results, we can conclude on the three variational models for bias correction as follows:

From the perspective of bias correction, the second-order TV regularization outperforms the H^1 regularization in modeling the spatially smooth bias field function. It is partially because the high-order TV is contrast invariant. Thus, less edges and structures are contained in bias field.

For the purpose of segmentation, the L_0 minimization on the gradient field works better than TV minimization. It is obviously that the L_0 regularization yields genuine piecewise-constant solution whereas TV does so only approximately. As shown in Fig. 4 (a), the solution of HoL0MS can identify the brain region from the non-brain region, which can be used as a guess for the brain mask.

V. BRAIN EXTRACTION

As shown in the previous example, the solution u of our HoL0MS has already identified the brain region from the surrounding tissues. Therefore, we can use a simple thresholding technique to obtain the binary brain mask. More specifically, a three phase clustering method is used to classify the image domain into the brain region, the surrounding non-brain region, and the background outside the body. We adopt the k-means method [45] as an example for automatically computing the thresholds. As alternatives, fuzzy c-means method [46], Otsu's method [47] etc. can be implemented to perform a global clustering-based image thresholding.

Certain morphological operations are performed on the resultant brain mask, which have been widely used in brain extraction algorithms including 2-D PCNN [11], 3-D PCNN [12] and RATS [14] etc. We use morphological erosion operation to remove the narrow bridges connecting continuous regions for isolation of the brain mask from adjacent structures. Then, we select the largest continuous component from the field of view by choosing the largest volume. After the brain mask is chosen, a morphological dilation operation is implemented to restore the size of the brain mask. For both morphological erosion and dilation, we use the same neighborhood with a radius r. In the end, we fill the holes to create a full 3-D geometry representation of the cropped brain.

VI. VALIDATION AND DISCUSSION

In this section, we conduct a series of numerical experiments to validate the performance of our HoL0MS model. Both the HoL0MS model and 3-D PCNN are implemented Matlab on a MacBook Pro with Processor 2.2 GHz Intel Core i7. All the brain software including ANTs, FSL and BrainSuite are run on Linux Debian Jessie computer system. In the implementation, we simplify the Hessian operator H with the elements on the diagonal to reduce the computational costs.

A. Data

Data Set 1: 4.7 T anatomy data set (30 volumes)

The data set was used in [11]. All data volumes were obtained in a Bruker Biospec 4.7 T, 40 cm horizontal magnet. The imaging protocol was a RARE pulse sequence with slice thickness 1.2 mm and resolution 256 \times 256 \times 12. The pixel spacing is 0.12 mm \times 0.12 mm \times 1.2 mm.

Data Set 2: 17.6 T mouse data set (12 volumes)

The data set was C57BL/6J adult mouse brains imaged in vivo on a 17.6 Tesla MR instrument at an isotropic spatial resolution of 0.1 mm and the resolution of 192 \times 96 \times 256. The mouse brains were segmented into 20 anatomical structures [48], [49]. Both the MR images and atlas images can be downloaded from http://brainatlas.mbi.ufl.edu/Database/dbdownload/.
Data Set 3: 9.4 T anatomy data set (8 volumes)
The data set was acquired in a Bruker 9.4 Tesla MR instrument. The imaging protocol was a TurboRARE T2 sequence with slice thickness 1 mm and resolution 384 \times 384 \times 24. The pixel spacing is 0.09 mm \times 0.09 mm \times 1 mm.

For the purpose of numerical evaluation, it requires the manual masks for all images. There are publicly available ground truth for both Data Set 1 and Data Set 2. For Data Set 3, we employed experienced technician manually created the masks served as the ‘gold’ standard.

B. Parameters Employed

The parameters for HoL0MS are described in TABLE I. We can fix most parameters in the evaluation, i.e., \(\alpha, \beta, \gamma, \eta, \xi, \mu, \sigma, \text{max} \) and \(I \). The piecewise constant parameter \(\alpha \) and the radius for the morphological operator \(r \) vary with data sets. The smooth parameter \(\mu \) is chosen as \(\mu = 0.01 \) for all rodent images and \(\mu = 100 \) for all human images.

