<table>
<thead>
<tr>
<th><strong>Title</strong></th>
<th>W/Cu thin film infrared reflector for TiNxOy based selective solar absorber with high thermal stability</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Author(s)</strong></td>
<td>Zhang, Jun; Chen, Tupei; Liu, Y. C.; Liu, Z.; Yang, H. Y.</td>
</tr>
<tr>
<td><strong>Citation</strong></td>
<td>Zhang, J., Chen, T., Liu, Y. C., Liu, Z., &amp; Yang, H. Y. (2017). W/Cu thin film infrared reflector for TiNxOy based selective solar absorber with high thermal stability. Journal of Applied Physics, 121(20), 203101-.</td>
</tr>
<tr>
<td><strong>Date</strong></td>
<td>2017</td>
</tr>
<tr>
<td><strong>URL</strong></td>
<td><a href="http://hdl.handle.net/10220/43438">http://hdl.handle.net/10220/43438</a></td>
</tr>
<tr>
<td><strong>Rights</strong></td>
<td>© 2017 American Institute of Physics (AIP). This paper was published in Journal of Applied Physics and is made available as an electronic reprint (preprint) with permission of American Institute of Physics (AIP). The published version is available at: [<a href="http://dx.doi.org/10.1063/1.4983763">http://dx.doi.org/10.1063/1.4983763</a>]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
W/Cu thin film infrared reflector for TiNₓOᵧ based selective solar absorber with high thermal stability

J. Zhang,¹,a) T. P. Chen,¹,b) Y. C. Liu,² Z. Liu,³ and H. Y. Yang⁴

¹School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore 639798
²Singapore Institute of Manufacturing Technology, Singapore, Singapore 638705
³School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, People’s Republic of China
⁴Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore 487372

(Received 31 January 2017; accepted 7 May 2017; published online 22 May 2017)

The W/Cu thin film structure is deposited by magnetron sputtering to form the infrared reflector for the TiNₓOᵧ based selective solar absorber (SSA) that can be used in the low- and middle-temperature applications. The structural, chemical, and optical properties of the SSA layers that experienced thermal annealing at different temperatures for various durations have been investigated with the characterization techniques, including X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy, spectroscopic ellipsometry, and spectrophotometry. Without a W layer, the reflectance in both visible and infrared ranges of the SSA increases as a result of the crystallization of the Cu layer at elevated temperatures. With a W layer with appropriate film thickness, the increase of the reflectance in the visible range can be suppressed to maintain a high solar absorptance, whereas a high infrared reflectance can be maintained to achieve a low thermal emittance. It is shown that for the SiO₂-TiNₓOᵧ-W-Cu-Glass SSA with a 15 nm W thin film, thermal annealing can significantly reduce the thermal emittance to a low value (e.g., 4.4% at the temperature of 400 °C for annealing at 400 °C for 6 h), whereas the solar absorptance can be maintained at a high value (e.g., 92.2% for the annealing at 400 °C for 6 h). Published by AIP Publishing.

I. INTRODUCTION

As a key unit to collect the solar energy in the solar thermal energy systems, the selective solar absorber (SSA) should have low reflectance in the solar radiation range to absorb solar radiation energy as much as possible and high reflectance in the infrared radiation range to reduce the thermal emittance.¹,² In order to realize the specific selective reflectance spectra, an SSA usually includes an anti-reflection coating (ARC), a solar energy absorber, and an infrared reflector.³ When a glass substrate is used in a low cost application,⁴,⁵ a thick metallic thin film (i.e., Cu, Al, Mo, etc.) should be deposited on the glass substrate to serve as the infrared reflector.⁶

