<table>
<thead>
<tr>
<th>Title</th>
<th>Remnant Geometric Hall Response in a Quantum Quench</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Wilson, Justin H.; Song, Justin Chien Wen; Refael, Gil</td>
</tr>
<tr>
<td>Citation</td>
<td>Wilson, J. H., Song, J. C. W., & Refael, G. (2016). Remnant Geometric Hall Response in a Quantum Quench. Physical Review Letters, 117(23), 235302-.</td>
</tr>
<tr>
<td>Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/44152</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2016 American Physical Society. This paper was published in Physical Review Letters and is made available as an electronic reprint (preprint) with permission of American Physical Society. The published version is available at: [http://dx.doi.org/10.1103/PhysRevLett.117.235302]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Remnant Geometric Hall Response in a Quantum Quench

Justin H. Wilson,1,* Justin C. W. Song,1,2† and Gil Refael1,2

1Institute of Quantum Information and Matter and Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
2Walter Burke Institute of Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA

(Received 29 March 2016; published 30 November 2016)

Out-of-equilibrium systems can host phenomena that transcend the usual restrictions of equilibrium systems. Here, we unveil how out-of-equilibrium states, prepared via a quantum quench in a two-band system, can exhibit a nonzero Hall-type current—a remnant Hall response—even when the instantaneous Hamiltonian is time reversal symmetric (in contrast to equilibrium Hall currents). Interestingly, the remnant Hall response arises from the coherent dynamics of the wave function that retain a remnant of its quantum geometry postquench, and can be traced to processes beyond linear response. Quenches in two-band Dirac systems are natural venues for realizing remnant Hall currents, which exist when either mirror or time-reversal symmetry are broken (before or after the quench). Its long time persistence, sensitivity to symmetry breaking, and decoherence-type relaxation processes allow it to be used as a sensitive diagnostic of the complex out-of-equilibrium dynamics readily controlled and probed in cold-atomic optical lattice experiments.

DOI: 10.1103/PhysRevLett.117.235302

Subtle quantum coherences encoded in the topology of crystal wave functions are responsible for a wide array of robust quantum phenomena [1–4], e.g., the quantum Hall effect. While originating in the solid state, cold atoms have recently become a system of choice for experimentally unraveling topology on the microscopic level [5–7] due to the array of new probes available. For example, these probes have been used to image the skipping orbits (edge states) in a cold-atomic quantum Hall system [8] and directly measure the Berry curvature [9] and Zak phase [10] in cold-atomic topological bands.

One readily available tool is the quantum quench, which can be used to probe band properties, including topology [11–13]. In quantum quenches, a state, prepared in the many-body ground state of a Hamiltonian $\hat{H}(\hat{\xi})$, undergoes a sudden change in a physical parameter ξ (e.g., lattice depth, detuning), setting the system into dynamical evolution far from equilibrium [14]. This can be most easily illustrated for noninteracting and clean Dirac systems, where many-body states can be represented as a collection of pseudospinors on a Bloch sphere [Fig. 1(b)–1(d)]. In these, a state is prepared in the ground state of a Dirac Hamiltonian $\hat{H}(\Delta)$, withTRS breaking gap Δ [Fig. 1(a)]. At $t = 0$, the Hamiltonian is quenched to $\hat{H}(\Delta = 0)$ (where TRS is preserved), yielding dynamics for OES, with the pseudospinors exhibiting Larmor precession [Fig. 1(c)].

To probe OES, a short pulse of strength $\hat{A} = \int dt \hat{E}(t)$ can be applied to the system at time $t = t_1$ [Figs. 1(a, e)], shifting the Larmor orbits along \hat{E}. Averaged over one cycle, longitudinal momentum along \hat{E} increases. However, in addition to this, the constraint of pseudospinors being on the Bloch sphere allows a transverse shift to accumulate. As a result, at long times $t = t_2$, we obtain a remnant Hall current

$$J_{\text{Hall}}(t_1, t_2 \rightarrow \infty) = \Xi_{\text{Hall}}^{\infty}(t_1) \hat{\mathbf{z}} \times \hat{\mathbf{A}},$$

that persists long after the applied pulse $\hat{E}(t)$ has passed, as shown in Fig. 1(e). Here, $\Xi_{\text{Hall}}^{\infty}$ is a nonuniversal function depending on t_1 and model specifics described below. Instead of the Hall conductivity, we focus on the total current and $\Xi_{\text{Hall}}^{\infty}$ because (i) time-translational symmetry is broken and (ii) the effect described here is inherently beyond linear response. Additionally, while we use the language of electromagnetic response, in cold-atom optical lattices, \hat{eA} can be easily effected by a shift in momentum $\Delta \mathbf{p}$ brought on by a sudden force; in such systems, \mathbf{J}_{Hall} takes the form of a particle current.