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(0.01)</td>
<td>smooth parameter</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>(1.0 \times 10^3)</td>
<td>boundedness control parameter</td>
</tr>
<tr>
<td>(\beta)</td>
<td>(0.01)</td>
<td>initial value</td>
</tr>
<tr>
<td>(\text{max})</td>
<td>(1.0 \times 10^3)</td>
<td>maximum value</td>
</tr>
<tr>
<td>(\eta)</td>
<td>(1.2)</td>
<td>update speed of</td>
</tr>
<tr>
<td>(I)</td>
<td>3</td>
<td>number of layers in Algorithm</td>
</tr>
<tr>
<td>(r)</td>
<td>0.0-5.0</td>
<td>radius of morphological operator</td>
</tr>
</tbody>
</table>

C. Evaluation Methods

We use the coefficient of variations (CV) [50] to quantify the degree of intensity inhomogeneity, which is defined as

\[
CV(T) = \frac{\mu(T)}{(T)}
\]

where \((T) \) and \(\mu(T) \) are the standard deviation and the mean of the intensities in the tissue \(T \).

As shown in TABLE II, we use a number of metrics [51], i.e., true positive rate (TPR), false positive rate (FPR), volume overlap (VO), volume difference (VD) and average symmetric surface distance (SD), to measure the similarity of the brain masks obtained from automatic methods (Seg) to the manual standard (GT).

D. Comparison with Established Brain Software

In this subsection, we compare the performance of HoL0MS with other well-known brain software. The comparison is conducted from two aspects: 1) comparing the results of inhomogeneity correction with N3 algorithm [16] and N4 algorithm [17]; 2) comparing the results of brain extraction with BET [4], BSE [52] and 3-D PCNN [12]. We list the implementation details of each software as follows

- N3: It is performed using Advanced Normalization Tools (ANTs). The parameters are shrink factor=4; number of iterations=50; and number of fitting levels=4.

- N4: It is performed using Advanced Normalization Tools (ANTs). The parameters are kernel fwhm=0.15; Wiener filter noise=0.1; number of iterations=50; and fitting levels=4.

- BET: We use FSL version 5.0 [53], [54] with parameter \(r=8 \text{ mm} \). All input images for BET are rescaled by a factor of \(10 \) for better segmentation [11], [55].

- BSE: We use the BrainSuite 16a1 with iterations=3 [5], which is downloaded from http://brainsuite.org/.

- 3-D PCNN: It can be downloaded from http://www.sbic.astar.edu.sg/research/lmi/PCNN3D%20binary.zip, where the radius of structural element is set to \(p = 4 \).

Firstly, the HoL0MS is tested on Data Set 1. The parameter \(\alpha \) and \(r \) are defined as \(\alpha = 0.01 \) and \(r = 0 \). In order to evaluate the performance of bias correction, we manually labeled both gray matter and white matter, one slice of which are shown in Fig. 5. The CV on gray matter and white matter are calculated and compare with N3 and N4 in Fig. 6. It can be observed that the bias correction of HoL0MS is better than N4, which is better than N3 for both GM and WM.
\[p < 0.05 \] except for TPR, where the BET gives the best. However, BET over-segments the brain region with a much bigger FPR than HoL0MS. According to both visual results and the quantitative metrics, our HoL0MS model outperforms the rest of competing methods. Furthermore, we can make the following conclusions based on the experiments of Data Set 1:

- BET tends to over-segment the brain mask for rodent images;
- BSE only performs good for the middle part of brain and is less accurate in both anterior and posterior brain;
- 3-D PCNN may over-segment the brain mask due to the low contrast on the boundary;
- HoL0MS can well segment the brain mask even when the radius for the morphological operator is set to \(r = 0 \). It is mainly because the piecewise constant solution \(u \) can successfully identify the brain region from the non-brain region.

The bias correction of HoL0MS is better than both N3 and N4 for all brain structures. More importantly, the bias correction of HoL0MS is much better than N4 on brain stem, olfactory bulb, cerebellum etc., where the intensity inhomogeneity is most serious.