In order to reduce the reflectance in the solar radiation range, single layer or multi-layer dielectric thin film structures (e.g., SiO₂, Al₂O₃, AlN, etc.) can be used to form the ARC.²⁻⁷ Various types of solar energy absorber have been reported, such as transition metal oxynitrides,¹⁰,¹¹ cermet (i.e., metal-dielectric composite),⁶ semiconductor-dielectric multi-layers,²⁻¹² and so on. Due to its good chemical and physical properties, titanium oxynitride (TiNₓOᵧ) has been commercially used as the solar energy absorber.¹³ Because the nitrogen can be replaced with oxygen in TiNₓOᵧ at high temperatures due to oxidation, the TiNₓOᵧ based SSA usually is suitable for mid-temperature (i.e., <400 °C) application.¹⁴,¹⁵ With the advantage of low electrical resistivity (~1.7 μΩ·cm) and large thermal conductivity, Cu is a good candidate of infrared reflector to reduce the infrared emittance. However, Cu has a large atomic diffusion coefficient, particularly when the temperature is higher than 200 °C.¹⁶,¹⁷ In some commercial products, the titanium carbide (TiC) thin film is deposited on the top of Cu as a barrier layer because of its high thermal and chemical stabilities.¹⁸ The TiC thin film can be deposited by atomic layer deposition (ALD),¹⁹ plasma enhanced chemical vapour deposition (PECVD),¹⁹ physical vapour deposition (PVD),²¹ etc. However, there are some disadvantages in using these methods, such as low productivity, high temperature process, and hard control of the process parameters to obtain desirable stoichiometric TiC, etc. In addition, the electrical resistivity of TiC is relatively high (~42 μΩ·cm).²³ Therefore, the infrared reflectance of TiC barrier layer is much lower than that of Cu, leading to a higher thermal emittance than that of Cu.

With their high thermal stability, refractory metals, such as tungsten (W), tantalum (Ta), titanium (Ti), etc., are also widely utilized as the Cu barrier layer.¹⁷,²⁴ Particularly, due to its low electrical resistivity (~5.6 μΩ·cm), the W thin film can also be used as an infrared reflector,¹⁷ but it still has a higher thermal emittance than Cu. With the combination of highly thermal stable W and highly conductive Cu, it is possible to realize a high-performance infrared reflector with high thermal stability. In the W/Cu infrared reflector, the W
layer must be thick enough to guarantee the barrier capability of the W layer but thin enough to achieve high infrared transmittance so that the Cu can play a dominant role in the infrared reflection of the structure. In the case of Cu thin film being used as the infrared reflector, the Cu thin film may undergo structural changes such as crystallization at elevated temperatures during the operation, leading to changes in its optical properties. The introduction of a more thermally stable W layer can suppress such changes as evidenced in this work. In this work, a W/Cu thin film infrared reflector is proposed for the TiNₓOᵧ based SSA for the low- and middle-temperature applications. The structure of the SSA is shown in Figure 1. In the SSA, the SiO₂ layer is used as a single-layer ARC, the TiNₓOᵧ film serves as the absorbing layer, the W/Cu thin film structure is utilized as the infrared reflector, and the glass is used as the substrate.

II. EXPERIMENTS

The SiO₂-TiNₓOᵧ-W-Cu thin film structure was deposited on a glass substrate by RF magnetron sputtering (Denton Desktop Pro. Sputtering system) of 2-in. SiO₂, TiN, W, and Cu targets (all the targets have a purity >99.9%), respectively. The chamber was pumped down to 9 × 10⁻¹⁰ Torr for all the deposition processes. The sputtering was carried out at room temperature, the sputtering power was maintained at 100 W, and the Ar gas flow rate was fixed at 10 sccm. The thickness of the Cu layer is 1 μm, and the thickness of the SiO₂, TiNₓOᵧ, and W layers for the optimized SSA are 73, 92, and 15 nm, respectively. In the study of its optical properties and chemical composition, the TiNₓOᵧ thin film was deposited on the Si substrate, and in the investigation of the thermal stability of the SSA, SiO₂ and TiNₓOᵧ thin films were also deposited sequentially on Cu/glass and Si substrates, respectively. In order to study the thickness effect of the W thin film, SiO₂ and W thin films were deposited sequentially on the Cu/glass substrate with the W thin film’s thickness of 0, 15, 30, and 60 nm, respectively.

