<table>
<thead>
<tr>
<th>Title</th>
<th>Interaction Analyses of the Integrin 2 Cytoplasmic Tail with the F3 FERM Domain of Talin and 14-3-3 Reveal a Ternary Complex with Phosphorylated Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chatterjee, Deepak; Lu, Lewis Zhiping; Tan, Suet-Mien; Bhattacharjya, Surajit</td>
</tr>
<tr>
<td>Citation</td>
<td>Chatterjee, D., Lu, L. Z., Tan, S.-M., & Bhattacharjya, S. (2016). Interaction Analyses of the Integrin 2 Cytoplasmic Tail with the F3 FERM Domain of Talin and 14-3-3 Reveal a Ternary Complex with Phosphorylated Tail. Journal of Molecular Biology, 428(20), 4129-4142.</td>
</tr>
<tr>
<td>Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/43654</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2016 Elsevier Ltd. This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of Molecular Biology, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/j.jmb.2016.08.014].</td>
</tr>
</tbody>
</table>
Interaction Analyses of the Integrin β2 Cytoplasmic Tail with the F3 FERM Domain of Talin and 14-3-3ζ Reveal a Ternary Complex with Phosphorylated Tail

Deepak Chatterjee, Lewis Lu Zhiping, Suet-Mien Tan and Surajit Bhattacharjya

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore

#Address correspondence to: Surajit Bhattacharjya, 60 Nanyang Drive, Singapore, 637551, e-mail: surajit@ntu.edu.sg, Fax: 65-6791-3856 or Suet-Mien Tan, 60 Nanyang Drive, Singapore, 637551, e-mail: smtan@ntu.edu.sg
Abstract

Integrins, hetero-dimeric (α and β subunits) signal-transducer proteins, are essential for cell adhesion and migration. Beta cytosolic tails (β-CTs) of integrins interact with a number of cytosolic proteins including talin, Dok1, and 14-3-3ζ. The formation of multi-protein complexes with β-CTs is involved in the activation and regulation of integrins. The leukocyte-specific β2 integrins are essential for leukocyte trafficking, phagocytosis, antigen-presentation and proliferation. In this study, we examined the binding interactions between integrin β2-CT and T758 phosphorylated β2-CT (pT758β2-CT) with positive regulators talin and 14-3-3ζ and negative regulator Dok1. Residues of the F3 domain of talin belonging to the C-terminal helix, β-strand 5 and the adjacent loop were found to be involved in binding interactions with β2-CT. The binding affinity between talin F3 and β2-CT was reduced when β2 T758 was phosphorylated but this modification promoted 14-3-3ζ binding. However, we were able to detect stable ternary complex formation of pT758β2-CT, talin F3 and 14-3-3ζ that involved the repositioning of talin F3 on β2-CT. We showed that Dok1 binding to β2-CT was reduced when β2 T758 was phosphorylated and in the presence of 14-3-3ζ. Based on these data, we propose a sequential model of β2 integrin activation involving these molecules. Our study provides for the first time insights towards β2 integrin activation that involves a multi-protein complex.

Keywords: β2 integrins, NMR, protein-protein interaction, talin, 14-3-3

Introduction

Integrins are transmembrane receptors that mediate cell-cell and cell-extracellular matrix (ECM) adhesions [1]. Integrins are obligate heterodimers composed of non-covalently linked α and β subunits. Each subunit contains a large extracellular domain, a single-pass transmembrane domain, and a short cytoplasmic tail (CT) [1]. Integrin inside-out activation is a process by which the disruption of the interface between the membrane proximal regions of the α and β subunits and cytoplasmic tails leads to the separation of their transmembrane domains followed by global conformational changes in the extracellular regions [2]. The integrin β-CTs, excluding β4 and β8, contain two highly conserved NPxY/F motifs. Both motifs are docking sites for cytoplasmic proteins that regulate integrin activation [3].

Talin-1 (henceforth referred to as talin) is a large cytoskeletal protein composed of a 4.1-ezrin-radixin-moesin (FERM)-containing head region and a long rod region [4]. Talin is a well-established positive regulator of integrin activation. It binds directly to the integrin β-CTs and disrupts the membrane proximal interface of the cytoplasmic tails [5]. The phosphotyrosine binding (PTB) fold in the F3 subdomain of talin binds to the membrane proximal NPxY/F motif of the integrin β-CT [6]. It has been reported that the phosphorylation state of the integrin β3 membrane proximal NPLY functions as a switch that regulates binding of either talin or Dok1, a cytoplasmic negative regulator of integrin activation [7]. Recently, it has been demonstrated that an alternative phosphorylation switch involving two Ser residues flanking the integrin β2 membrane proximal NPLF motif served a similar function [8]. These data exemplify the relevance of integrin β tail post-translational modification(s) as a part
of the mechanism by which fine-tuned regulation of integrin activation could be achieved.

The leukocyte-restricted integrin β2 subfamily contains four members that share a common β2 subunit, namely αLβ2, αMβ2, αXβ2 and αDβ2 [3]. The β2-CT contains a triplet-Thr motif that lies in between its two NPxF motifs. The phosphorylation status of this triplet-Thr motif modulates the association of the integrin β2-CT with cytoplasm proteins. 14-3-3 family of proteins is known to bind pSer/Thr-containing sequences and they form dimers [9-11]. 14-3-3ζ binds the pTTT motif in the integrin β2-CT and it serves as a positive regulator of β2 integrin ligand-binding [12, 13]. Structural data revealed a 14-3-3ζ homodimer in complex with two pTTT-containing integrin β2 tail peptides, suggesting that 14-3-3ζ can positively regulate β2 integrins functions by promoting receptor clustering [14]. Notably the same study also showed that the phosphorylation of Thr758 (the first residue of the triplet-Thr) in the integrin β2-CT promotes 14-3-3ζ but inhibits filamin binding [14]. Phosphorylation of the triplet-Thr in the integrin β7-CT has also been shown to reduce filamin binding, a negative regulator of integrin activation, but not talin binding [15]. Further, in β2-CT phosphorylation of residue S756 close to the NPLF754 and T758TT motif recruits Dok1, a negative regulator of integrin activation [8]. Taken together, phosphorylation of the triplet-Thr motif and adjacent Ser756 in the integrin β2-CT serves like a switch that regulates the docking of 14-3-3ζ, filamin A and Dok1 with opposing functions with respect to integrin activation.