When conducting the experiments on brain extraction, we use different input for brain extraction algorithms, i.e., the original image, N4 corrected image and HoL0MS corrected image. We display the quantitative metrics in TABLE IV. No matter which brain extraction method has been used, most metrics obtained based on the HoL0MS corrected image give the best mean and standard deviation. In TABLE IV, the p-values between the proposed HoL0MS model and other methods are evaluated and indicated by \(^\ast \) for those quantitative results with \(p < 0.05 \). It is shown that the improvement of the proposed HoL0MS is statistically significant compared to BET, BSE and 3-D PCNN with original image and N4 corrected image. Moreover, the box plots of VO and SD are presented in Fig. 11. We can observe, for 3-D PCNN, there is significant improvement of the segmentation accuracy based on HoL0MS corrected image compared to N4 corrected image, the accuracy of which is also improved compared to the original image. In fact, TABLE IV shows that the quantitative metrics of 3-D PCNN based on HoL0MS corrected image are similar to the ones obtained by our HoL0MS method, both of which are better than BET and BSE.

Furthermore, two typical results are displayed in Fig. 12. It can be observed that BET can well segment the central region of brain, but performs poorly on the anterior and posterior brain for all input images. The segmentation results of BSE vary with the original image, and the influence of bias correction seems limited. For 3-D PCNN, the best brain boundaries are obtained using the HoL0MS corrected image,
which can help 3-D PCNN to successfully locate the brain stem from other tissues. As shown, our HoL0MS is also proved to be able to produce satisfactory brain masks, where the segmented brain masks are quite close to the manually labeled ones. In Fig. 13, we display the 3D renderings of the brain masks of the same volumes for visual comparison, where the brain masks of BSE, BET and 3-D PCNN are obtained on HoL0MS corrected image. Obviously, both 3-D PCNN and our HoL0MS give the satisfactory 3-D brain mask.

We can make the following summary on the experiments on Data Set 2:

- Both BET and BSE are somehow robust against intensity inhomogeneity. Therefore, the accuracy of brain extraction is improved limited by applying an efficient bias correction method to the test images;
- 3-D PCNN is sensitive to intensity inhomogeneity. Thus, the bias corrected image of high quality can improve its segmentation results significantly.

Lastly, we test the HoL0MS on Data Set 3. We set $\omega = 0.02$ and $r = 1$ for HoL0MS. We display the segmentation results in Fig. 14 and the quantitative metrics in Table V. Similarly, the p-values between the proposed HoL0MS model and other methods are evaluated and indicated by * for those quantitative results with $p < 0.05$. It is shown that both visual results and the quantitative results are consistent with our conclusion on Data Set 2. We observe that BET, BSE and 3-D PCNN with HoL0MS corrected images give better brain extraction results than N4 corrected images. Indeed, the four slices in Fig. 14 show that 3-D PCNN based on HoL0MS corrected images overcomes the segmentation results of HoL0MS, the boundaries of which are the closest one to the manually labeled mask. Meanwhile, the HoL0MS method still gives the best overall performance as shown by Table V and Fig. 15, which shows that HoL0MS is more robust to the diversity of brain shapes and image qualities, etc.

E. Computational Complexity and Efficiency

In this subsection, we analyze the computational cost of HoL0MS. The computational complexity of HoL0MS is about $O(n(17MN + 4MN \log(MN L)))$, where n is the number of iterations to satisfy the stopping condition.

We display the computational time of 3-D PCNN and HoL0MS for the three data sets in Table VI. We see that the 3-D PCNN algorithm need more than 16 minutes to segment one volume in Data Set 2, while our HoL0MS only need less than 4 minutes without any other optimization technique such as GPU and multi-core programming. Moreover, 3-D PCNN requires an additional step for bias correction. Therefore, both complexity and numerical experiments demonstrate that our HoL0MS is highly efficient and scalable.