The chemical composition of the TiNₓOᵧ thin film deposited on the Si substrate was examined with X-ray photoelectron spectroscopy (XPS) (ESCALAB 250Xi). The optical properties of the thin films were characterized by spectroscopic ellipsometry (SE) (J. A. Woollam) with the incidence angle of 75° in the wavelength range of 300–1500 nm. The reflectance spectra of the as-deposited SiO₂-TiNₓOᵧ-W-Cu-Glass, SiO₂-TiNₓOᵧ-Cu-Glass, and SiO₂-TiNₓOᵧ-Si samples were measured with an UV-Vis-NIR spectrophotometer (PerkinElmer Lambda 950) in the wavelength range of 250–2500 nm. Reflectance of the SSA in the wavelength ranges of 2.5–25 μm was measured with an FT-NIR/MIR spectrometer (PerkinElmer Frontier).

FIG. 1. Schematic structure of the SSA with the SiO₂-TiNₓOᵧ-W-Cu thin film structure on the glass substrate.

III. RESULTS AND DISCUSSION

The XPS result shows the existence of the Ti-O, Ti-N-O, and Ti-N states in the TiNₓOᵧ/Si sample. Although the TiNₓOᵧ absorbing layer was deposited by sputtering a pure TiN target only with Ar gas, oxygen is still present in the films. There are three possible reasons for the existence of the oxygen content in the films. First, the residual oxygen and moisture in the deposition chamber provide the oxygen source for the reaction between oxygen and Ti during the TiN sputtering25 (it should be pointed out that the environment humidity is high with a value in the range of 70%–80%). Second, oxygen is easier to react with Ti than nitrogen. Third, the sputtering deposition rate of the TiN is low (~2 nm/min) due to the low sputtering power (<100 W), which provides a long duration for the reaction between Ti and O. More details of the XPS analysis of TiNₓOᵧ thin films are reported in our previous work.26

The optical properties of the TiNₓOᵧ thin film deposited on the Si substrate were characterized by using SE in the wavelength range of 300–1500 nm with the Drude-Lorentz model.27 The optical constants including the refractive index and the extinction coefficient of the TiNₓOᵧ thin film in the wavelength range of 300–1500 nm were thus obtained from the SE analysis. The detailed methodology for the SE analysis has been reported in our previous work.26 On the other hand, the optical constants of both SiO₂ and Cu can be obtained from the literature.28,29 With the known optical constants of SiO₂, TiNₓOᵧ, and Cu, the reflectance of the SiO₂-TiNₓOᵧ-Cu-glass SSA for given thicknesses of the SiO₂, TiNₓOᵧ, and Cu thin films can be calculated in a wide wavelength range. To achieve the best performance of the SSA, the thicknesses of the SiO₂ and TiNₓOᵧ layers were optimized to obtain the lowest reflectance in the solar radiation range and highest reflectance in the infrared radiation range. The optimized thicknesses of the SiO₂ and TiNₓOᵧ layers are 73 and 92 nm, respectively (the thickness of the Cu layer was...
maintained at 1 μm). The calculated reflectance in the wavelength range of 250–2500 nm of the SiO$_2$-TiN$_x$O$_y$-Cu-glass SSA with the optimized thicknesses is shown in Figure 2. Note that the refractive index and extinction coefficient of TiN$_x$O$_y$ in the wavelength ranges of 250–300 nm and 1500–2500 nm were calculated using the Drude-Lorentz optical dispersion model with the model parameters yielded from the SE fitting in the wavelength range of 300–1500 nm.