Mechanistically the dissociation of filamin A from the integrin β-CT followed by the docking of positive regulators such as 14-3-3ζ and talin is well rationalized and supported by available data. However, it remains to be clarified if 14-3-3ζ, talin and
Dok1 with binding sites that are close to each other on integrin β2-CT, can form ternary complexes or their interactions with the integrin β2-CT are mutually exclusive. There is also limited information on how phosphorylation of the triplet-Thr in the integrin β2-CT regulates the binding of 14-3-3ζ in the presence of talin and *vice versa*. In this work, we set out to understand the interactions between talin F3 domain, 14-3-3ζ and Dok1 with β2-CT. Our results showed that talin F3 domain exhibits different affinities for β2-CT and pTβ2-CT employing residues located at the C-terminal long helix, β-strand 5 and the adjoining loop region. Ternary complex formation of 14-3-3ζ, talin F3 domain and pTβ2-CT was examined. Based on the docked structure of the ternary complex, the membrane proximal helix of pTβ2-CT interacts with the talin F3 domain and its C-terminal region containing residue pT758 occupies the canonical binding pocket of 14-3-3ζ. These results provide important insights for multi-protein complex formation between β2-CT and its interacting partners that are relevant to the activation mechanism of β2 integrins.

Results

The F3 domain of talin interacted with β2-CT using the canonical binding pocket:
Backbone 15N-1H correlations of talin F3 were assigned by combined analyses of 3-D HNCACB and CBCA(CO)NH spectra. A series of 15N-1H HSQC spectra of F3 were acquired in the presence of different concentrations, molar ratios, 1:0, 1:0.4, 1:0.8, 1:1.2, 1:1.6, 1:2, 1:3, 1:4 and 1:5, of synthetic β2-CT. Table 1 provides a list of synthetic β2-CTs used in this study. 15N-1H HSQC spectra overlay of talin F3 in free solution (blue contour), and in the presence of β2-CT at 1:1 (red contour) and 1:3 (brown contour) molar ratios is shown (Fig. 1a). 15N-1H HSQC spectra of talin F3
showed chemical shift changes and also broadening of resonances that suggest binding interactions. Residues of talin F3 located at the central segment e.g. E350, W351, L353, T354 and N355 and a continuous stretch of C-terminal region e.g. A^{389}QLIAGY^{395} exhibited pronounced chemical shift changes in the presence of β2-CT (Fig. 1b). Additionally, 15N-1H cross-peaks of a number of residues, at the central region, of talin F3 were broadened due to its binding to β2-CT (Fig. 1b). An apparent dissociation constant (K_d) value of 243.8 μM of talin F3/β2-CT complex was estimated from the chemical shift changes of talin F3 (Fig. 1c, Table 2). The β2-CT-induced chemical shift changes (>0.04 ppm) and resonance broadening effect were mapped onto the 3-D structure of talin F3 (Fig. 1d). The 3-D structure of talin F3 represents a canonical PTB fold whereby the C-terminal long helical and the adjacent β-stands including loops may be involved in interactions with β2-CT (Fig. 1d). 15N-1H HSQC titrations were also carried out for 15N-labelled β2-CT with unlabeled talin F3 protein. 15N-1H HSQC spectra of β2-CT in complex with F3 domain revealed perturbation of most of the residues (Supplemental Fig. S1). Residues of the β2-CT with >90% signal attenuation when in complex with talin F3 domain is shown (Fig. 2a). Residues located both in the membrane proximal helix and membrane distal β-strand of β2-CT were perturbed upon binding to talin F3. Based on chemical shift perturbations, a molecular docked model of talin F3 and β2-CT was generated (Fig. 2b). In the docked structure, the β2-CT interacts through its membrane proximal (MP) helical region and residues at the membrane distal (MD) loop with talin F3. The overall topology of the β2-CT/talin F3 docked structure resembles well with the structures of β1D-CT/talin 2 F2/F3 complex [16] and β3 hybrid CT talin F3 complex [17]. Notably, the membrane proximal helix of β2-CT demonstrated potential ionic
interactions involving residue D731/K316 and non-polar packing of residues Y735/L325, F738/P363 (Fig. 2b). Further, packing interactions with talin F3 can be seen for residues of MD part of β2-CT e.g. W747/Y377, W747/W359, L753/I396 and L753/L400 (Fig. 2b).

Thr758 phosphorylation of β2-CT modulated its binding with talin F3:
Phosphorylation of residues in β-CTs modulates its binding affinity with talin and other interacting proteins [7,8,14,18]. Residue Thr758 in the TTT motif of β2-CT is known to be phosphorylated and it allows binding of 14-3-3ζ protein to the β2-CT. However, the consequence of β2-CT Thr758 phosphorylation on its binding to talin remains unclear. 15N-1H HSQC spectra of talin F3 were acquired at F3:pTβ2-CT molar ratios of 1: 0, 1:0.4, 1:0.8, 1:1.2, 1:1.6, 1:2, 1:3, 1:4 and 1:5. Fig. 3a shows chemical shift changes of residues of talin F3 in the presence of pTβ2-CT at 1:3 molar ratio. Residues in the talin F3 central β-sheet and C-terminal helical region showed resonance perturbation in the presence of pTβ2-CT, akin to interactions with the non-phosphorylated β2-CT. However, most of the residues of talin F3 showed a lower extent of chemical shift changes in the presence of pTβ2-CT compared to the β2-CT (Fig. 3b). It should also be noted that different residues of talin F3 exhibited broadening of 15N-1H HSQC cross-peaks while interacting with β2-CT and pTβ2-CT, indicating conformational exchange processes (Fig. 3b). Regardless, an apparent K_d value of F3/pTβ2-CT interactions was estimated to be 578 µM from the chemical shift binding curve (Fig. 3c, Table 2). The docked structure of talin F3/β2-CT revealed close proximity of residue T758 with negatively charged residues D372 and E335 of talin F3 (Fig. 2b). Therefore, phosphorylation of T758 could cause
charge-charge repulsion, leading to a reduction in binding affinity between pTβ2-CT and talin F3.

Further, we examined interactions of pTβ2-CT with talin F3 employing mutations and peptide fragments of pTβ2-CT. Replacement of critical interfacial aromatic residues W747A and F754A of pTβ2-CT resulted in a significant reduction in binding affinity to talin F3 (Supplemental Fig. S2, Table 2). In order to dissect β2-CT/F3 binding, two overlapping peptide fragments, KS33 and pTDS20 of β2-CT were synthesized (Table 1) and examined for binding to talin F3. KS33 peptide fragment interacted with residues in the central β-sheet and the C-terminal helix of talin F3 (Fig. 4a). An apparent K_d was estimated to be 357 μM for KS33/talin F3 interactions (Fig. 4b and Table 2). By contrast, talin F3 showed no detectable interactions with pTDS20 peptide fragment (Supplemental Fig. S3). These data demonstrated that β2-CT and pTβ2-CT interacted with talin F3 domain utilizing similar binding residues, however, with different affinity. The pTβ2-CT/talin interactions were characterized by low affinity complex. Further, analyses of talin binding with non-phosphorylated and phosphorylated β2 peptide fragments revealed that the non-phosphorylated N-terminal residues (KS33) of β2-CT contribute primarily to the binding.