*Walter Burke Institute of Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA
†Institute of Quantum Information and Matter and Department of Physics, California Institute of Technology, Pasadena, California 91125, USA

0031-9007/16/117(23)/235302(6) 235302-1 © 2016 American Physical Society
be expected from general considerations [23,24]). As we argue below, purely dephasing phenomena, e.g., scattering, for, e.g., spin-spin, spin-environment relaxation. Scattering processes in OES when interactions and disorder are allowed. The ease with which Dirac-type [9] and other spin-orbit coupled Hamiltonians [5] can be constructed in setups for ultracold bosons and fermions allow these effects to be easily accessed; however, we find that fermions are more readily amenable. In order to observe the Hall effect and separate it from an overwhelming longitudinal response, we propose a time-of-flight setup in the direction perpendicular to the applied pulse while keeping a confining potential in the direction of the applied pulse. In such an experimental setup, the gap, as tuned by Zeeman coupling or “shaking” of the cold atom lattice, is suddenly turned off. The “pulse” is then implemented some time after the quench by applying a sudden and brief force upon the system (e.g., tilting the confining potential for a very short time).

Now, let us explain the effect with a two-band Hamiltonian $H(\Delta) = \sum_p c_p h(\mathbf{p}, \Delta) c_p$ with $c_p = (c_{+p}, c_{-p})^T$ and $h(\mathbf{p}, \Delta) = e_0(\mathbf{p}) + d(\mathbf{p}, \Delta(t)) \cdot \sigma$, (2) where $\mathbf{p} = (p_x, p_y)$ is the two-dimensional momentum and $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ are the Pauli matrices, and $\Delta(t)$ is a gap parameter that varies as a function of time. When $d(\mathbf{p}, \Delta(t))$ changes rapidly as in a quantum quench, the response depends intimately on the evolution of the wave function. Before discussing the lattice setup, we first analyze a simple example that captures the essential physics—a quenched, single-cone, low-energy Haldane-type model—obeying Eq. (2) with $e_0(\mathbf{p}) = 0$, $d(\mathbf{p}, \Delta(t)) = (p_x, p_y, \Delta \Theta(-t))$. (3) where $\Theta(t)$ is the Heaviside function. This captures the essential physics of the usual two-cone Haldane model up to a factor of 2, hence, the name. For $t < 0$, we begin in the many-body ground state $|\Psi_0\rangle$ at half-filling. For $t > 0$, the system coherently evolves with $|\Psi_1(t)\rangle = e^{-iHt}|\Psi_0\rangle = \prod_p |\psi_1(p)\rangle$, where the single particle wave functions $|\psi_0(p)\rangle = e^{-i\hat{H}(0)}|\psi_0(p)\rangle$. For this half-filled band, the Chern number (defined by $C = \int [d^2p/(2\pi)^2] \hat{\nabla}_p \times \langle \psi_0(p)|\nabla_p|\psi_0(p)\rangle$) is $1/2$ per flavor. In equilibrium, this manifests as a $\sigma_{xy} = e^2/\hbar$ bulk Hall conductivity, but as we show, the out-of-equilibrium current response becomes decoupled from the Chern number despite the fact that unitary evolution preserves C [17,21].