The SiO$_2$-TiN$_x$O$_y$-Cu-Glass SSA with the optimized layer thicknesses was fabricated. The reflectance spectra of the as-deposited and thermally annealed SiO$_2$-TiN$_x$O$_y$-Cu-Glass SSA are shown in Figure 3(a). With the increase in annealing temperature from 200 to 400 °C, the reflectance of the SiO$_2$-TiN$_x$O$_y$-Cu-Glass SSA increases largely in the wavelength ranges of 300–800 nm and 1200–2500 nm but has a small decrease in the wavelength range of 800–1200 nm, which can be attributed to the crystallization of the Cu layer caused by annealing as discussed later. Because around 50% of the solar energy is in the wavelength range of 300–800 nm, the large increase in reflectance in that wavelength range severely suppresses the absorption of solar energy. Table I shows the mathematical average reflectance over the wavelength range of 300–800 nm of the SiO$_2$-TiN$_x$O$_y$-Cu-Glass SSA for different annealing temperatures/annealing durations. The average reflectance significantly increases from 5.2% for the as-deposited sample to 14.8% for the sample annealed at 400 °C for 6 h.

The solar absorptance ($\alpha$) can be calculated using

$$
\alpha = \frac{\int_{\lambda=0.25 \mu m}^{\lambda=2.5 \mu m} P_{\text{solar}}(\lambda) \times (1 - R(\lambda)) d\lambda}{\int_{\lambda=0.25 \mu m}^{\lambda=2.5 \mu m} P_{\text{solar}}(\lambda) d\lambda},
$$

where $\lambda$ is the wavelength, $P_{\text{solar}}(\lambda)$ is the intensity of the solar radiation (AM 1.5), and $R(\lambda)$ is the reflectance at specific wavelength. Table I shows the solar absorptance of the SiO$_2$-TiN$_x$O$_y$-Cu-Glass SSA for different annealing temperatures/annealing durations. The solar absorptance significantly decreases with annealing temperature/annealing duration, which is mainly due to the increase in the reflectance in the wavelength range of 300–800 nm as a result of annealing.

To understand the increase in the reflectance and decrease of the solar absorptance of the SiO$_2$-TiN$_x$O$_y$-Cu-Glass SSA caused by annealing, reflectance spectra of the as-deposited and annealed SiO$_2$-TiN$_x$O$_y$-Si structures were measured, as shown in Figure 3(b). As can be observed in the figure, there is almost no change in the reflectance even after 400 °C annealing for 6 h, showing that the annealing did not cause significant changes in the SiO$_2$ and TiN$_x$O$_y$ thin films. Therefore, it can be concluded that the changes in the reflectance and solar absorptance of the SiO$_2$-TiN$_x$O$_y$-Cu-Glass SSA is related to the Cu thin film. There are two possible reasons for the changes: crystallization of the Cu thin film, which leads to changes in the optical properties of the Cu thin film, and or diffusion of the Cu atoms as Cu has a very large diffusion coefficient.

The depth profiles of O, Si, Ti, N, and Cu elements in the as-deposited and 400 °C-annealed SiO$_2$-TiN$_x$O$_y$-Cu-Glass SSA obtained from the XPS analysis are shown in Figures 4(a) and 4(b), respectively. It is observed that annealing did not produce significant changes in the atomic depth profiles. Therefore, Cu diffusion should not be the major factor responsible for the changes in the reflectance and solar absorptance of the SiO$_2$-TiN$_x$O$_y$-Cu-Glass SSA.

XRD and AFM were used to examine the changes in the structural properties of the SiO$_2$-TiN$_x$O$_y$-Cu-Glass SSA caused by annealing. Figure 5 shows the XRD patterns of the as-deposited and 400 °C-annealed SiO$_2$-TiN$_x$O$_y$-Cu-Glass

![FIG. 2. Calculated reflectance of the SiO$_2$-TiN$_x$O$_y$-Cu-Glass SSA with the optimized layer thicknesses and solar radiation intensity (AM1.5) in the wavelength range of 250–2500 nm. The inset shows the schematic structure of the SiO$_2$-TiN$_x$O$_y$-Cu-Glass SSA.](image-url)
SSA, and the insets are the corresponding AFM images. The AFM images reveal that there is no significant change in the surface morphologies. However, the XRD patterns shown in Figure 5 indicate that there was crystallization in the Cu film during the annealing as the full width at half maximum (FWHM) of Cu (111) peak decreases from 1.39° to 1.00° after the annealing. The calculation of the Cu crystalline grain size with the Scherrer’s equation shows that the grain size increased from 6.14 nm to 8.52 nm after the annealing at 400°C for 1 h. It has been shown that a material with low electrical resistivity would exhibit high reflectivity.