Adaptor protein 14-3-3ζ, talin F3 and pTβ2-CT formed a ternary complex: NMR transverse relaxation (T_2) is a useful indicator of molecular weight and conformational exchange processes of proteins. We compared backbone 15N T_2 of talin F3 either in free solution or in the presence of pTβ2-CT or a mixture of both pTβ2-CT and 14-3-3ζ. The 15N T_2 values of most of the residues of talin F3 in free solution showed uniform distribution with an average T_2 value of 50.84 ms.
(Supplemental Fig. S4). By contrast, residues of talin F3 exhibited a marked reduction of T2 values (Supplemental Fig. S4), an estimated average T2 36 ms, in the presence of 14-3-3ζ and pTβ2-CT, presumably due to an increase in molecular weight and/or conformational exchange processes involving the ternary complex. Note, 15N T2 values, an average T2 ~ 46 ms, of talin F3 were not significantly affected in complex with pTβ2-CT (Supplemental Fig. S4).

We further examined residues of talin F3 that interact with pTβ2-CT in the ternary complex. 15N-1H HSQC spectra of talin F3 were found to be invariant upon addition of unlabeled 14-3-3ζ, suggesting lack of detectable interactions (data not shown). 15N-1H HSQC spectra of talin F3, acquired in the presence of equimolar concentration of unlabeled 14-3-3ζ, showed changes in chemical shifts and intensity in the presence of increasing concentrations of pTβ2-CT. A number of residues of talin F3 showed differences in chemical shifts and line broadening effects between F3/pTβ2-CT binary complex and F3/14-3-3ζ/pTβ2-CT ternary complex (Fig. 5a). A Kd of 213 µM, between F3/pTβ2-CT in the presence of 14-3-3ζ, was determined from the chemical shift change (Fig. 5b, Table 2). It was noted that a higher Kd value was obtained for F3/pTβ2-CT in the absence of 14-3-3ζ (Table 2). Weighted chemical shift changes (>0.04 ppm) and residues that showed peak broadening were mapped onto the 3-D structure of talin F3 (Fig. 5c). Residues located in the β5 and β6 strands and adjacent loops but with fewer residues in the C-terminal helix were perturbed in the ternary complex (Fig. 5c). The potential involvement of residues W747 and F754 of β2-CT in the talin F3/14-3-3ζ/pTβ2-CT ternary complex was further examined by individual 15N-1H HSQC titrations of 15N-labelled talin F3 and unlabeled 14-3-3ζ
with β2 W747A or F754A variants. In the ternary complex, mutant CTs demonstrated significantly higher K_d values compared to pTβ2-CT (Table 2, Supplemental Fig. S5).

The binding interactions of the ternary complex of 14-3-3ζ/F3/pTβ2-CT were further determined by ITC, chemical cross linking and size exclusion methods. In addition, ITC data were acquired for binary complex of 14-3-3ζ and pTβ2-CT and phosphorylated peptide fragment pTDS20. Representative ITC thermograms and binding parameters are shown (Fig. 6 and Table 3). Proteins/pTβ2-CT interactions were exothermic or enthalpy driven as indicated by negative heat exchange or negative ΔH values (Fig. 6, upper panels, Table 3). Data also suggest that 14-3-3ζ interacted either with full length pTβ2-CT or the shorter CT fragment pTDS20 with similar K_d values of 4.9 μM or 11 μM, respectively (Fig 6, panels a and b, Table 3).

A recent study, using ITC, also estimated a K_d of 7.9 μM for the binding of 14-3-3ζ with pTβ2-CT [19]. Further, our results corroborate well with previous reports that the C-terminus or the MD region of phosphorylated β2-CT is largely responsible for the binding with 14-3-3ζ [14]. The binding affinity of the ternary complex was determined by injecting talin F3 into solutions of pre-formed binary complex of 14-3-3ζ and pTβ2-CT (Fig. 6c). Talin F3 interacted with pTβ2-CT/14-3-3ζ complex with an apparent K_d of 161.8 μM (Table 3). A comparable K_d value of 213 μM was estimated from 15N-1H HSQC titration experiments of talin F3 (Table 2). Therefore, talin F3 appeared to interact with the complex of pTβ2-CT/14-3-3ζ with relatively higher affinity in comparison to the binary complex of talin F3/pTβ2-CT. The determination of binding affinity between pTβ2-CT and talin F3 by ITC was unsuccessful presumably due to the weak affinity of interactions that resulted in non-saturable binding thermograms. It has been postulated that interactions of integrin
CTs with effector proteins may be modulated in membrane bilayer [2,16]. Notably, talin binding affinity of β3-CT or CT/CT interactions appeared to be enhanced in model membrane mimic systems [20, 21]. Therefore, we also examined the binding of 14-3-3ζ with pTβ2-CT and Dok1 with di-phosphorylated pSpTβ2-CT (vide infra) (Table 1) in membrane mimic solutions containing dodecylphosphocholine by ITC (Supplemental Fig. S6). Our results showed that proteins/CTs binding affinity were significantly diminished in membrane mimic solutions. 14-3-3ζ and Dok1 binds to phosphorylated CTs with K_d values of 649 µM and 3.5 mM, respectively (Supplemental Fig. S6).

Ternary complex of 14-3-3ζ, talin F3 and pTβ2-CT proteins were further examined by glutaraldehyde mediated chemical crosslinking and size exclusion chromatography. Protein components were mixed in buffer solutions of 2% glutaraldehyde and samples were electrophoresed in SDS-PAGE gel at different time points (Supplemental Fig. S7). Protein band corresponding to the molecular weight of the ternary complex could be detected in the SDS-PAGE gel (Supplemental Fig. S7). In size exclusion chromatography experiments, the ternary complex of 14-3-3ζ/F3/pTβ2-CT can be co-eluted and observed in SDS-PAGE (Supplemental Fig. S8).