To extract the response properties of $|\Psi_1(t)\rangle$, we consider the following pulse-type protocol (see Fig. 1) where (i) at $t = t_1$ a short pulse $|E_s(t) = A_s \delta(t - t_1)\rangle$ is applied to the system so that $\mathbf{p} \rightarrow \mathbf{p} - eA \mathbf{e} [\text{i.e., the Hamiltonian in Eq. (3)}$ changes $d(\mathbf{p}, 0) \rightarrow d(\mathbf{p} - eA, 0)]$, (ii) and the Hall current, J_{Hall}, that develops is measured at $t = t_2$. Here, $t_1, t_2 > 0$ occur after the quench leading to a final state $|\Psi_2(t_2)\rangle = \prod_p |\psi_2(p)\rangle$, with $|\psi_2(p)\rangle = e^{-i(t_2 - t_1)\hat{H}(0 - eA, 0)}|\psi_1(p, t_1)\rangle$. In the following, we have set speed of light to unity. The current response can be obtained via $J = \langle \Psi|j|\Psi\rangle$, where $j = \partial H/\partial A$. Using $|\Psi\rangle = |\Psi_2(t_2)\rangle$ along with Eq. (3) and extracting the component of J transverse to the applied field E, we obtain J_{Hall} as shown in Fig. 1(e). Here, J_{Hall} was obtained via numerical integration with a
prequench $|\Psi_0\rangle$ where the entire valence band was filled. A full discussion of J is contained in the Supplemental Material [25]. Because of the collective action of all electrons in the valence band, J_{Hall} does not have an apparent oscillatory structure in Fig. 1(e).

Strikingly, J_{Hall} in Fig. 1(e) grows from zero (when the pulse is first applied at t_1) and saturates at long times to a nonvanishing value, $J_{\text{Hall}}(t_1, t_2 \to \infty) = J_{\text{Hall}}^\infty(t_1)$ as seen in Fig. 1(e). As we argue below, this behavior is generic for OES. The nonzero $J_{\text{Hall}}^\infty(t_1)$ is unconventional and arises from the near-lock-step Larmor precession of the pseudospins $|\psi_f(p)\rangle$ that form the full many-body OES $|\Psi_1\rangle$.

We can understand this geometrically by considering Larmor precession of the pseudospins on the Bloch sphere. Even though we are interested in quenches defined in Eq. (3), the effect of shifting the center of rotation for Larmor precession of the pseudo-spins is unconventional and arises from the near-lock-step Larmor precession of the pseudospins $|\psi_f(p)\rangle$ that form the full many-body OES $|\Psi_1\rangle$.

To understand why this implies a remnant Hall current, consider a ring of momenta with $|p| = \hbar$ held constant. With Larmor precession for $t > 0$, they will oscillate around a point on the equator of the Bloch sphere, see Figs. 2(a) and 2(d). At time $t = t_1$ we apply a pulse. As shown by the red arrow in Fig. 2(b), the pulse has the effect of shifting the center of rotation for Larmor precession $d(p, 0) \to d(p - eA, 0)$. As a result, at long times, the shift in average \hat{n} persists [see Figs. 2(b), 2(c), and 2(e)]. Since \hat{n} directly corresponds to current flow direction in Eq. (3), a remnant Hall current develops.

The long-time average of \hat{n} is just its projection at time t_1 along the new precession direction $d(p - eA, 0)$ yielding $|\hat{n}(t) - \hat{\vartheta}(p, 0)\rangle = \hat{n}_f(t_1) \cdot \hat{d}(p - eA, 0)$.

Writing the current operator as $\hat{j}_i = -e\hat{\vartheta}_{ip} h(p - eA, 0) = -e\hat{\vartheta}_{ip} d(p - eA, 0)$, we obtain the current from the projection of the average \hat{n} along $\hat{\vartheta}_{ip} d(p - eA, 0)$. As a result, we find the long-time current for a state p as

$$j_{\mu}^\infty(p, t_1) = -e[\hat{n}(p, t_1) \cdot \hat{d}(p - eA, 0)] \partial_{\mu} d(p - eA, 0).$$

The expression in Eq. (5) is independent of a specific two-band model [26].