To examine the influence of annealing on the optical properties of Cu thin film, SE was used to measure the refractive index and the extinction coefficient in the wavelength range of 300–1500 nm of the Cu thin film deposited on a glass substrate without and with 400°C-annealing for 1 h, and the result is shown in Figure 6. It is obvious that the annealing process has a large impact on the optical properties of the Cu thin film. After the 400°C annealing, the refractive index of the Cu thin film increases in the wavelength range of 300–350 nm but largely decreases in the wavelength range of 350–1500 nm. The extinction coefficient of the Cu thin film increases in the wavelength range of 300–350 nm but largely decreases in the wavelength range of 350–1500 nm. The extinction coefficient of the Cu thin film increases in the wavelength range of 300–1500 nm, especially in the infrared wavelength range.
range, which could be attributed to the increase in the free electron mobility after the annealing. Therefore, the 400 °C-annealing process changes the optical properties of the Cu thin film significantly.

By using the data of the refractive index and the extinction coefficient of the Cu thin films with/without 400 °C-annealing, the reflectance spectra of the SiO$_2$-TiN$_x$O$_y$-Cu structure with the Cu thin films with/without 400 °C-annealing were calculated in the wavelength range of 250–2500 nm, and the result is shown in Figure 7. It can be observed from the figure that the annealing of the Cu thin film leads to an increase in the reflectance in the wavelength ranges of 350–750 nm and 1350–2500 nm but a decrease in the wavelength range of 750–1350 nm. The result is consistent with the experimental observation of the annealing effect on the reflectance of the SiO$_2$-TiN$_x$O$_y$-Cu-Glass SSA as shown in Figure 3(a). Therefore, the annealing effect on the reflectance of the SiO$_2$-TiN$_x$O$_y$-Cu-Glass SSA can be attributed to the annealing-caused change in the optical properties of the Cu thin film. Note that there is a difference between the calculated reflectance data shown in Figure 7 and the experimental reflectance data shown in Figure 3(a). There are two possible reasons for the difference. First, the samples used in the two figures are not identical in terms of annealing treatment. In Figure 7, the Cu/Si sample was annealed at 400 °C for 1 h, and there was no further annealing. In Figure 3(a), the SiO$_2$-TiN$_x$O$_y$-Cu-Glass sample was annealed at 200 °C, 300 °C, and 400 °C for 1 h, respectively, and 400 °C for another 6 h. The second reason is that the optical data of Cu in the wavelength ranges of 250–300 nm and 1500–2500 nm may not be very accurate because they were obtained from the calculation using the optical dispersion model with the model parameters for the Cu layer yielded from the ellipsometric analysis in the wavelength range of 300–1500 nm (note that the working wavelength range of our ellipsometer is only in the range of 300–1500 nm). However, the difference does not affect the conclusions of this study.

As shown in Figure 6, the optical properties of Cu changes largely after annealing. In order to overcome the problem, a W thin film with high thermal stability is inserted between the TiN$_x$O$_y$ layer and Cu layer. However, one major disadvantage is that W has a larger electrical resistivity than that of Cu. Therefore, in order to utilize the high reflectance of Cu thin film in the infrared range, it is important to find out a suitable thickness of the W thin film such that both high thermal stability and high infrared reflectance can be achieved for an SSA using the combination of W and Cu layers. Figure 8(a) shows the measured reflectance spectra in the wavelength range of 250–2500 nm of the as-deposited and 400 °C-annealed SiO$_2$-W-Cu-Glass structures with the W layer thicknesses of 0, 15, 30, and 60 nm, respectively. A 73 nm SiO$_2$ layer is used in the structure to protect the W thin film from oxidation. Without W thin film (i.e., the thickness of W thin film is zero), there is a large difference in the reflectance in the wavelength range of 250–1500 nm between the as-deposited and 400 °C-annealed samples. With increase in the W film thickness, the difference in the reflectance is reduced rapidly, and when the W film thickness increases to 60 nm, the difference almost disappears. Therefore, the optical properties of W thin film are much thermally stable than that of Cu thin film.