Exclusion of Dok1 from β2-CT in the presence of 14-3-3ζ and talin F3: We probed changes in 31P NMR signal of phosphorylated β2-CTs i.e. mono phosphorylated pTβ2-CT and di-phosphorylated pSpTβ2-CT (Table 1) in complex with 14-3-3ζ, talin F3 and Dok1 proteins. Fig. 7a shows a set of 31P NMR spectra of pTβ2-CT in the absence (lower panel) and in the presence of talin F3, 14-3-3ζ or 14-3-3ζ/F3 combined. In free solution pTβ2-CT yielded a sharp 31P NMR signal
characteristic of unstructured protein undergoing fast motion. 31P NMR spectrum of pTβ2-CT in complex with talin F3 showed discernable change in line-width and a slight change in chemical shift compared to the 31P spectrum of free pTβ2-CT, thus infers certain interaction but phosphorylated Thr is not the site of interaction. By contrast, dramatic changes, in terms of chemical shift and line width, in 31P NMR spectrum of pTβ2-CT were observed upon inclusion of 14-3-3ζ. The downfield shift of 31P signal of pTβ2-CT in the presence of 14-3-3ζ would indicate direct interactions of the phosphate group of residue pThr758 with binding residues of 14-3-3ζ. 31P NMR spectrum of pTβ2-CT in the presence of both 14-3-3ζ and talin F3 revealed further increased line width, with certain change of chemical shift, compared to the binary pTβ2-CT complexes of F3 and 14-3-3ζ (Fig. 7a). 31P NMR of pTβ2-CT therefore also revealed that 14-3-3ζ/pTβ2-CT complex can recruit talin F3 in a ternary complex.

Dok1 protein is a negative regulator of integrin whereby binding of the PTB domain of Dok1 to the phosphorylated β-CTs displaces talin from integrin [7, 22, 23]. Therefore, we investigated the effect of binding of 14-3-3ζ and Dok1 proteins to phosphorylated β2-CT. The PTB domain of Dok1 binds to β2-CT with high affinity upon phosphorylation of residue Ser756 [8]. We made use of di-phosphorylated pSpTβ2-CT for 14-3-3ζ and Dok1 interactions. Fig. 7b shows 31P NMR spectra of pSpTβ2-CT in free solution (lower panel), in complex with 14-3-3ζ (middle panel) and in the presence of 14-3-3ζ and Dok1 (upper panel). Both of the 31P resonances of pSpTβ2-CT showed large chemical shift changes in the presence of 14-3-3ζ (Fig. 7b). However, there were no noticeable changes of 31P NMR signals upon further inclusion of equimolar concentration of Dok1 (Fig. 7b). Therefore, 31P NMR studies
of the pSpTβ2-CT demonstrated that Dok1 was unable to interact with the di-phosphorylated pSpTβ2-CT in the presence of 14-3-3ζ. Taken together, these results suggest that while talin F3 and 14-3-3ζ could form a ternary complex with β2-CT, the negative regulator Dok1 was unable to bind to β2-CT in the presence of 14-3-3ζ.

Structure model of the ternary complex: At present, we are unable to determine atomic-resolution structure of the entire ternary complex of 14-3-3ζ/talin F3/pTβ2-CT. However, based on data from existing binary complexes, we modelled the ternary complex of pTβ2-CT, talin F3 and 14-3-3ζ in order to discern potential inter-molecular contacts (see Materials and Methods). The overall topology of the ternary complex and molecular interactions are shown (Fig. 8a). The ternary complex of 14-3-3ζ/pTβ2/talin F3 could be modular in nature whereby most of the inter-molecular interactions observed in the binary complexes of 14-3-3ζ/pTβ2 peptide fragment and talin F3/β2-CT are largely conserved. The membrane distal region of pTβ2-CT carrying residue pT758 occupies the binding pocket of 14-3-3ζ whereas the membrane proximal helix of the CT is engaged in interactions with talin F3 domain. In the docked structure, the phosphate group of pT758 is in close proximity with the guanidinium sidechain of residues R127, R56 and R60 (Fig. 8b), akin to the structure of 14-3-3ζ/pTβ2-CT complex [14]. The membrane proximal helix of pTβ2-CT maintained its interactions with the β-sheet region of talin F3 through potential salt bridges involving residue D731 of β2-CT and residues K322, K324 of talin F3 (Fig. 8c). Hydrophobic packing interactions could form between aromatic residues W747 of pTβ2-CT with residues Y377 and W351 of F3 domain (Fig. 8d). The NPLF
motif of pTβ2-CT could serves as a potential hinge between the talin F3 and 14-3-3ζ with fewer inter-molecular contacts.

Discussion

The interaction between integrin β-CT and the F3 subdomain of talin plays an important role in integrin activation [2, 25-28]. This association brings about the separation of the integrin α and β-CTs that leads to allosteric conformational changes in the integrin ectodomain that are necessary for binding ligands (1-3, 25). Based on x-ray crystallography, the atomic-resolution structure of talin-2 F2F3 domain in complex with integrin β1D-CT has been reported [16]. Although it is well accepted that talin binds integrin β-CT, there are clear differences in the binding affinities of talin with different integrin β-CTs. NMR interaction studies reported low affinity complexes of talin/integrin β3-CT, Kd ~273 µM and talin/integrin β1A-CT, Kd ~ 490 µM [29]. However, talin-2/integrin β1D-CT and talin-1/integrin β1D-CT complexes showed high affinity interactions with Kd ~ 36 µM and 95 µM, respectively (16, 29). These data suggest that subtle differences in the sequences of integrin β-CTs could affect their interactions with talin and other binding partners (Supplemental Fig. S9).