We now consider the quench specified in Eq. (3) so that $\hat{n}(t_1) = \langle \psi_f(p) | \sigma | \psi_f(p) \rangle$ reads as $\hat{n}(t_1) = -p \sin\theta_p + (\cos 2pt_1 \hat{z} - \sin 2pt_1 \hat{z} \times p) \cos \theta_p$ [using $|\psi_f(p)\rangle$ derived earlier]. Integrating over all p (for a filled band prior to quench), we obtain a total current

$$J_{\text{Hall}}^\infty(t_1) = -e \int \frac{d^3p}{(2\pi\hbar)^3} \frac{\hat{n}(t_1) \cdot (p - eA)}{|p - eA|} \partial_{\mu} |p - eA|.$$

While this quantity can be fully evaluated (see Supplemental Material [25] for discussion), for brevity and to capture the essential physics, we expand Eq. (6) in A. Discarding terms that integrate to zero, we arrive at Eq. (1) with $\Xi_{\text{Hall}}^\infty(t_1) = -(e^2/2\hbar)(\Delta/\hbar) \int_0^{\pi/2} dz e^{-2\delta t_1(\Delta/\hbar) \sin z}$.

Even though $|\psi_f(p)\rangle$ with similar energies precess with frequencies that are close to each other, over long times t_1, small differences in their precession frequency allow their Larmor orbits to slowly drift out of phase, degrading $J_{\text{Hall}}^\infty(t_1)$. Analyzing $J_{\text{Hall}}^\infty(t_1)$ for large t_1, we obtain

$$J_{\text{Hall}}^\infty(t_1) = -\text{sgn}(\Delta) \frac{e^2 A_1}{4\hbar t_1} + O(t_1^2),$$

which shows that the longer we wait after the quench to pulse the system, the smaller $J_{\text{Hall}}^\infty(t_1)$, as evidenced in the diminishing J_{Hall} current profiles shown in Fig. 1(e). This aging behavior is a characteristic of the different energies of the pseudospins that form prequench $|\Psi_0\rangle$.

Persistent J_{Hall}^∞ does not occur in equilibrium systems; in fact, it is disallowed since dc conductivity is finite even without disorder. To see this, consider the response in equilibrium captured by $j_y(t) = \int \sigma_{yx}(r - r') E_x(r') dt'$. For a pulse $E_x(t) = A_c \delta(t)$, we have $j_y(t) = \sigma_{yx} A_c t$. Thus, $j_y(t) = (1/A_c) \int j_y(t') dt$. As a result, for σ_{yx} that is finite (e.g., the anomalous and conventional Hall effect, the quantum Hall effect), then $j_y(t) \to 0$ as $t \to \infty$ due to integrability.

Relaxation can be included in Eq. (4) in the form of a T_1 and T_2 time [27]. Oscillatory terms describing the Larmor precession are all that are affected by T_2, so if we isolate the nonoscillatory term which gives rise to Eq. (5), we find that only energy relaxation in the form of T_1 time affects...
the result. In fact, at long times, \(j_\mu(p, t_2, t_1) = j_\mu^{\infty}(p, t_1)e^{-t_1/T_1(p)} \). We expect relaxation processes to occur with a probability roughly determined by Fermi’s golden rule such that \(1/T_1(p) \sim \gamma p \langle e(p) \rangle \) where \(\rho(e) \) is the density of states and \(\gamma \) describes the relaxation. In the above model [Eq. (3)], this leads to a suppression as \(1/t_2^2 \) at long times for \(J_{\text{Hall}} \) (see Supplemental Material [25]).