F. Experiments on Human Brain Extraction and Limitations

Although our discussion focuses on rodent images, the HoL0MS is also suitable for human brain extraction. We downloaded a T2-weighted data set from http://insight-journal.org/midas/collection/view/190. There are total five images acquired using a 3T GE at BWH in Boston, MA. We set $\omega = 0.02$ and $r = 5$ for all images and tabulate the quantitative metrics in Table VII. As shown, HoL0MS gives relatively high values of TPR, VO and low values of FPR, VD and SD. Besides, we use data 5 as an example and present selective 2-D and 3-D segmentation results in Fig. 16 and Fig. 17, respectively. It is obviously shown that our HoL0MS method works well for human brain extraction.

TABLE III

Mean and Standard Deviation of Quantitative Results for Data Set 1 with Different Brain Extraction Methods. Best Performance Based on Mean is Indicated by Bold Font.

<table>
<thead>
<tr>
<th>Method</th>
<th>TPR(%)</th>
<th>FPR(%)</th>
<th>VO(%)</th>
<th>VD(%)</th>
<th>SD(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET</td>
<td>99.82 ± 0.27</td>
<td>2.42 ± 0.25</td>
<td>84.66 ± 1.70</td>
<td>18.05 ± 2.37</td>
<td>5.65 ± 0.76</td>
</tr>
<tr>
<td>BSE</td>
<td>86.90 ± 15.76</td>
<td>1.18 ± 0.39</td>
<td>79.61 ± 13.81</td>
<td>10.10 ± 15.14</td>
<td>7.66 ± 8.85</td>
</tr>
<tr>
<td>3-D PCNN</td>
<td>98.89 ± 0.76</td>
<td>1.88 ± 2.09</td>
<td>87.94 ± 10.21</td>
<td>13.15 ± 15.99</td>
<td>6.07 ± 8.34</td>
</tr>
<tr>
<td>HoL0MS</td>
<td>97.56 ± 1.11</td>
<td>0.48 ± 0.13</td>
<td>94.14 ± 0.72</td>
<td>1.90 ± 1.32</td>
<td>1.44 ± 0.39</td>
</tr>
</tbody>
</table>

TABLE VI

The CPU Time of 3-D PCNN and HoL0MS Model in Seconds.

<table>
<thead>
<tr>
<th></th>
<th>Data Set 1</th>
<th>Data Set 2</th>
<th>Data Set 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = N = L</td>
<td>236 + 236 = 12</td>
<td>192 + 96 = 236</td>
<td>364 + 364 = 24</td>
</tr>
<tr>
<td>3-D PCNN</td>
<td>46.32</td>
<td>97.24</td>
<td>167.54</td>
</tr>
<tr>
<td>HoL0MS</td>
<td>31.71</td>
<td>213.23</td>
<td>166.74</td>
</tr>
</tbody>
</table>

TABLE VII

Brain Extraction of HoL0MS Method for Human 3T Images.

<table>
<thead>
<tr>
<th>Data</th>
<th>TPR</th>
<th>FPR</th>
<th>VO</th>
<th>VD</th>
<th>HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>92.76</td>
<td>0.0045</td>
<td>92.73</td>
<td>7.22</td>
<td>0.1314</td>
</tr>
<tr>
<td>2</td>
<td>94.25</td>
<td>0.0558</td>
<td>93.87</td>
<td>5.36</td>
<td>0.1152</td>
</tr>
<tr>
<td>3</td>
<td>95.45</td>
<td>0.0626</td>
<td>95.14</td>
<td>4.22</td>
<td>0.0884</td>
</tr>
<tr>
<td>4</td>
<td>94.34</td>
<td>0.3088</td>
<td>92.67</td>
<td>3.86</td>
<td>0.1487</td>
</tr>
<tr>
<td>5</td>
<td>96.89</td>
<td>0.0391</td>
<td>96.64</td>
<td>2.85</td>
<td>0.0695</td>
</tr>
</tbody>
</table>

However, similar to 3-D PCNN, the HoL0MS has its limitation in processing the T1-weighted MR images due to the low contrast between the skull and the cerebrospinal (CFS). In fact, we are still able to use HoL0MS to remove the severe intensity inhomogeneity for T1-weighted images and images of other modalities. Here, we use a 7T
human T1 MR scan as an example, which is downloadable from http://multimodal.projects.nitrc.org/MMRR-37772-1_multimodal.tar.gz (posted by Bennett Landman). As shown in Fig. 18, obvious intensity inhomogeneity are presented in the axial, sagittal and coronal direction of the image. By applying HoL0MS for bias correction, we can recover the brain region with high visual quality.