As compared with other integrin β-CTs, β2-CT contains a few distinct motifs. These include a non phosphorytable NxxF motif instead of the highly conserved NxxY motif found in other β-CTs. It also contains a phosphorytable TTT motif which may give rise to differential interactions with talin and other effector proteins. Our results showed that talin F3 interacted with integrin β2-CT with low binding affinity of Kd ~ 244 µM that is comparable to that between talin F3 and integrin CT β3 or β1A. However, it is difficult to determine the atomic structure of the talin F3/integrin β2-
CT complex because of their transient interactions and resonances broadening. Indeed, similar challenges were encountered in the structural characterization of talin F3/integrin β3-CT complex [17]. Instead, a hybrid peptide or peptide fragment of integrin β3-CT covalently linked to talin F3/F2 was used for the structure determination [17, 30]. Nevertheless, we were able to map the binding of integrin β2-CT onto talin F3 that includes the C-terminal long helix, β-strands S5, S4, an adjoining loop and β-strand 7 and a loop between S1 and S2 (Fig. 1d) based on above average chemical shift changes and resonance broadening. These structural elements of talin F3 were also found to be involved in the complex formation with integrin β3-CT. The docked structure of talin F3 and integrin β2-CT suggests potential intermolecular interactions within the complex (Fig. 2b). The interactions between talin F3 and the N-terminal MP part of integrin β2-CT are found to be conserved with that of talin F3/chimeric integrin β3-CT and talin F3/integrin β1D-CT complexes [16, 17]. However, comparison of packing interactions involving talin F3 and the MD region of the integrin β-CTs remain challenging due to sequence variations amongst the β-CTs. Our 15N-1H HSQC binding data showed interactions between talin F3 and the MP region of β2 peptide fragment (KS33) whereas no detectable binding was observed for the phosphorylated MD peptide (pTDS20) (Table 2). These data suggest that in addition to the MP region, the MD region of the integrin β-CTs may modulate talin/β-CTs complex formation. Phosphorylation of integrin CTs, both α and β, plays critical roles in regulating their interactions with effector proteins [2, 21, 31, 32]. Phosphorylation of residue Y747 in NPxY in integrin β3-CT promotes binding of Dok1, a negative regulator of integrin activation [7, 22, 23]. Talin-integrin β3-CT interactions have been shown to be significantly reduced upon phosphorylation of
Y747 [7, 22, 23]. Given that integrin β2-CT contains two non-phosphorylatable NPxF motifs instead of the NPxY motifs (Supplemental Fig. S9), the above mechanism of regulation with respect to talin interaction is unlikely. However, integrin β2-CT contains phosphorylatable Ser and Thr residues that could be involved in integrin activation and regulation [8]. Indeed, we have shown that phosphorylation of integrin β2-CT residue S756 that resides between the NPxF754 and T758TT motifs promotes Dok1 binding [8]. Phosphorylation of residue T758 in the TTT motif of integrin β2-CT and the corresponding residue in integrin β3 and β7 CTs were reported to be involved in integrin activation [14]. pT758 of integrin β2 facilitated binding of 14-3-3ζ but inhibited the binding of negative regulator filamin to β2-CT [14, 31-33]. 14-3-3ζ also binds to phosphorylated α4 CT of integrin [19], however, its binding to phosphorylated α-CTs of β2 integrins has yet to be reported. We therefore examined the effect of pT758 on the interactions between integrin β2-CT and talin F3. Interestingly, talin F3 interacted with pT758β2-CT with two-fold lower affinity as compared to β2-CT (Table 2). Since pT758β2-CT recruits 14-3-3ζ, we performed in depth analyses of the interactions between pT758β2-CT, talin F3 and 14-3-3ζ so as to gain insights into complex formation. We demonstrated that pT758β2-CT forms a ternary complex with talin F3 and 14-3-3ζ. Remarkably, in the ternary complex, pT758β2-CT/talin F3 interacted with a lower K$_d$ value. However, the interaction affinity between pT758β2-CT/14-3-3ζ remained invariant as compared to that of the binary complexes (Table 2). Interaction analyses using integrin β2-CT peptide fragments further mapped the possible interaction sites of talin F3 and 14-3-3ζ in the ternary complex. It should be noted that in the ternary complex, talin F3 and 14-3-3ζ did not show any apparent interactions. Talin F3 interacts with the MP region of
integrin β2-CT whereas 14-3-3ζ interacts with the pT758TT motif and the MD region of integrin β2-CT (Fig. 8). Interactions of the talin F3 with the MP helix of integrin β-CTs are known to be crucial for talin-mediated activation of integrins [2, 4, 5]. Our study also demonstrated that W747 in the MP region of integrin β2 is required for talin F3 interaction in both the binary complex and in the ternary complex with 14-3-3ζ. Residue W747 displays multiple packing interactions with talin F3 that could be important in the complex formation. These data are in line with previous study that showed interactions between talin and integrin β3, β1A and β1D CTs involving this conserved Trp [29].

A recent study demonstrated the possibility of a ternary complex of filamin or domain FLA-IgN21 with integrin αIIb and β3 CTs such that filamin interacts with both CTs while maintaining their interactions [36]. Notably, the membrane proximal helix of β3-CT delineated packing with FLA-IgN21 causing a folding back of the β-CT. Further, the Dok1 binding site involving the NPxY motif of β3 CT in the ternary complex is largely exposed. Based on our findings and that of others [36-38], we propose a sequential model of β2 integrin inside-out activation followed by outside-in signaling (Fig. 9). In the resting state, the integrin β2-CT is engaged with the negative regulators Dok1 and filamin (Fig. 9). It should be noted that Dok1 is involved in both inside-out [8] and outside-in [39] signaling of integrins. Upon cellular activation, the following series of inside-out β2 integrin activation events could occur: (i) kindlin-3 docks onto the distal NPKF motif in the β2-CT. Kindlin-3 could recruit migfilin that displaces filamin from the β2-CT [40-42] (ii) β2-CT pS756 is dephosphorylated and it leads to the release of Dok1 thereby allowing talin head domain to associate with the β2-CT involving the NPLF motif, (iii) concomitantly, β2-CT pT758 is
phosphorylated which promotes 14-3-3ζ binding, (iv) the binding of 14-3-3ζ to the β2-CT leads to the repositioning of talin head domain facilitating ternary complex formation. These events lead to the activation of β2 integrins, allowing them to bind ligands. Given that talin interacts with the actin cytoskeleton and 14-3-3ζ has the potential to dimerize, such ternary complex formation could have an important role in integrin clustering, which is required for integrin outside-in signaling. In conclusion, our study provides evidence of ternary complex formation of 14-3-3ζ, pTβ2-CT and talin F3. We have performed co-immunoprecipitation experiment to check for ternary complex using 293T cells transfected with integrin αLβ2, talin head domain and 14-3-3ζ but was unsuccessful (data not shown). Future cell based experiments using different approaches will be necessary to validate the in vitro data. Notwithstanding, our data provide an important first step toward the understanding of sequential events leading to β2 integrin inside-out activation and outside-in signaling.

Materials and Methods

Protein expression and purification: N-terminal six His-tag talin F3 domain (G309-S405), Dok1 PTB domain (Q154-G256) and 14-3-3ζ (M1-S230) were generated by sub-cloning respective synthetic genes with *E. coli* optimized codons into the pET14b vector. Residue Cys 336 of F3 was mutated to Ser to avoid undesirable disulfide bond formation. Transformed *E. coli* BL21(DE3) cells were grown at 37°C either in LB or M9 medium containing [15N] ammonium chloride and [13C] D-glucose (Cambridge Isotope Laboratories). Protein expression was induced by adding IPTG (0.5 mM) to the cell culture (OD600 ~ 0.6-0.7) followed by incubation for 10-12 hrs at 18°C. Proteins were purified as previously reported [8]. Cells were centrifuged and re-suspended in buffer A (50 mM sodium phosphate buffer, 300 mM NaCl, pH 8.0)
followed by affinity purification on a Nickel-NTA column (GE). His-tagged proteins were eluted in buffer B (50 mM sodium phosphate buffer, 500 mM imidazole, 300 mM NaCl, pH 8.0) using AKTA FPLC UPC-900 system (GE Healthcare UK Ltd., England) and exchanged against buffer C (20 mM sodium phosphate buffer, 50 mM NaCl, pH 6.0). His-tagged proteins were then subjected to size exclusion chromatography in buffer C on a Hiload Superdex 75 16/26 GL preparative column at a flow rate of 0.3 ml/min. Eluted proteins were monitored by absorbance at λ = 276 nm. The β2-CT (K724-S769) was sub-cloned into the pET-31b(+) vector to generate fusion proteins containing N-terminal ketosteroid isomerase (KSI) as previously described [43]. The same protocol was followed for the purification of β2-CT fusion protein except the buffer A and B contained 8 M urea. The eluted proteins were dialyzed against water to remove urea that resulted in the precipitation of fusion protein. Fusion protein was incubated in 90% formic acid purged with N₂ gas for 22 h in the dark to cleave the Asp-Pro peptide bond between the KSI and β2-CT. Formic acid was neutralized with sodium hydroxide using a rotary evaporator, leaving a film of precipitate. The precipitate was dissolved in water and further purified using HPLC. The identities of the cleaved peptides were verified by mass spectrometry.