It can also be observed from Figure 8(a) that with the increase in W film thickness from 0 to 60 nm, the reflectance of the SiO$_2$-W-Cu-Glass structure in the wavelength range of 1500–2500 nm decreases significantly. For example, for the annealed samples, the reflectance at the wavelength of 2500 nm is 96.9% for the case of without W thin film, the reflectance slightly decreases to 93.6% for the case of 15 nm
W thin film, and it largely decreases to 61.7% for the case of 60 nm W thin film. The decrease in the infrared reflectance is due to the decrease in the infrared transmittance of the W thin film with the increase in W film thickness. The transmittance in the wavelength range of 250–2500 nm of W thin films with the thicknesses of 15, 30, and 60 nm on glass has been calculated, as shown in Figure 8(b). The average transmittance over the wavelength range of 1500–2500 nm of W thin film is 24.3%, 8.5%, and 1.8% for the W film thickness of 15, 30, and 60 nm, respectively. The 60 nm W thin film blocks almost all the infrared light, and thus, the infrared reflectance of the structure is determined by the W thin film. As the W thin film has a much lower infrared reflectance due to its higher electrical resistivity than that of the Cu thin film, the SiO2-W-Cu-Glass structure has a much lower infrared reflectance as compared to the structure without W thin film. In contrast, the much higher infrared transmittance of the 15 nm W thin film allows the Cu layer play an important role in the infrared reflectance of the SiO2-W-Cu-Glass structure, and thus, the infrared reflectance of the structure is not largely reduced due to the introduction of the W thin film. Therefore, to achieve high thermal stability, high thermal absorption, and low infrared emittance, 15 nm W thin film are shown in Figure 9. Annealing, even at 400 °C for 6 h, does not cause a significant change in the reflectance in the wavelength range of 250–900 nm. It leads to a small decrease and a large increase in the reflectance in the wavelength ranges of 900–1600 nm and 1600–2500 nm, respectively. The result suggests that annealing will not cause a large degradation in both the solar absorptance and thermal emittance of SSA. The reflectance changes in the infrared range are due to the change of the optical constants of the Cu film as a result of crystallization in the Cu film caused by annealing. The comparison of the XRD patterns of the Cu phase between the as-deposited and 400 °C-annealed SiO2-TiN0.5O0.5-W-Cu-Glass samples shown in Figure 10 suggests that there is crystallization in the Cu film caused by annealing. The AFM images in the insets of Figure 10 also show that the surface morphologies of the SiO2-TiN0.5O0.5-W-Cu-Glass SSA are stable after the 400 °C-annealing.

The average reflectance over the wavelength range of 300–800 nm and the solar absorptance of the SiO2-TiN0.5O0.5-W-Cu-Glass SSA under the different annealing conditions have been calculated, and the results are shown in Table II. Compared to the as-deposited sample, the sample annealed at 400 °C for 6 h causes only a slight increase (1.6%) in the average reflectance, and no significant change in the solar absorptance (x) (x remains above 92%). The situation of the SiO2-TiN0.5O0.5-W-Cu-Glass SSA is different from that of the SiO2-TiN0.5O0.5-Cu-Glass SSA. As shown in Table I, the average reflectance of the SiO2-TiN0.5O0.5-Cu-Glass SSA significantly increases from 5.2% for the as-deposited condition to 14.8% for the annealing at 400 °C for 6 h, whereas the solar absorptance decreases largely from 92.2% for the as-deposited condition to 84.1% for the annealing at 400 °C for 6 h. Obviously, the thermal stability of the SiO2-TiN0.5O0.5-W-Cu-Glass SSA is much better than that of the SiO2-TiN0.5O0.5-Cu-Glass SSA. This suggests that the W thin film not only has thermally stable optical properties, but is also able to prevent Cu diffusion into the TiN0.5 layer.