VII. Conclusion

In this paper, we introduced a high-order variational model for bias correction and considered its applications in brain extraction. We formulated the minimization problem using an L_2 minimization and a high-order smooth regularization in the gradient field. The existence of the solution was derived in the work. We used a fast multi-resolution solution to the corresponding variational problem, resulting in an efficient algorithm. The HoL0MS model was tested on rodent brain volumes from three different acquisition configurations and quantitatively compared against the well-known brain software for both bias correction and rodent brain extraction. Applications to human brain MR images were also discussed and presented. The numerical results demonstrate that HoL0MS can be used as a powerful tool for intensity inhomogeneity correction and brain extraction. The extracted brain images with bias correction can facilitate other image processing tasks such as brain registration, segmentation etc.

APPENDIX

We consider the minimum of the following problem

$$E = \frac{2\nu C}{2} p(I) + p(I) \cdot r\hat{u}(I)^2. \quad (20)$$

Proof. Followed [44], we discuss the minimizer E^* in two cases as follows.

• When $\frac{\partial}{\partial\nu} kr\hat{u}(k)^2 = 0$ and $p(I) \neq 0$, Eq. (20) yields

$$E(p(I)) = p_1(I) \cdot \hat{u}(I)^2 + p_2(I) \cdot \hat{y}(I)^2 + p_3(I) \cdot \hat{u}(I)^2 + p_4(I).$$

• When $kr\hat{u}(k)^2$ and $p(I) \neq 0$, Eq. (20) leads to

$$E(p(I)) = \hat{u}(I)^2 + \hat{y}(I)^2 + \hat{u}(I)^2. \quad (22)$$

Thus, the minimum E^* is obtained when $p(I) = 0$. Hence, $E^* > 0$ and $p(I) = 0$, Eq. (22) still holds. However, $p(I) = 0$, Eq. (21) reaches its minimum when $p(I) = r\hat{u}(I)$. Comparing these two values, the minimum E^* is obtained when $p(I) = r\hat{u}(I)$.

Acknowledgment

We would like to thank the authors of [29] and [37] for sharing their source codes, and the reviewers of this manuscript for their helpful comments and suggestions. The work is partially supported by research grants 1334K00084
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2016.2636026, IEEE Transactions on Medical Imaging

Fig. 11. Comparison of the accuracy of brain extraction based on different bias correction approaches in terms of VO and SD for Data Set 2. (a) BET (b) BSE and (c) 3-D PCNN.

Fig. 12. Comparison of brain masks (sagittal view) obtained using automatic methods on selected slices of one mouse brain from Data Set 2, where red curves represent the manual gold standard, cyan curves represent the brain mask using the original image, magenta curves represents the brain mask using N4 corrected image, green curves represent the brain mask using HoL0MS corrected image and yellow curves represent the boundaries obtained by HoL0MS.

Chunlin Wu is supported by NSFC 11301289.

REFERENCES

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2016.2636026, IEEE Transactions on Medical Imaging

Fig. 13. 3-D brain segmentation of a mouse image from Data Set 2.

Fig. 14. Comparison of brain masks (axial view) obtained using automatic methods on selected slices of one rat brain from Data Set 3, where red curves represent the manual gold standard, magenta curves represent the brain mask obtained using N4 corrected image, green curves represent the brain mask obtained using 3-D PCNN and yellow curves represent the brain mask using HoL0MS corrected image and yellow curves represent the boundaries obtained by HoL0MS. (a) BET; (b) BSE; (c) 3-D PCNN and (d) HoL0MS.

Fig. 15. Comparison of accuracy of various automatic methods for Data Set 3 using VO and SD.

Fig. 16. Selective results of human brain extraction, where red curves denote the manual gold standard and yellow curves denote the HoL0MS model.

Fig. 17. 3-D brain segmentation of a human 3T MR image. (a) Ground Truth and (b) HoL0MS.