Synthetic peptides: Synthetic β2-CT, phosphorylated β2-CT and β2 peptide fragments (Table 1) were purchased from GLBioChem™, Shanghai, China and further purified using HPLC (Waters™ 2489). Molecular weight of the peptides was confirmed by mass spectrometry.

NMR spectroscopy: All NMR experiments were performed on a Bruker DRX 600MHz spectrometer equipped with an actively shielded cryoprobe. ³¹P NMR spectra were recorded at Bruker 400MHz spectrometer. NMR data were processed using NMRPIPE or Topspin 3.0 and analyzed by Sparky (T.D. Goddard and D.G.
Kneller, University of California, San Francisco). The chemical shifts were directly or indirectly referenced to DSS. ^{15}N-^1H HSQC spectra for ^{15}N-labelled talin F3 and β2-CT were acquired at a concentration of 0.1 mM in buffer C (20 mM sodium phosphate buffer, 50 mM NaCl, pH 6.0). ^{15}N-^1H HSQC resonance assignments of talin F3 were achieved by 3D experiments (HNCACB, CBCA(CO)NH) of $^{15}\text{N}/^{13}\text{C}$ labelled talin F3, 0.3 mM, samples in buffer C. For NMR titration, ^{15}N-^1H HSQC spectra of protein samples were recorded after 10 min of equilibration with sequential addition of binding partners. Stock solutions of 3.8 mM, 5.1 mM, 4.2 mM and 3.1 mM of β2-CT, pTβ2-CT, KS33, and pTDS20, respectively, were used to titrate against 0.1 mM ^{15}N labelled talin F3 at different molar ratios (1:0.4, 1:0.8, 1:0.1.2, 1:1.6, 1:2, 1:3, 1:4 and 1:5). ^{15}N-^1H HSQC titrations were carried out with pTβ2-CT and β2 peptide fragments in solutions containing equimolar mixture, 0.1 mM, of ^{15}N labelled talin F3 and unlabeled 14-3-3ζ. ^{15}N-^1H HSQC spectra of ^{15}N labelled β2-CT were acquired in the presence of unlabeled talin F3 (0.7 mM stock) at different molar ratios (1:0.5, 1:1, 1:1.5, 1:2, 1:2.5 and 1:3). Ligand induced chemical shift changes in ^{15}N and HN resonances were determined using the following equation which is designated as chemical shift perturbation (CSP), $\Delta(H,N) = \{[(\Delta H)(W_H)]^2 + [(\Delta N)(W_N)]^2\}^{1/2}$ where W_H and W_N are weighting factors for ^1H and ^{15}N chemical shifts, respectively ($W_H = 1$, $W_N = 0.154$) and ΔH and ΔN are the chemical shift difference for HN and ^{15}N, respectively. The K_d values were calculated from depletion model for ligand binding following the equation; $\Delta(H,N) = \Delta(H,N)_{max} - ([L]+[U]+K_d) - ([L]+[U]+K_d)^2 - 4[L][U]^{1/2}/2[L]$, where $\Delta(H,N)$ and $\Delta(H,N)_{max}$ are the weighted chemical shift and weighted chemical shift at saturation, K_d represents the dissociation constant, and $[L]$ and $[U]$ are the concentrations of protein and unlabelled peptides, respectively. Well resolved ^{15}N-^1H
HSQC peaks with significant chemical shift changes were used to fit the above equation using OriginPro 9.0 in order to determine K_d values. The dissociation constant is presented as $K_d \pm$ S.E (standard error). The error bar indicates the standard deviation for each titration point.

Relaxation measurement: The transverse relaxation (T_2) rates of 15N nuclei of backbone of talin F3 were determined by collecting a series of 15N-1H HSQC spectra of 0.1 mM talin F3 alone and talin F3+pTβ2-CT (1:3) talin F3+14-3-3ζ+pTβ2-CT (1:1:3) with sensitivity enhancement in a Bruker DRX 600 MHz spectrometer at 298 K temperature. T_2 measurements were acquired with delays of 14.4, 28.8, 43.2, 57.6, 72.0, 86.4, 100.8, 115.2, 129.6, 144.0 and 158.4 ms and repeated twice for all the experimental conditions. T_2 values were estimated from by fitting the cross peak intensities to a mono-exponential function as in $I = A \times \exp(R \times t)$, where I, A, R and t represent signal intensity, constant, relaxation value and time point, respectively.

31P NMR experiments: 31P NMR spectra of pTβ2-CT were recorded on a Bruker DRX 400 spectrometer with dual channel RT probe at 298 K at 0.2 mM peptide concentrations. Data acquisition and processing were performed with the Topspin software (BRUKER) suite. 31P NMR spectra of pTβ2-CT in a buffer containing 20 mM Tris, 50 mM NaCl, pH 6.0 were recorded with talin F3 and 14-3-3ζ with 0.1 mM of each. Using same buffer condition, 31P NMR spectra of 100 μM pSApTβ2-CT were acquired with equimolar concentrations of Dok1 PTB domain and 14-3-3ζ.