OES Hall currents in Eq. (1) depend intimately on the underlying symmetries of the Hamiltonian, \(H \), in Eq. (2). In particular, we find \(\Xi_{\text{Hall}}^\infty \) depends on the absence of either mirror, \(M_y^{-1}h(p_x, p_y)p_xh = h(p_x, -p_y), \) or time-reversal, \(T^{-1}h(-p)T = h(p) \), symmetry. To expose this, we analyze the contribution of \(p \) states to the persistent response in Eq. (5). Expanding in the pulse strength \(\alpha \), we obtain \(j_\mu(p, t_1) \approx \chi_{\text{Hall}}^{\infty}(p, t_1)A_\mu \). Indeed, \(\Xi_{\text{Hall}}^\infty = \int dp \chi_{\text{Hall}}^{\infty}(p) \), where \(\chi_{\text{Hall}}^{\infty} = \frac{1}{2}(\chi_{xy} - \chi_{yx}) \). Writing \(d_0 = \hat{d}(p, 0) \) yields \(\chi_{\text{Hall}}^{\infty} = \chi_{M}^{\infty} + \chi_{T}^{\infty} \), where \(\chi_{M}^{\infty} = -e^2\partial_{p_x}d_0\partial_{p_y}d_0\hat{d} \cdot \hat{d} \cos 2\pi d_1t_1 \). Here, the brackets \(\partial_{p_x}, \partial_{p_y} \) denote antisymmetrization, and \(M \) and \(T \) subscripts denote contributions controlled by \(M_y \) and \(T \). Importantly, \(M \) possesses \(M_y \) symmetry, then \(\chi_{M}^{\infty}(p_x, -p_y) = -\chi_{M}^{\infty}(p_x, p_y) \). On the other hand, if \(h \) possesses \(T \) symmetry, then \(\chi_{T}^{\infty}(p) = -\chi_{T}^{\infty}(-p) \) (see Supplemental Material [25]). As a result, when \(h \) satisfies both \(M \) and \(T \) symmetries (before and after quench), opposing momentum states will give contributions of opposite sign, and \(\Xi_{\text{Hall}}^\infty = \int dp \chi_{\text{Hall}}^{\infty}(p) = 0 \). Hence, finite \(\Xi_{\text{Hall}}^\infty \) arises from breaking of either \(M_y \) or \(T \) symmetry before or after the quench [28] in contrast to the symmetry requirements for Hall currents in equilibrium linear response [29].

While the OES Hall response is disconnected from the Chern number, \(C \), \(\Xi_{\text{Hall}}^\infty \) can still be expressed in terms of bulk band properties. In particular, for \(M_y \)-symmetric Hamiltonians with a filled band prior to quench, we find an equivalent Thouless-Kohmoto-Nightingale-den Nijs (TKNN)-like formula

\[
\Xi_{\text{Hall}}^\infty = -e^2 \int \frac{d^2p}{(2\pi)^2} \partial_{t_1} \Omega_{p_x, p_y} \log d(p, 0),
\]

where \(\Omega_{p_x, p_y} = \frac{1}{2} \hat{n}(t_1) \cdot [\partial_{p_x} \hat{n}(t_1) \times \partial_{p_y} \hat{n}(t_1)] \) is the Berry curvature of the evolved \(p \) state evaluated at pulse time \(t_1 \). While arising from Berry curvature, we note that it is manifestly distinct from \(C \) and is not quantized.

Finally, we examine other quench protocols for Eq. (2). As we will see, these yield similar responses to the Haldane protocol examined above. One interesting example is a Rashba type protocol where

\[
e_0(p) = \frac{p^2}{2m}, \quad d(p, \Delta) = \left(-v_Fp_y, v_Fp_x, \Delta\Theta(-t) \right),
\]

and chemical potential \(\mu = 0 \). As shown in Figs. 3(a) and 3(b), the Rashba protocol also yields a Hall current that persists at long times. Interestingly, the Hall current in Fig. 3(a) exhibits an oscillatory behavior which arises from the momentum cutoff of Eq. (9) at \(p_F = v_F[2m(v_F^2 + \sqrt{m^2v_F^2 + \Delta^2})]^{1/2} \); this contrasts with the smooth behavior of Fig. 1(c), which had no momentum cutoff.

For \(t_2 \to \infty \), the Hall current response levels out [Figs. 3(a) and 3(b)]. Indeed, its persistent response, \(J_{\text{Hall}}^{\infty} \), matches the Haldane protocol closely [see Fig. 3(a)], except in one important way. In the Rashba protocol, it takes a finite \(t_1 \) to “turn on” \(J_{\text{Hall}}^{\infty} \); magnitude \(J_{\text{Hall}}^{\infty} \) increases from zero at small \(t_1 \), and decreases at long \(t_1 \). In contrast, the Haldane protocol has maximal \(J_{\text{Hall}}^{\infty} \) at \(t_1 \to 0^+ \). This difference arises due to the momentum cutoff which does not appear in the low-energy model of Eq. (3) where there exist states on the Bloch sphere that have already performed multiple Larmor orbits even for an infinitesimal \(t_1 \), yielding a large \(J_{\text{Hall}}^{\infty} \).