Figure 11 shows the reflectance spectra in the wavelength range of 2.5–25 μm of the SiO2-TiN0.5O0.5-Cu-Glass SSA and SiO2-TiN0.5O0.5-W-Cu-Glass SSA of both as-deposited and annealed at 400 °C for 6 h. Except the as-deposited SiO2-TiN0.5O0.5-W-Cu-Glass SSA, the reflectance of all other samples is more than 90% in the wavelength range of 4–25 μm. It should be pointed out that the reflectance at the wavelength of 2500 nm in Figure 9 is lower than that in Figure 11. The discrepancy is due to the fact that the reflectance measurements in the wavelength ranges of 0.25–2.5 μm and 2.5–25 μm were conducted with two different systems, respectively. It is found that the system used for the measurement in the wavelength ranges of 0.25–2.5 μm has a lower accuracy. However, the discrepancy does not affect the conclusions of this study.
has a higher electrical resistivity than that of Cu, the as-deposited SiO₂-TiN₀₂–W-Cu-Glass SSA has a low reflectance. However, after 400 °C-annealing for 6 h, the reflectance of the SiO₂-TiN₀₂–W-Cu-Glass SSA has a comparable reflectance with that of the SiO₂-TiN₀₂–Cu-Glass SSA in the wavelength range of 2.5–25 μm. The thermal emittance (ε) can be calculated with Eq. (2),

$$\varepsilon = \int_{\lambda=0.25}^{\lambda=25\mu m} P_{bb}(\lambda) \times (1 - R(\lambda)) d\lambda / \int_{\lambda=0.25}^{\lambda=25\mu m} P_{bb}(\lambda) d\lambda,$$  

(2)

where $P_{bb}(\lambda)$ is the intensity of the black body radiation (the black body radiation spectrum at the temperature of 400 °C is shown in Fig. 11). The thermal emittance (ε) is calculated for the working temperature of 400 °C. After annealing at 400 °C for 6 h, the thermal emittance at the working temperature of 400 °C of the SiO₂-TiN₀₂–Cu-Glass SSA decreases from 7.7% to 2.9%, and the thermal emittance at the working temperature of 400 °C of the SiO₂-TiN₀₂–W-Cu-Glass SSA decreases from 17.2% to 4.4%. Therefore, for the SiO₂-TiN₀₂–W-Cu-Glass SSA with 15 nm W thin film, an annealing can significantly reduce the thermal emittance to a low value (e.g., 4.4% for the annealing at 400 °C for 6 h) while it is still able to maintain the solar absorptance at a high value (e.g., 92.2% for the annealing at 400 °C for 6 h).

**ACKNOWLEDGMENTS**

This work was financially supported by the National Research Foundation of Singapore (Program Grant No. NRF-CRP13-2014-02). Assistance provided by W. L. Lee who is supported by the EDB-GF-NTU IPP program is also acknowledged. Z. Liu would like to acknowledge the support from the Guangdong Province Special Funds for Collaborative Innovation and Platform Environment Construction under project No. 2016A050502058.


15See http://www.almecogroup.com/uploads/1172-ALMECO_TinoxEnergy_ENG_S402_07_2014_mail.pdf for the TiN_xO_y based selective solar absorber in the water-heating applications with the maximum operating temperature of 100 degree.

16M. Kotilainen, M. Honkanen, K. Mizohata, and P. Vuoristo, “Influence of temperature-induced copper diffusion on degradation of selective chromium nitride-based solar absorber in the water-heating applications with the maximum operating temperature of 100 degree.”