Isothermal Titration Calorimetry (ITC): All samples were prepared in 20 mM sodium phosphate and 50 mM NaCl (pH 6.5). ITCs were performed in a VP-ITC200 instrument at 298 K. For 14-3-3ζ/phosphorylated CTs binding, fixed amounts of either pTβ2-CT or pTDS20 peptide were injected into cell, 200μl, containing 14-3-3ζ. For ternary complex, fixed concentrations of F3 were injected into cell, 200μl,
containing equimolar mixture of 14-3-3ζ and pTβ2-CT. Interactions of 14-3-3ζ and Dok1 with pTβ2-CT and pSpTβ2-CT, respectively, were carried out in 20 mM sodium phosphate and 50 mM NaCl (pH 6.5) containing 10 mM dodecylphosphocholine. ITC experiments in dodecylphosphocholine were performed either with 25 μM 14-3-3ζ (in cell) or 20 μM Dok1 (in cell). pTβ2-CT (690 μM) and pSpTβ2-CT (290 μM) were kept in syringe. Typically, a first injection of 0.2 μl was followed by 19 injections of 2 μl, with 150 s time delay between two injections and stirred at a speed of 900 rpm. Taking care of heat of dilution, a blank titration was performed by injecting proteins into buffer. All raw data were processed using MicroCal Origin software.

Chemical cross-linking: Glutaraldehyde mediated protein cross linking experiments were carried out with reaction mixtures containing 14-3-3ζ:talin F3:pTβ2-CT at 1:1:3 molar ratios and 14-3-3ζ:pTβ2-CT at 1:3 in 20 mM sodium phosphate and 50 mM NaCl (pH 8.0) with a total volume of 100 μl, in the presence of 2 μl of 2% freshly prepared solution of glutaraldehyde at 37°C. Samples were collected at different time intervals and reactions were quenched by addition of 1.5 M Tris-HCl, pH 8.0. Cross-linking was observed by conducting electrophoresis in 16% SDS-polyacrylamide gel.

Size exclusion chromatography: A Hiload Superdex 75 16/26 GL preparative column using AKTA FPLC UPC-900 system (GE Healthcare UK Ltd., England) was employed for size exclusion chromatography. A solution of 500 μl of 14-3-3ζ:talin F3: pTβ2-CT in 1:1:3 ratio injected and eluted with 20 mM sodium phosphate buffer, 50 mM NaCl, pH 6.0 at a flow rate of 0.30ml/min. Formation of ternary complex was determined by 16% SDS-polyacrylamide gel.

Docking of talin F3 with pTβ2-CT and 14-3-3ζ: Structural models of β2-CT and pTβ2 were constructed based on the 3-D structures of β1D/talin 2 [14] and pTβ2
peptide/14-3-3ζ [12] complexes, using InsightII (Accelrys Inc.). Docked models of binary β2-CT/talin F3 (pdb:2h7d) and ternary pTβ2-CT/talin F3/14-3-3ζ (pdb:2v7d) complexes were derived using ZDOCK program (http://zdock.umassmed.edu) based on chemical shift changes and cross-peak boarding. The model structures were validated using ADIT Validation Server from the Protein Data Bank (PDB).

Acknowledgement: This work was supported by a grant (ARC18/13) from the Ministry of Education (MOE), Singapore.
References

42. Das M, Ithychanda SS, Qin J, Plow EF. Migfilin and filamin as regulators of integrin activation in endothelial cells and neutrophils. PLoS One. 2011;6(10):e26355
FIGURE LEGENDS

Figure 1. Mapping talin F3 interactions with β2-CT. (a) Overlay of 15N-1H HSQC spectra of talin F3 in the absence of β2-CT (blue contour), and in the presence of increasing concentrations of β2-CT at 1:1 (red contour) and 1:3 (brown contour) ratios. Chemical shift changes of some representative residues T354, G371 and Q390 are highlighted. (b) Bar diagram showing combined chemical shift perturbation for 15N and HN resonances of each residue of talin F3 upon binding to β2-CT at F3:β2-CT 1:3 ratio. The dotted line marked average chemical shift perturbation. (c) Normalized chemical shift differences are plotted against the concentrations of β2-CT for talin F3 to determine equilibrium dissociation constant (K_d) value. (d) A ribbon representation of the three-dimensional structure of talin F3. Residues that exhibited above average chemical shift perturbations and resonance broadening in the presence of β2-CT are shown as blue and red, respectively.

Figure 2. Interactions of β2-CT with talin F3 and F3/β2-CT docked. (a) A bar diagram showing change of intensity in 15N-1H HSQC spectra of β2-CT upon addition of talin F3 at 1:3 ratio. (b) A ribbon representation of the docked structure of talin F3 (in cyan) and β2-CT (light red) highlighting some of the residues at the interface of the complex.

Figure 3. Mapping talin F3 interactions with pTβ2-CT. (a) Bar diagram showing combined chemical shift perturbation for 15N and HN resonances of each residue of talin F3 upon binding to β2-CT at F3:β2-CT 1:3 ratio. The dotted line marked average
chemical shift perturbation. (b) Bar diagram showing differences in weighted chemical shift of residues of F3 talin in the presence of β2-CT and pTβ2-CT. 15N-1H HSQC cross-peaks of some residues of F3 delineated resonance broadening upon binding interactions either with β2-CT or pTβ2-CT are marked as down arrows and up arrows, respectively. Residues of F3 showing resonance broadening upon binding interactions with β2-CT and pTβ2-CT are indicated as cross. (c) Normalized chemical shift differences are plotted against the concentrations of pTβ2-CT for talin F3 to determine equilibrium dissociation constant (K_d) value.

Figure 4. Mapping talin F3 interactions with membrane proximal β2-CT peptide KS34. (a) Bar diagram showing combined chemical shift perturbation for 15N and HN resonances of each residue of talin F3 upon binding to KS34 at F3:KS34 1:3 ratio. The dotted line marked average chemical shift perturbation. (b) Normalized chemical shift differences are plotted against the concentrations of KS34 for talin F3 to determine equilibrium dissociation constant (K_d) value.

Figure 5. Mapping talin F3 interactions with pTβ2-CT and 14-3-3ζ. (a) Overlay of sections of 15N-1H HSQC spectra of representative residues of talin F3 alone (in blue contour), in the presence of 3 fold excess of pTβ2-CT in green contour and in the presence of both pTβ2 and 14-3-3ζ (in red contour) (F3:14-3-3ζ:pTβ2 1:1:3). (b) Normalized chemical shift differences are plotted against the concentrations of pTβ2-CT for talin F3 to determine equilibrium dissociation constant (K_d) value. (c) A ribbon representation of the three-dimensional structure of talin F3. Residues that exhibited above average chemical shift perturbations and resonance broadening in the presence of β2-CT and 14-3-3ζ are shown as blue and red, respectively.
Figure 6. Thermodynamic characterization of interactions between pTβ2-CT, talin F3 and 14-3-3ζ in ternary complex by ITC. (a) ITC titrations of binding of full-length pTβ2-CT with 14-3-3ζ. (b) ITC titrations of binding of Thr phosphorylated peptide fragment pTDS20 of pTβ2-CT (Table 1) with 14-3-3ζ. In both titrations, aliquots of fixed amount of phosphorylated β2-CT peptides were injected into sample cells containing 14-3-3ζ. (c) ITC titrations of binding of talin F3 with the pre-formed complex of full-length pTβ2-CT and 14-3-3ζ. Aliquots of fixed amount of F3 samples were injected into sample cells containing equimolar concentrations of pTβ2-CT and 14-3-3ζ. The top panels of the ITC thermograms show heat exchange of binding whereas the heat of reaction as function of molar ratios is shown at the bottom panels.