Quench type protocols exhibiting \(J_{\text{Hall}}^{\infty} \) can also be realized in lattice models. In these, the bands are finite as opposed to the continuum bands discussed above. We illustrate such a protocol for a “half-Bernevig-Hughes-Zhang” type model in a square lattice [30], wherein Eq. (2) takes \(e_0(p) = 0 \) and \(d(p, M(t)) = (h\pi/\mu)[\sin(\alpha p_x/h), \sin(\alpha p_y/h), M(t) + 2 - \cos(\alpha p_x/h) - \cos(\alpha p_y/h)] \). Here, \(M(t < 0) = M \) and \(M(t > 0) = M' \) represents the quench, and \(\alpha \) is the lattice constant. In the ground state, this model has different topological phases represented by \(M \) [31]. Picking \(M, M' \) values allows us to quench within and between the trivial and topological phases, yielding a persistent Hall current as well [Fig. 3(c)]. As in the case of the Rashba Hamiltonian, there is turn-on behavior with a time scale corresponding to the momentum cutoff provided by \(\alpha^{-1} \).

FIG. 3. Other models exhibiting a remnant Hall current from OES. (a) The long-time remnant \(\Xi_{\text{Hall}}^{\infty} \) dies off as a function of pulse time \(t_1 \) for Haldane and Rashba models. The Fermi momentum cutoff in the Rashba model causes oscillations and \(\Xi_{\text{Hall}} \to 0 \) as \(t_1 \to 0 \). (b) For the Rashba model, the current evolves in an oscillatory way due to the cutoff \(p_F \). (c) Remnant \(\Xi_{\text{Hall}}^{\infty} \) in the half-BHZ model (see text) sees similar oscillations due to the cutoff provided by the square lattice. Interestingly, \(\Xi_{\text{Hall}}^{\infty} \neq 0 \), regardless of the phase we begin or end in. For the Rashba model, we used \(e_A = 0.1\Delta/v_F \) and \(v_Fp_F = 5\Delta \). In the above, characteristic \(J_0 = (e^2/h)(\Delta^2/e\hbar v_F) \), \(\Xi_0 = (e^2/h)(\Delta/e\hbar) \), \(\Xi_0 = (e^2/h)(\Delta/e\hbar) \), and \(M = M_a/hv_F \).
The general framework, as well as the specific model realizations, presented here demonstrate that OES prepared via a quench can manifest Hall currents that persist long after the application of an excitation pulse. Strikingly, they occur under different symmetry requirements than that found in equilibrium systems and can arise even when the instantaneous Hamiltonian is TRS preserving. The experimental conditions necessary for probing OES are readily available in current cold atom setups [32]. In particular, the remnant, quench-induced Hall currents described can be measured via time of flight and provides a new diagnostic of coherent wave function dynamics. The Hall response of OES depends intimately on the entire history of wave function evolution, unlike that found in equilibrium. This opens a new vista of unconventional phenomena that can be prepared and probed in OES.

We thank Mehtash Babadi, Eugene Demler, and Ian Spielman for helpful discussions. We thank the Air Force Office for Scientific Research (J. W.) and the Burke fellowship at the Walter Burke Institute of Theoretical Physics, Caltech (J. C. W. S.) for support. G. R. is grateful for support through the Institute of Quantum Information and Matter (IQIM), an National Science Foundation frontier center, supported by the Gordon and Betty Moore Foundation as well as the Packard Foundation and for the hospitality of the Aspen Center for Physics, where part of the work was performed.

Note added.—Recently, we became aware of the complementary work of Hu, Zoller, and Budich [33] on out-of-equilibrium Hall responses. They include breaking of translational invariance (by a trap, for instance) and find little effect to the out-of-equilibrium Hall response.

*jwilson@caltech.edu
†Present address: Division of Physics and Applied Physics, Nanyang Technological University and Institute of High Performance Computing Singapore.
justinsong@ntu.edu.sg

A two-band model neglecting current contributions from $\epsilon_0(p)$; however, those contributions do not have a Hall response.

Indeed, h in Eq. (3) possesses M_y symmetry (antiunitary symmetry), but $h(t<0)$ breaks T symmetry resulting in the observed Hall current.

$M > 0$ and $M < -4$ are trivial with equilibrium $\sigma_{xy} = 0$, $-2 < M < 0$ is a topological insulator with equilibrium $\sigma_{xy} = -1$, and $-4 < M < -2$ is also a topological insulator with equilibrium $\sigma_{xy} = +1$.
