<table>
<thead>
<tr>
<th>Title</th>
<th>Near-infrared linewidth narrowing in plasmonic Fano-resonant metamaterials via tuning of multipole contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lim, Wen Xiang; Han, Song; Gupta, Manoj; MacDonald, Kevin F.; Singh, Ranjan</td>
</tr>
<tr>
<td>Date</td>
<td>2017</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/43713</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2017 American Institute of Physics (AIP). This paper was published in Applied Physics Letters and is made available as an electronic reprint (preprint) with permission of American Institute of Physics (AIP). The published version is available at: [http://dx.doi.org/10.1063/1.4997423]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Near-infrared linewidth narrowing in plasmonic Fano-resonant metamaterials via tuning of multipole contributions

Wen Xiang Lim ,1,2,3 Song Han ,1,2 Manoj Gupta ,1,2 Kevin F. MacDonald,3 and Ranjan Singh1,2,a)
1Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
2Centre for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
3Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Southampton S017 1BJ, United Kingdom

(Received 19 May 2017; accepted 24 July 2017; published online 8 August 2017)

We report on an experimental and computational (multipole decomposition) study of Fano resonance modes in complementary near-IR plasmonic metamaterials. Resonance wavelengths and linewidths can be controlled by changing the symmetry of the unit cell so as to manipulate the balance among multipole contributions. In the present case, geometrically inverting one half of a four-slot (paired asymmetric double bar) unit cell design changes the relative magnitude of magnetic quadrupole and toroidal dipole contributions leading to the enhanced quality factor, figure of merit, and spectral tuning of the plasmonic Fano resonance. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4997423]

Metamaterials have been a subject of intense interest due to their ability to exhibit optical properties not commonly found in natural materials. By suitably engineering the size and geometry of metamaterials at the sub-wavelength scale, researchers have been able to exploit and manipulate electromagnetic waves to achieve various phenomena such as invisibility cloaking,1–4 super lenses,5–8 electromagnetically induced transparency,9–11 and high quality-factor Fano resonances,12–15 offering a rich variety of applications in photonics and optics. Specifically, a Fano resonance is a scattering phenomenon resulting from destructive interference between a continuum background and a resonant mode and is commonly recognized by its asymmetric lineshape. In 1935, Fano was the first to theoretically formulate an equation which adequately provides an explanation of this unique and distinct lineshape.16 In the field of plasmonic metamaterials, various Fano resonant unit cell shapes and designs such as dolmen structures,17–19 ring/disk nanocavities,20–23 heptamers,24–28 and notably split ring resonators29–33 have been explored in great detail. An uncomplicated design composed of paired asymmetric double bars (ADB) has also been studied for its Fano resonance34–39 and electromagnetically induced transparency properties.40–43 While computed charge distribution and field vectors are typically used as a visual mechanism to identify and attribute the origin of the Fano resonance in such structures, there has been little focus on quantitative and qualitative analysis of the role of the multipoles that contribute to the asymmetric line shape and the linewidth narrowing of Fano resonances in complementary nanostructures (paired asymmetric double slots in a thin plasmonic metal film). Complementary nanostructures are interesting due to the enhanced mode volume as a result of the tight confinement of the electromagnetic fields in the narrow empty spaces of the nanostructures (portions without metal). Since the mode volume is higher in these nanostructures, the interaction of the Fano cavity with any other dynamic material medium would be extremely strong. As such, the multipole expansion analysis is applied to this simple design as an illustration of the way in which it can enrich the understanding of symmetry-broken metamaterials in complementary designs.

Here, we introduce a comparison between complementary nanostructures of paired ADBs in so-called “Fano” and “iFano” configurations (iFano denoting a 180° inversion of one ADB relative to the Fano geometry—as shown in Fig. 1) and report that in the iFano configuration, a larger figure of merit and quality factor can be achieved in the infrared regime, as compared to the Fano configuration. Numerical simulations attribute the origin of a broad dipolar resonance to the electric dipole, and the asymmetric Fano lineshape is a consequence of the electric dipole (E. dip) interacting with the magnetic quadrupole (M. quad) and the toroidal dipole (T. dip). Via a decomposition of the multipoles, we find that the magnetic quadrupole competes on the same scale as the toroidal dipole to narrow the linewidth of the resonance. In addition, the iFano configuration offers a spectral shift without the need to alter the periodicity or dimensions of the unit cell.

Figure 1(a) illustrates a generic unit cell of the metamaterial nanostructure used in the present study, which comprises four slots (two complementary ADBs) in a thin gold film. In the “Fano” configuration, the ADBs have the same orientation, while in the iFano configuration one ADB is rotated by 180° with respect to the other. The period of the unit cell is fixed at $p_x = 1400$ nm and $p_y = 700$ nm, the long bar length is fixed at $l = 420$ nm, and the x-separation between ADBs within the unit cell is fixed at $d = 140$ nm. The asymmetry of the nanostructures was controlled by varying the lengths of the short bar, from 420 nm to 100 nm. The asymmetry parameter is defined as the ratio of

Email: ranjans@ntu.edu.sg
The reflectance of fabricated nanostructures were measured using a DualBeam operating at 30 kV and 24 pA. The reflectance focused-ion beam milling (FEI Helios Nanolab 650 were imposed in the...
To better understand the nature of the optical responses in different configurations and its influence on the linewidth narrowing, numerical calculations were performed using a multipole expansion of the electromagnetic fields. The calculated induced current densities in the nanostructures were used to compute the scattering power of several multipoles, which can be represented in the x, y, z Cartesian coordinate frame as follows:

Electric dipole moment: $$P_x = \frac{1}{i\omega} \int J_x d^3r,$$

Magnetic dipole moment: $$M_x = \frac{1}{2c} \int (r \times J) \cdot d^3r,$$

Toroidal dipole moment: $$T_x = \frac{1}{10c} \left[(r \cdot J)_x r_x - 2r^2 J_x \right] d^3r,$$

Electric quadrupole moment: $$Q_{x\beta} = \frac{1}{12i\omega} \int \left[r_x J_{\beta} + r_{\beta} J_x - \frac{2}{5} (r \cdot J) \delta_{x\beta} \right] d^3r,$$

Magnetic quadrupole moment: $$M_{x\beta} = \frac{1}{3c} \left[(r \times J)_x r_{\beta} + (r \times J)_{\beta} r_x \right] d^3r,$$

where c is the speed of light, J is the induced current density, and x, $\beta = x, y, z$.

In both configurations, this analysis reveals that the appearance of the broad resonance for paired symmetric double bars can be attributed to an electric dipole which oscillates in phase with incident electromagnetic waves. As the length of the short bar starts to decrease, the symmetry of the nanostructures is broken, resulting in the excitation of the Fano resonance. In the asymmetric case, crucial higher-order contributions come from the toroidal dipole and magnetic

FIG. 2. Measured (a, b) and simulated (c, d) reflectance spectra of the complementary Fano (a, c) and iFano (b, d) configurations for a selection of asymmetry parameters. The dips of the Fano resonances are marked with arrows in the corresponding line colour. Colour maps of simulated reflectance against wavelength and asymmetry parameter for the (e) Fano and (f) iFano configuration. In these figures, the black arrow highlights, by way of example, the linewidth of the Fano resonance for $\alpha = 0.524$. The white dashed line illustrates the tuning extent of resonance wavelength tuning over the range of asymmetry parameters considered.
quadrupole alongside the fundamental electric dipole as illustrated in Fig. 4 (magnetic dipole and electric quadrupole contributions by comparison are negligible). In general, the electric dipole is highly radiative and couples easily with the driving field. Although the electric dipole plays a determinative role in the appearance of the Fano resonance, the higher-order contributions of the toroidal dipole and the magnetic quadrupole cannot be neglected. As the asymmetry between the double bars is introduced in both configurations, there is an increase in their contributions and together they interact with the electric dipole to form an asymmetric Fano resonance. The consequence is the narrowing of the linewidth of the resonance wavelength and a higher Q-factor obtained as compared to the symmetric system.

A closer look at the total contributions of the scattering power by the multipoles at resonance reveals that the sum of the scattering power due to the electric dipole, magnetic quadrupole, and toroidal dipole in the Fano configuration is greater than that in the iFano configuration, as shown in Fig. 5(a). This accounts for the higher Q-factor observed for the iFano configuration as compared to the Fano configuration. To understand the individual roles of the toroidal dipole and magnetic quadrupole, we evaluated the difference between their scattering powers and found that for all values of the asymmetry parameters, there is a larger difference in the iFano configuration as compared to the Fano configuration. In both configurations, as shown in Fig. 5(b), below an asymmetry parameter of $\alpha = 0.35$, the difference between the scattering powers of the toroidal dipole and magnetic quadrupole starts to diverge. This corresponds to the point at which the Q-factor in Fig. 3(b) increases more rapidly with the decreasing asymmetry parameter in the iFano configuration as compared to the Fano configuration. This indicates that the response of the magnetic quadrupole dominates the toroidal dipole in the iFano configuration. In the Fano configuration, the toroidal dipole slowly suppresses the response of the magnetic quadrupole and the difference starts to reduce. As a result, we can conclude that with regards to the linewidth narrowing of the Fano resonance, the magnetic
quadrupole plays a significant role in the resonant line narrowing while the toroidal dipole competes with the magnetic quadrupole to broaden the resonance in the complementary paired ADBs system. With the iFano configuration, we can increase the dominance of the magnetic quadrupole and narrow the linewidth to improve the Q-factor. Moreover, by simply inverting one ADB in the paired ADB unit cell, it is possible to blue-shift the near-infrared resonance by as much as 200 nm (~12.5%), providing for facile spectral tuning without a change of structural dimensions.

In conclusion, multipolar decomposition provides an informative and broadly applicable approach to the analysis of resonant modes in complementary plasmonic metamaterial structures. For the complementary paired ADB metamaterial arrays presented in this work, such analysis demonstrates that the optical response of the nanostructures is mainly due to interactions between the electric dipole, magnetic quadrupole, and the toroidal dipole. The plasmonic systems in “Fano” and “iFano” configurations (“i” denoting the geometric inversion of part of the unit cell) are similar but for an iFano configuration, the contribution of the magnetic quadrupole is enhanced relative to the toroidal dipole, which results in the linewidth narrowing of the Fano resonance. The achievable Q-factor in the iFano configuration is enhanced by much as 1.5 times compared to the Fano configuration. Aside from enhancing the Q-factor, it is notable here that the inverted configuration also provides a mechanism to widen the tunability in the infrared spectral range without a need to change the shape or dimensions of the metamaterial unit cell—a behaviour that may be of particular use in optical and bio-sensing applications.

This work was supported by research grants from Nanyang Technological University Start-up Grant No. M4081282, Singapore Ministry of Education Grant Nos. MOE2011-T3-1-005 and MOE2015-T2-2-103, and the Engineering and Physical Sciences Research Council, UK Grant No. EP/M009122/1.

Following a period of embargo, the data from this paper will be available from the University of Southampton research repository at http://doi.org/10.5258/SOTON/D0158.