Figure 7. Interactions of pTβ2-CT and pSPβ2-CT with 14-3-3ζ, Dok1 and talin F3. (a) 31P NMR spectra of pTβ2-CT in free solution, in the presence of talin F3 (pTβ2:F3, 1:0.5), 14-3-3ζ (pTβ2:14-3-3ζ, 1:0.5) and talin F3, 14-3-3ζ (pTβ2:F3:14-3-3ζ 1:0.5:0.5). (b) 31P NMR spectra of pSPβ2-CT in free solution, in the presence of 14-3-3ζ (SpTβ2:14-3-3ζ, 1:1) and with Dok1, 14-3-3ζ (pTβ2:Dok1:14-3-3ζ , 1:1:1).

Figure 8. Docked structure of the ternary complex of talin F3, 14-3-3ζ and pTβ2-CT. (a) A ribbon representation of the topology of the ternary complex dimeric 14-3-3ζ in green, talin F3 in cyan and pTβ2-CT in light red. (b) Ionic interactions of residue pT758 of pTβ2-CT with cationic residues R126, R56 and R61 of 14-3-3ζ at the canonical phosphorylated peptide binding pocket. (c-d) Potential ionic and non-
polar packing interactions of pTβ2 with talin F3, residue D731 of the membrane proximal helix and residue D749 of β2-CT are in close proximity of cationic residues of talin F3 (panel c), potential aromatic packing interactions may involve residue W748 of pTβ2-CT with residues Y376 and W351 of talin F3 (panel d).

Figure 9. A proposed model of β2 integrin activation that involves complex formation with talin and 14-3-3ζ. In its resting state, β2 integrin adopts a bent conformation with clasped TMs and CTs. This is maintained by filamin that binds to two regions within β2-CT and the membrane proximal region in the α-CT. In the resting β2 integrin, Ser756 could be phosphorylated which promotes Dok1 binding. Upon cellular activation, kindlin-3 is recruited to the NPKF motif of the β2-CT. Kindlin-3 binds to migfilin that could displace filamin from its β2-CT binding sites but filamin could still retain its interaction with the α-CT. Concomitantly, pSer756 could be dephosphorylated by yet unknown mechanism. This leads to the dissociation of Dok1 from its β2-CT binding site. The release of both filamin and Dok1 from the β2-CT allows talin binding. This disrupts the salt-bridge interaction between the β2 integrin CTs, leading to the separation of the CTs and TMs. As a consequence, the β2 integrin undergoes global conformational changes from a bent to an extended conformation, which is a hallmark of integrin inside-out activation. At this stage, Thr758 in the β2-CT could be phosphorylated and it promotes 14-3-3ζ binding. 14-3-3 family of proteins is known to form homodimers. Hence, a 14-3-3ζ monomer on one β2-CT could homodimerize with another 14-3-3ζ monomer on another β2-CT, leading to β2 integrin clustering. Given that talin rod region binds actin, the β2 integrin cluster is further stabilized by talin-filamentous actin interactions. The
clustering of β2 integrins and their linkages to the actin cytoskeleton not only increase the overall avidity of ligand binding, they also induce outside-in signaling.
Table 1. Primary structures of synthetic β2-CT and β2-CT peptide fragments used in this study*.

<table>
<thead>
<tr>
<th>Name</th>
<th>Residue</th>
<th>Sequence</th>
</tr>
</thead>
</table>

*phosphorylated residues and Ala replacements are bold faced.
Table 2. Determination of K_d values of β_2-CT, pTβ_2-CT, talin F3 and 14-3-3ζ interactions by 15N-1H HSQC titrations

<table>
<thead>
<tr>
<th>Complex</th>
<th>K_d (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15N-F3/β_2-CT</td>
<td>244±14</td>
</tr>
<tr>
<td>15N-F3/pTβ_2-CT</td>
<td>578±74</td>
</tr>
<tr>
<td>15N-F3/pTβ_2-WA</td>
<td>1361±248</td>
</tr>
<tr>
<td>15N-F3/pTβ_2-FA</td>
<td>668±75</td>
</tr>
<tr>
<td>15N-F3/KS33</td>
<td>357±31</td>
</tr>
<tr>
<td>15N-F3/14-3-3ζ/pTβ_2-CT</td>
<td>213±25</td>
</tr>
<tr>
<td>15N-F3/14-3-3ζ/pTβ_2 FA</td>
<td>493±61</td>
</tr>
<tr>
<td>15N-F3/14-3-3ζ/pTβ_2 WA</td>
<td>564±62</td>
</tr>
</tbody>
</table>
Table 3: ITC interaction analyses of binding of pTβ2-CT, 14-3-3ζ and talin F3

<table>
<thead>
<tr>
<th>Cell Conc. (μM)</th>
<th>Syringe Conc. (μM)</th>
<th>K_d (Kcal/mol)</th>
<th>ΔH (Kcal/mol)</th>
<th>TΔS (Kcal/mol)</th>
<th>ΔG (Kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-3-3ζ</td>
<td>25</td>
<td>pTβ2 580</td>
<td>4.9±1.2</td>
<td>-13.22</td>
<td>-5.97</td>
</tr>
<tr>
<td>14-3-3ζ</td>
<td>10</td>
<td>pTβ2 MD 220</td>
<td>11.03±1.2</td>
<td>-10.29</td>
<td>-11.7</td>
</tr>
<tr>
<td>pTβ2:14-3-3ζ</td>
<td>25</td>
<td>F3 800</td>
<td>161.8±31.2</td>
<td>-17.94</td>
<td>-12.75</td>
</tr>
</tbody>
</table>
Figure 1
Figure 4

(a) Weighted CS change vs. Residue

(b) Weighted CS change vs. Conc. of KS34 (μM)

Kd 357 ± 31 μM
Figure 5

(a) G385, A393, L391, K357, and Q374 structures

(b) Weighted CS change vs. Conc. of pT-β2 (µM)

K_d 213 ± 25 µM

(c) 3D structure of the protein
Figure 6

(a) Time (min)

(b) Time (min)

(c) Time (min)

Kcal mol$^{-1}$ of injection

Molar Ratio
Figure 8
Figure 9